Modeling of Wireless Communication Systems using MATLAB

Dr. B.-P. Paris Dept. Electrical and Comp. Engineering George Mason University

last updated September 23, 2009

©2009, B.-P. Paris Wireless Communications

Part I

The Wireless Channel

The Wireless Channel

Characterization of the wireless channel and its impact on digitally modulated signals.

- From the physics of propagation to multi-path fading channels.
- Statistical characterization of wireless channels:
 - Doppler spectrum,
 - Delay spread
 - Coherence time
 - Coherence bandwidth
- Simulating multi-path, fading channels in MATLAB.
- Lumped-parameter models:
 - discrete-time equivalent channel.
- Path loss models, link budgets, shadowing.

©2009, B.-P. Paris

Wireless Communications

2

Pathloss and Link Budget

From Physical Propagation to Multi-Path Fading

Statistical Characterization of Channels

Outline

Part III: Learning Objectives

Pathloss and Link Budget

From Physical Propagation to Multi-Path Fading

Statistical Characterization of Channels

Learning Objectives

- Understand models describing the nature of typical wireless communication channels.
 - The origin of multi-path and fading.
 - Concise characterization of multi-path and fading in both the time and frequency domain.
 - Doppler spectrum and time-coherence
 - Multi-path delay spread and frequency coherence
- Appreciate the impact of wireless channels on transmitted signals.
 - Distortion from multi-path: frequency-selective fading and inter-symbol interference.
 - The consequences of time-varying channels.

©2009, B.-P. Paris

Wireless Communications

5

Pathloss and Link Budget

From Physical Propagation to Multi-Path Fading

Statistical Characterization of Channels

Outline

Part III: Learning Objectives

Pathloss and Link Budget

From Physical Propagation to Multi-Path Fading

Statistical Characterization of Channels

Path Loss

▶ Path loss L_P relates the received signal power P_r to the transmitted signal power P_t :

$$P_r = P_t \cdot \frac{G_r \cdot G_t}{L_P},$$

where G_t and G_r are antenna gains.

- Path loss is very important for cell and frequency planning or range predictions.
 - ▶ Not needed when designing signal sets, receiver, etc.

©2009, B.-P. Paris

Wireless Communications

7

Pathloss and Link Budget

From Physical Propagation to Multi-Path Fading

Statistical Characterization of Channels

Path Loss

- ▶ Path loss modeling is "more an art than a science."
 - Standard approach: fit model to empirical data.
 - Parameters of model:
 - d distance between transmitter and receiver,
 - f_c carrier frequency,
 - \blacktriangleright h_b , h_m antenna heights,
 - ► Terrain type, building density,

Example: Free Space Propagation

▶ In free space, path loss L_P is given by Friis's formula:

$$L_P = \left(\frac{4\pi d}{\lambda_c}\right)^2 = \left(\frac{4\pi f_c d}{c}\right)^2.$$

- Path loss increases proportional to the square of distance d and frequency f_C.
- ► In dB:

$$L_{P(dB)} = -20 \log_{10}(\frac{c}{4\pi}) + 20 \log_{10}(f_c) + 20 \log_{10}(d).$$

• Example: $f_c = 1$ GHz and d = 1km

 $L_{P(dB)} = -146 \text{ dB} + 180 \text{ dB} + 60 \text{ dB} = 94 \text{ dB}.$

©2009, B.-P. Paris

Wireless Communications

ç

Pathloss and Link Budget

From Physical Propagation to Multi-Path Fading

Statistical Characterization of Channels

Example: Two-Ray Channel

- ▶ Antenna heights: h_b and h_m .
- Two propagation paths:
 - 1. direct path, free space propagation,
 - 2. reflected path, free space with perfect reflection.
- ▶ Depending on distance *d*, the signals received along the two paths will add constructively or destructively.
- Path loss:

$$L_{P} = \frac{1}{4} \cdot \left(\frac{4\pi f_{c}d}{c}\right)^{2} \cdot \left(\frac{1}{\sin(\frac{2\pi c h_{b}h_{m}}{f_{c}d})}\right)^{2}.$$

