next up previous
Up: Collected Problems Previous: Time-Varying Channels

Channel Correlation Functions Consider a WSSUS channel with scattering function

\begin{displaymath}
\Psi_S(\tau, \nu) = \Psi_1(\tau) \cdot \Psi_2(\nu),
\end{displaymath}

where

\begin{displaymath}
\Psi_1(\tau) = \left\{
\begin{array}{cl}
1 & \mbox{for $0 \leq \tau \leq T_m$}\\
0 & \mbox{else}
\end{array} \right.
\end{displaymath}

and

\begin{displaymath}
\Psi_2(\nu) = \left\{
\begin{array}{cl}
\frac{1}{f_m} (1-(...
...t\nu\vert \leq f_m$}\\
0 & \mbox{else.}
\end{array} \right.
\end{displaymath}

  1. Find the Power Delay Profile $\Psi_g(\tau)$.
  2. Determine the Doppler PSD $\Phi_H(\nu)$.
  3. Compute the mean delay $\tau_m$ and the delay spread $\sigma_{\tau}$.
  4. Compute the Doppler spread $\sigma_{\nu}$.
  5. What are the coherence time and coherence bandwidth?



Dr. Bernd-Peter Paris
2003-12-08