Matched Filter

- It is well known, that the optimum receiver for an AWGN channel is the matched filter receiver.
- The matched filter for a linearly modulated signal using pulse shape $p(t)$ is shown below.
 - The slicer determines which symbol is “closest” to the matched filter output.
 - Its operation depends on the symbols being used and the a priori probabilities.

\[
\begin{align*}
R(t) \times p(t) \rightarrow \int_0^T (\cdot) \ dt \rightarrow \text{Slicer} \rightarrow \hat{b}
\end{align*}
\]
Shortcomings of The Matched Filter

- While theoretically important, the matched filter has a few practical drawbacks.
 - For the structure shown above, it is assumed that only a single symbol was transmitted.
 - In the presence of channel distortion, the receiver must be matched to \(p(t) \ast h(t) \) instead of \(p(t) \).
 - **Problem:** The channel impulse response \(h(t) \) is generally not known.
 - The matched filter assumes that perfect symbol synchronization has been achieved.
 - The matching operation is performed in continuous time.
 - This is difficult to accomplish with analog components.
Analog Front-end and Digital Back-end

- As an alternative, modern digital receivers employ a different structure consisting of
 - an analog receiver front-end, and
 - a digital signal processing back-end.

- The analog front-end is little more than a filter and a sampler.
 - The theoretical underpinning for the analog front-end is Nyquist’s sampling theorem.
 - The front-end may either work on a baseband signal or a passband signal at an intermediate frequency (IF).

- The digital back-end performs sophisticated processing, including
 - digital matched filtering,
 - equalization, and
 - synchronization.
Analog Front-end

- Several, roughly equivalent, alternatives exist for the analog front-end.
- Two common approaches for the analog front-end will be considered briefly.
- Primarily, the analog front-end is responsible for converting the continuous-time received signal $R(t)$ into a discrete-time signal $R[n]$.
 - Care must be taken with the conversion: (ideal) sampling would admit too much noise.
 - Modeling the front-end faithfully is important for accurate simulation.
Analog Front-end: Low-pass and Whitening Filter

- The first structure contains:
 - a low-pass filter (LPF) with bandwidth equal to the signal bandwidth,
 - a sampler followed by a whitening filter (WF).
 - The low-pass filter creates correlated noise,
 - the whitening filter removes this correlation.

\[R(t) \rightarrow \text{LPF} \rightarrow \text{Sampler, rate } f_s \rightarrow \text{WF} \rightarrow R[n] \rightarrow \text{to DSP} \]
Analog Front-end: Integrate-and-Dump

- An alternative front-end has the structure shown below.
 - Here, $\Pi_{T_s}(t)$ indicates a filter with an impulse response that is a rectangular pulse of length $T_s = 1/f_s$ and amplitude $1/T_s$.
 - The entire system is often called an *integrate-and-dump* sampler.
 - Most analog-to-digital converters (ADC) operate like this.
 - A whitening filter is not required since noise samples are uncorrelated.
Output from Analog Front-end

- The second of the analog front-ends is simpler conceptually and widely used in practice; it will be assumed for the remainder of the course.

- For simulation purposes, we need to characterize the output from the front-end.
 - To begin, assume that the received signal $R(t)$ consists of a deterministic signal $s(t)$ and (AWGN) noise $N(t)$:
 \[R(t) = s(t) + N(t). \]
 - The signal $R[n]$ is a discrete-time signal.
 - The front-end generates one sample every T_s seconds.
 - The discrete-time signal $R[n]$ also consists of signal and noise
 \[R[n] = s[n] + N[n]. \]
Output from Analog Front-end

- Consider the signal and noise component of the front-end output separately.
 - This can be done because the front-end is linear.
- The n-th sample of the signal component is given by:
 \[
 s[n] = \frac{1}{T_s} \cdot \int_{nT_s}^{(n+1)T_s} s(t) \, dt \approx s((n + 1/2)T_s).
 \]
 - The approximation is valid if $f_s = 1/T_s$ is much greater than the signal band-width.
Output from Analog Front-end

- The noise samples $N[n]$ at the output of the front-end:
 - are independent, complex Gaussian random variables, with
 - zero mean, and
 - variance equal to N_0 / T_s.