▶ For $d \gg h_b h_m$, path loss is approximately equal to:

$$L_P pprox \left(rac{d^2}{h_b h_m}
ight)^2$$

► Path loss proportional to *d*⁴ is typical for urban

Okumura-Hata Model for Urban Area

- Okumura and Hata derived empirical path loss models from extensive path loss measurements.
 - Models differ between urban, suburban, and open areas, large, medium, and small cities, etc.
- Illustrative example: Model for Urban area (small or medium city)

$$L_{P(dB)} = A + B \log_{10}(d),$$

where

$$A = 69.55 + 26.16 \log_{10}(f_c) - 13.82 \log_{10}(h_b) - a(h_m)$$

$$B = 44.9 - 6.55 \log_{10}(h_b)$$

$$a(h_m) = (1.1 \log_{10}(f_c) - 0.7) \cdot h_m - (1.56 \log_{10}(f_c) - 0.8)$$

©2009, B.-P. Paris

Wireless Communications

44

Pathloss and Link Budget

From Physical Propagation to Multi-Path Fading

Statistical Characterization of Channels

Signal and Noise Power

Received Signal Power:

$$P_r = P_t \cdot \frac{G_r \cdot G_t}{L_P \cdot L_R},$$

where L_B is implementation loss, typically 2-3 dB.

► (Thermal) Noise Power:

$$P_N = kT_0 \cdot B_W \cdot F$$
, where

- ▶ k Boltzmann's constant (1.38 · 10⁻²³ Ws/K),
- ► T_0 temperature in K (typical room temperature, $T_0 = 290$ K),
- $\Rightarrow kT_0 = 4 \cdot 10^{-21} \text{ W/Hz} = 4 \cdot 10^{-18} \text{ mW/Hz} = -174 \text{ dBm/Hz},$
- $ightharpoonup B_W$ signal bandwidth,
- ► *F* noise figure, figure of merit for receiver (typical value: 5dB).

Signal-to-Noise Ratio

- The ratio of received signal power and noise power is denoted by SNR.
- From the above, SNR equals:

$$SNR = \frac{P_t G_r \cdot G_t}{kT_0 \cdot B_W \cdot F \cdot L_P \cdot L_R}.$$

- SNR increases with transmitted power P_t and antenna gains.
- ▶ SNR decreases with bandwidth B_W , noise figure F, and path loss L_P .

©2009, B.-P. Paris

Wireless Communications

10

Pathloss and Link Budget

From Physical Propagation to Multi-Path Fading

Statistical Characterization of Channels

E_s/N_0

- For the symbol error rate performance of communications system the ratio of signal energy E_s and noise power spectral density N_0 is more relevant than SNR.
- Since $E_s = P_r \cdot T_s = \frac{P_r}{R_s}$ and $N_0 = kT_0 \cdot F = P_N/B_W$, it follows that $E_s = B_W$

 $\frac{E_s}{N_0} = \mathsf{SNR} \cdot \frac{B_W}{R_s},$

where T_s and R_s denote the symbol period and symbol rate, respectively.

 E_s/N_0

▶ Thus, E_s/N_0 is given by:

$$\frac{E_s}{N_0} = \frac{P_t G_r \cdot G_t}{k T_0 \cdot R_s \cdot F \cdot L_P \cdot L_R}.$$

▶ in dB:

$$\begin{array}{ll} (\frac{E_s}{N_0})_{(dB)} = & P_{t(dBm)} + G_{t(dB)} + Gr(dB) \\ & -(kT_0)_{(dBm/Hz)} - R_{s(dBHz)} - F_{(dB)} - L_{R(dB)}. \end{array}$$

©2009, B.-P. Paris

Wireless Communications

15

Pathloss and Link Budget

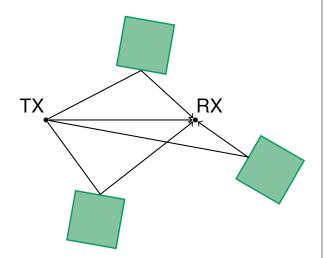
From Physical Propagation to Multi-Path Fading

Statistical Characterization of Channels

Outline

Part III: Learning Objectives

Pathloss and Link Budget


From Physical Propagation to Multi-Path Fading

Statistical Characterization of Channels

Multi-path Propagation

- The transmitted signal propagates from the transmitter to the receiver along many different paths.
- These paths have different
 - path attenuation a_k ,
 - path delay τ_k ,
 - phase shift ϕ_k ,
 - angle of arrival θ_k .
 - For simplicity, we assume a 2-D model, so that the angle of arrival is the azimuth.
 - ► In 3-D models, the elevation angle of arrival is an additional parameter.

