next up previous
Next: Coherent Reception with Imperfect Up: Collected Problems Previous: Problem 13

Problem 14

Let $X_t(\omega)$ be a stochastic process defined on $\Omega = \{\omega_1,\ldots,\omega_4\}$ having probabibility assignments $Pr\{\omega_i\}=\frac{1}{4}$ for i=1,2,3,4. The sample functions are

\begin{displaymath}
\begin{array}
{ll}
X_t(\omega_1) = t & X_t(\omega_2) = -t \\...
 ...ega_3) = \cos 2\pi t & X_t(\omega_4) = -\cos 2 \pi t\end{array}\end{displaymath}

1.
Compute the joint probability $Pr\{X_0(\omega)=1,X_1(\omega)=1\}$.
2.
Compute the conditional probability $Pr\{X_1(\omega)=1\vert X_0(\omega)=0\}$.
3.
Compute the mean and autocorrelation function of $X_t(\omega)$.
4.
Is this process stationary? wide-sense stationary?


Prof. Bernd-Peter Paris
3/3/1998