Statistical Communication Theory

ECE 630

Spring 2019

Instructor Dr. B.-Peter Paris
 Nguyen Engineering Building Room 3505
 Tel.: (703) 993–1559
 e-mail: pparis@gmu.edu
 WWW: http://www.spec.gmu.edu/~pparis

Time and Place Tuesday 4:30pm — 7:10pm, Engineering Building 1108, Room 242

Office Hours Tuesday 3:00pm — 4:00pm and Wednesday 1:00 — 2:00pm.

Recommended Further Reading

Homework will be assigned every week except when an exam is scheduled the following week. A set of solutions will be made available. You are encouraged to work on the assignments in small groups.

Two Exams will be given: one midterm exam and a comprehensive final exam. All exams are conducted under the rules and regulations of the Honor Code (see University Catalog).

On-line Class Material Class material will be distributed electronically via the World-Wide Web. Use a browser to find the ECE 630 homepage at URL http://www.spec.gmu.edu/~pparis/classes/ece630.html.

I will also correspond with you through your Mason e-mail account — check your e-mail regularly. The BlackBoard page for this course will contain homework assignments, syllabus, and your grades.
Final Grades are determined as a weighted average of homeworks and exams in the following way:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework</td>
<td>30%</td>
</tr>
<tr>
<td>Midterm</td>
<td>35%</td>
</tr>
<tr>
<td>Final</td>
<td>35%</td>
</tr>
</tbody>
</table>

Tentative Course Schedule

Background Material

Week 1: Introduction and Overview
Week 2: Random variables with emphasis on the Gaussian distribution
Week 3: Random processes.
Week 4: Signal space concepts.

Optimal Receiver in White Gaussian Noise

Week 5: Binary hypothesis testing
Week 6: The matched filter.
Week 7: M-ary signal sets and the union bound.
Week 8: Midterm Exam.
Week 9: Message sequences.

Digital Modulation

Week 10: Complex baseband representation of signals and random processes.
Week 11: Linear, digital modulation methods and their bandwidth.
Week 12: Orthogonal, bi-orthogonal, and differential modulation.

Advanced Topics: The final two weeks of the class will consider advanced topics, options include:

- Introduction to error correction coding.
- Dispersive channels and equalization.
- Fading channels and diversity.
- OFDM

Final Exam: May 14, 4:30–7:15pm