©2009, B.-P. Paris

Wireless Communications

17

Pathloss and Link Budget

From Physical Propagation to Multi-Path Fading

Statistical Characterization of Channels

Channel Impulse Response

- ► From the above parameters, one can easily determine the channel's (baseband equivalent) impulse response.
- ► Impulse Response:

$$h(t) = \sum_{k=1}^{K} a_k \cdot e^{j\phi_k} \cdot e^{-j2\pi f_c \tau_k} \cdot \delta(t - \tau_k)$$

▶ Note that the delays τ_k contribute to the phase shifts ϕ_k .

Received Signal

Ignoring noise for a moment, the received signal is the convolution of the transmitted signal s(t) and the impulse response

$$R(t) = s(t) * h(t) = \sum_{k=1}^{K} a_k \cdot e^{j\phi_k} \cdot e^{-j2\pi f_c \tau_k} \cdot s(t - \tau_k).$$

- The received signal consists of multiple
 - scaled (by $a_k \cdot e^{j\phi_k} \cdot e^{-j2\pi f_c \tau_k}$),
 - delayed (by τ_k)

copies of the transmitted signal.

©2009, B.-P. Paris

Wireless Communications

From Physical Propagation to Multi-Path Fading

Channel Frequency Response

- Similarly, one can compute the frequency response of the channel.
- Direct Fourier transformation of the expression for the impulse response yields

$$H(f) = \sum_{k=1}^{K} a_k \cdot e^{j\phi_k} \cdot e^{-j2\pi f_c \tau_k} \cdot e^{-j2\pi f \tau_k}.$$

- For any given frequency f, the frequency response is a sum of complex numbers.
- When these terms add destructively, the frequency response is very small or even zero at that frequency.
- These nulls in the channel's frequency response are typical for wireless communications and are refered to as frequency-selective fading.

Frequency Response in One Line of MATLAB

▶ The Frequency response

$$H(f) = \sum_{k=1}^K a_k \cdot e^{j\phi_k} \cdot e^{-j2\pi f_c \tau_k} \cdot e^{-j2\pi f \tau_k}.$$

can be computed in MATLAB via the one-liner

- 14 HH = PropData.Field.*exp(-j*2*pi*fc*tau) * exp(-j*2*pi*tau'*ff);
 - Note that tau' *ff is an inner product; it produces a matrix (with K rows and as many columns as ff).
 - Similarly, the product preceding the second complex exponential is an inner product; it generates the sum in the expression above.

©2009, B.-P. Paris

Wireless Communications

21

Pathloss and Link Budget

From Physical Propagation to Multi-Path Fading

Statistical Characterization of Channels

Example: Ray Tracing

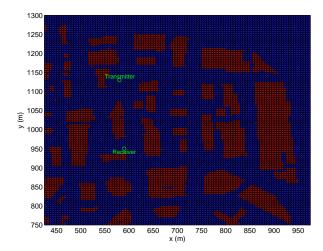


Figure: All propagation paths between the transmitter and receiver in the indicated located were determined through ray tracing.

Impulse Response

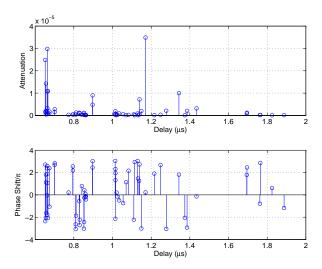


Figure: (Baseband equivalent) Impulse response shows attenuation, delay, and phase for each of the paths between receiver and transmitter.

