next up previous
Next: Up: Collected Problems Previous: Modulation

Time-Varying Channels

A wireless channel is specified by the time-varying channel impulse response

\begin{displaymath}
g(t,\tau) = 1 \cdot \cos(2\pi f_d t) \mbox{, for $0 \leq \tau
\leq T$}.
\end{displaymath}

  1. Determine the time-varying channel transfer function $T(f,t)$.
  2. Compute the output of the channel when the input $x(t)$ is an impulse at time $t_0$, i.e., compute the response to the signal

    \begin{displaymath}
x(t) = \delta(t-t_0).
\end{displaymath}

  3. What is the output when the input is a constant signal

    \begin{displaymath}
x(t) = 1 \mbox{, for all $t$}?
\end{displaymath}

  4. What is the output when the input is

    \begin{displaymath}
x(t) = \left\{
\begin{array}{cl}
1 & \mbox{for $0 \leq t \leq T$}\\
0 & \mbox{else?}
\end{array} \right.
\end{displaymath}



Dr. Bernd-Peter Paris
2003-12-08