Reading Madhow: Section 3.2.

Problems

1. Let \(x \) and \(y \) be elements of a normed linear vector space.
 (a) Determine whether the following are valid inner products for the indicated space.
 i. \(\langle x, y \rangle = x^T Ay \), where \(A \) is a nonsingular, \(N \times N \) matrix and \(x, y \) are elements of the space of \(N \)-dimensional vectors.
 ii. \(\langle x, y \rangle = xy^T \), where \(x \) and \(y \) are elements of the space of \(N \)-dimensional (column!) vectors.
 iii. \(\langle x, y \rangle = \int_0^T x(t)y(T - t) \, dt \), where \(x \) and \(y \) are finite energy signals defined over \([0, T]\).
 iv. \(\langle x, y \rangle = \int_0^T w(t)x(t)y(t) \, dt \), where \(x \) and \(y \) are finite energy signals defined over \([0, T]\) and \(w(t) \) is a non-negative function.
 v. \(E[XY] \), where \(X \) and \(Y \) are real-valued random variables having finite mean-square values.
 vi. \(\text{Cov}(X, Y) \), the covariance of the real-valued random variables \(X \) and \(Y \). Assume that \(X \) and \(Y \) have finite mean-square values.
 (b) Under what conditions is \(\int_0^T \int_0^T Q(t,u)x(t)y(u) \, dt \, du \) a valid inner product for the space of finite-energy functions defined over \([0, T]\)?

2. Let \(x(t) \) be a signal of finite energy over the interval \([0, T]\). In other words, \(x(t) \) is a vector in the Hilbert space \(L^2(0, T) \). Signals may be complex values, so that the appropriate inner product is
 \[\langle x, y \rangle = \int_0^T x(t) \cdot y^*(t) \, dt. \]
 Consider subspace \(\mathcal{L} \) of \(L^2(0, T) \) that consists of signals of the form
 \(y_n(t) = X_n \exp(j2\pi nt/T) \) for \(0 \leq t \leq T \),
 where \(X_n \) may be complex valued.
 (a) Find the signal \(\hat{y}_n(t) \) that best approximates the signal \(x(t) \), i.e., \(\hat{y}_n(t) \) minimizes \(\| x - y_n \| \) among all elements of \(\mathcal{L} \).
 \(\text{Hint:} \) Find the best complex amplitude \(\hat{X}_n \).
(b) Now define the error signal \(z(t) = x(t) - \hat{y}_n(t) \). Show that \(z(t) \) is orthogonal to the subspace \(\mathcal{L} \), i.e., it is orthogonal to all elements of \(\mathcal{L} \).

(c) How do the above results illustrate the projection theorem?

3. **Linear Regression**

The elements of a vector of random variables \(\vec{Y} \) follow the model

\[
Y_n = ax_n + b + N_n
\]

where \(x_n \) are known and \(N_n \) are zero mean, iid Gaussian noise samples with variance \(\sigma^2 \). The parameters \(a \) and \(b \) are to be determined. We can think of the solution to this problem as the projection of \(\vec{Y} \) onto the subspace spanned by \(a\vec{x} + b \).

(a) Determine the **least-squares estimates** for \(a \) and \(b \), i.e., find

\[
\hat{a}, \hat{b} = \arg \min_{a,b} \| \vec{Y} - (a\vec{x} + b) \|^2.
\]

(b) What are the expected values of these estimates, \(E[\hat{a}] \) and \(E[\hat{b}] \)?

(c) Compute \(\hat{a} \) and \(\hat{b} \), when data are given by the \((x_n, Y_n) \) pairs

\[
\{(x_n, Y_n)\}_{n=1}^5 = \{(0, 1.3), (1, 0.2), (2, 0.1), (3, -0.4), (4, -1.2)\}.
\]

(d) Is it true that the least-squares estimates for \(a \) and \(b \) are given by the inner products

\[
\hat{a} = \langle \vec{Y}, \vec{x} \rangle \text{ and } \hat{b} = \langle \vec{Y}, \vec{1} \rangle?
\]

\(\vec{1} \) denotes a vector of 1’s. Explain why or why not?