MASON UNIVERSITY

©2009, B.-P. Paris

Wireless Communications

၁၁

Pathloss and Link Budget

From Physical Propagation to Multi-Path Fading

Statistical Characterization of Channels

Frequency Response

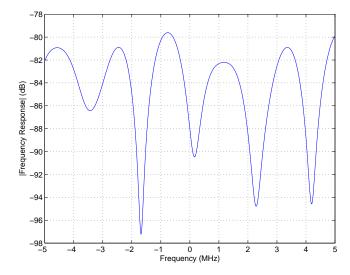


Figure: (Baseband equivalent) Frequency response for a multi-path channel is characterized by deep "notches".

Implications of Multi-path

- Multi-path leads to signal distortion.
 - The received signal "looks different" from the transmitted signal.
 - This is true, in particular, for wide-band signals.
- Multi-path propagation is equivalent to undesired filtering with a linear filter.
 - ► The impulse response of this undesired filter is the impulse response h(t) of the channel.
- ► The effects of multi-path can be described in terms of both time-domain and frequency-domain concepts.
 - In either case, it is useful to distinguish between narrow-band and wide-band signals.

©2009, B.-P. Paris

Wireless Communications

25

Pathloss and Link Budget

From Physical Propagation to Multi-Path Fading

Statistical Characterization of Channels

Example: Transmission of a Linearly Modulated Signal

- Transmission of a linearly modulated signal through the above channel is simulated.
 - BPSK,
 - ▶ (full response) raised-cosine pulse.
- Symbol period is varied; the following values are considered
 - $T_s = 30 \mu s$ (bandwidth approximately 60 KHz)
 - $T_s = 3\mu s$ (bandwidth approximately 600 KHz)
 - $T_s = 0.3 \mu s$ (bandwidth approximately 6 MHz)
- For each case, the transmitted and (suitably scaled) received signal is plotted.
 - Look for distortion.
 - Note that the received signal is complex valued; real and imaginary part are plotted.

Example: Transmission of a Linearly Modulated Signal

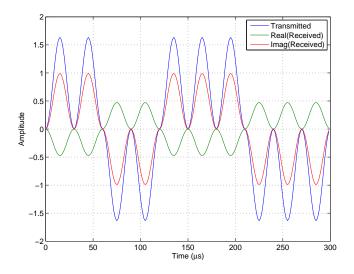


Figure: Transmitted and received signal; $T_s = 30 \mu s$. No distortion is evident.

©2009, B.-P. Paris

Wireless Communications

27

Pathloss and Link Budget

From Physical Propagation to Multi-Path Fading

Statistical Characterization of Channels

Example: Transmission of a Linearly Modulated Signal

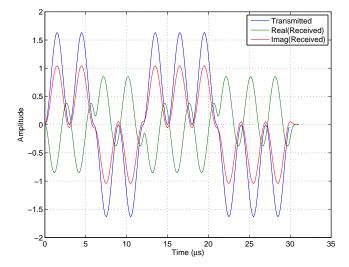


Figure: Transmitted and received signal; $T_s = 3\mu s$. Some distortion is visible near the symbol boundaries.

GEORGE ASON IN I VERSITY

Example: Transmission of a Linearly Modulated Signal



Figure: Transmitted and received signal; $T_s = 0.3 \mu s$. Distortion is clearly visible and spans multiple symbol periods.

©2009, B.-P. Paris

Wireless Communications

29

Pathloss and Link Budget

From Physical Propagation to Multi-Path Fading

Statistical Characterization of Channels

Eye Diagrams for Visualizing Distortion

- ► An eye diagram is a simple but useful tool for quickly gaining an appreciation for the amount of distortion present in a received signal.
- An eye diagram is obtained by plotting many segments of the received signal on top of each other.
 - The segments span two symbol periods.
- This can be accomplished in MATLAB via the command plot(tt(1:2*fsT), real(reshape(Received(1:Ns*fsT), 2*fsT, [])))
 - NS number of symbols; should be large (e.g., 1000),
 - Received vector of received samples.
 - ► The reshape command turns the vector into a matrix with 2*fsT rows, and
 - the plot command plots each column of the resulting matrix individually.