- The variance of the noise samples is proportional to $1 / T_s$.
 - **Interpretations:**
 - Noise is *averaged* over T_s seconds: variance decreases with length of averager.
 - Bandwidth of front-end filter is approximately $1 / T_s$ and power of filtered noise is proportional to bandwidth (noise bandwidth).

- It will be convenient to express the noise variance as $N_0 / T \cdot T / T_s$.
 - The factor $T / T_s = f_s T$ is the number of samples per symbol period.
System to be Simulated

Figure: Baseband Equivalent System to be Simulated.
From Continuous to Discrete Time

► The system in the preceding diagram cannot be simulated immediately.
 ► **Main problem:** Most of the signals are continuous-time signals and cannot be represented in MATLAB.

► **Possible Remedies:**
 1. Rely on Sampling Theorem and work with sampled versions of signals.
 2. Consider discrete-time equivalent system.

► The second alternative is preferred and will be pursued below.
Towards the Discrete-Time Equivalent System

- The shaded portion of the system has a discrete-time input and a discrete-time output.
 - Can be considered as a discrete-time system.
 - **Minor problem:** input and output operate at different rates.

\[p(t) \times A \times h(t) + N(t) + \sum_{t-nT} \delta(t-nT) \]

\[R(t) \times \Pi_{T_s}(t) \]

Sampler, rate \(f_s \)

\(b_n \)
to

\(R[n] \)

\(\text{DSP} \)
Discrete-Time Equivalent System

- The discrete-time equivalent system
 - is equivalent to the original system, and
 - contains only discrete-time signals and components.
- Input signal is up-sampled by factor $f_s T$ to make input and output rates equal.
 - Insert $f_s T - 1$ zeros between input samples.
Components of Discrete-Time Equivalent System

Question: What is the relationship between the components of the original and discrete-time equivalent system?

\[
\sum \delta(t - nT) \times p(t) \times s(t) + N(t) + \Pi_{T_s}(t) \rightarrow \text{Sampler, rate } f_s \rightarrow R[n] \rightarrow \text{DSP}
\]
Discrete-time Equivalent Impulse Response

- To determine the impulse response $h[n]$ of the discrete-time equivalent system:
 - Set noise signal N_t to zero,
 - set input signal b_n to unit impulse signal $\delta[n]$,
 - output signal is impulse response $h[n]$.

- Procedure yields:
 \[
 h[n] = \frac{1}{T_s} \int_{nT_s}^{(n+1)T_s} p(t) * h(t) \, dt
 \]

- For high sampling rates ($f_s T \gg 1$), the impulse response is closely approximated by sampling $p(t) \ast h(t)$:
 \[
 h[n] \approx p(t) \ast h(t) \big|_{(n + \frac{1}{2})T_s}
 \]
Discrete-time Equivalent Impulse Response

Figure: Discrete-time Equivalent Impulse Response \((f_s T = 8)\)
Discrete-Time Equivalent Noise

- To determine the properties of the additive noise $N[n]$ in the discrete-time equivalent system,
 - Set input signal to zero,
 - let continuous-time noise be complex, white, Gaussian with power spectral density N_0,
 - output signal is discrete-time equivalent noise.
- Procedure yields: The noise samples $N[n]$
 - are independent, complex Gaussian random variables, with
 - zero mean, and
 - variance equal to N_0 / T_s.
Received Symbol Energy

- The last entity we will need from the continuous-time system is the received energy per symbol E_s.
 - Note that E_s is controlled by adjusting the gain A at the transmitter.
- To determine E_s,
 - Set noise $N(t)$ to zero,
 - Transmit a single symbol b_n,
 - Compute the energy of the received signal $R(t)$.
- Procedure yields:

\[
E_s = \sigma_s^2 \cdot A^2 \int |p(t) \ast h(t)|^2 \, dt
\]

- Here, σ_s^2 denotes the variance of the source. For BPSK, $\sigma_s^2 = 1$.
- For the system under consideration, $E_s = A^2 T$.

©2009, B.-P. Paris Wireless Communications