next up previous
Next: Pulse Position Modulation Up: Collected Problems Previous: Influence of Phase Errors

Gaussian Pulses

1.
Show that the Fourier transform of the signal

\begin{displaymath}
x(t) = \frac{1}{\sqrt{2\pi}w_0}
 \exp \left( -\frac{1}{2} \left( \frac{t-t_0}{w_0} \right)^2 \right)
 \end{displaymath}

is given by

\begin{displaymath}
X(f) = \exp(-j 2 \pi f t_0 - 2(w_0 \pi f)^2).
 \end{displaymath}

2.
Let x(t) be the input to a linear system with impulse response

\begin{displaymath}
h(t) = \frac{1}{\sqrt{2\pi}w_1}
 \exp \left( -\frac{1}{2} \left( \frac{t-t_1}{w_1} \right)^2 \right).
 \end{displaymath}

Find the resulting output signal y(t).
3.
Is the linear system in part (b) causal? Explain.
4.
Now let x(t) be input to a linear system with impulse response h(t) = u(t) where u(t) denotes the unit step function. (I.e., u(t)=1 for $t \geq 0$ and u(t)=0 for t < 0). Find the resulting output signal.
Hint: One of parts (b) and (d) is best solved in the frequency domain while the other is easier in the time domain.



Prof. Bernd-Peter Paris
3/3/1998