Eye Diagram without Distortion

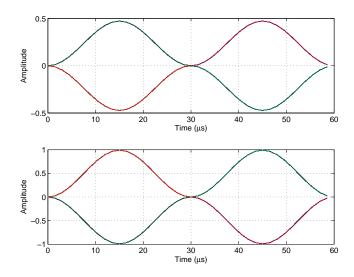


Figure: Eye diagram for received signal; $T_s = 30 \mu s$. No distortion: "the eye is fully open".

©2009, B.-P. Paris

Wireless Communications

From Physical Propagation to Multi-Path Fading

Eye Diagram with Distortion

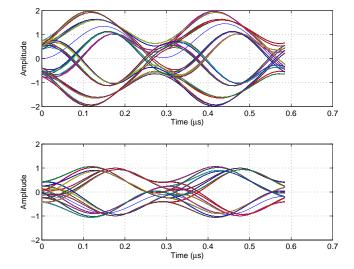


Figure: Eye diagram for received signal; $T_s = 0.3 \mu s$. Significant distortion: "the eye is partially open".

Inter-Symbol Interference

- The distortion described above is referred to as inter-symbol interference (ISI).
 - As the name implies, the undesired filtering by the channel causes energy to be spread from one transmitted symbol across several adjacent symbols.
- ► This interference makes detection mored difficult and must be compensated for at the receiver.
 - Devices that perform this compensation are called equalizers.

©2009, B.-P. Paris

Wireless Communications

33

Pathloss and Link Budget

From Physical Propagation to Multi-Path Fading

Statistical Characterization of Channels

Inter-Symbol Interference

- Question: Under what conditions does ISI occur?
- Answer: depends on the channel and the symbol rate.
 - ► The difference between the longest and the shortest delay of the channel is called the $\frac{delay}{delay}$ spread T_d of the channel.
 - The delay spread indicates the length of the impulse response of the channel.
 - ▶ Consequently, a transmitted symbol of length T_s will be spread out by the channel.
 - When received, its length will be the symbol period plus the delay spread, $T_s + T_d$.

Rule of thumb:

- if the delay spread is much smaller than the symbol period $(T_d \ll T_s)$, then ISI is negligible.
- ► If delay is similar to or greater than the symbol period, then ISI must be compensated at the receiver.

Frequency-Domain Perspective

- ▶ It is interesting to compare the bandwidth of the transmitted signals to the frequency response of the channel.
 - ► In particular, the bandwidth of the transmitted signal relative to variations in the frequency response is important.
 - The bandwidth over which the channel's frequency response remains approximately constant is called the coherence bandwidth.
- When the frequency response of the channel remains approximately constant over the bandwidth of the transmitted signal, the channel is said to be flat fading.
- Conversely, if the channel's frequency response varies significantly over the bandwidth of the signal, the channel is called a frequency-selective fading channel.

©2009, B.-P. Paris

Wireless Communications

35

Pathloss and Link Budget

From Physical Propagation to Multi-Path Fading

Statistical Characterization of Channels

Example: Narrow-Band Signal

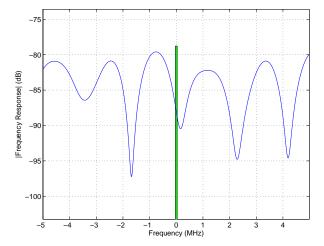


Figure: Frequency Response of Channel and bandwidth of signal; $T_s = 30 \mu s$, Bandwidth ≈ 60 KHz; the channel's frequency response is approximately constant over the bandwidth of the signal.

Example: Wide-Band Signal

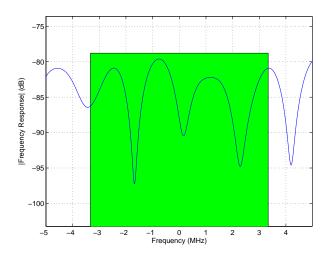


Figure: Frequency Response of Channel and bandwidth of signal; $T_s = 0.3 \mu s$, Bandwidth ≈ 6 MHz; the channel's frequency response varies significantly over the bandwidth of the channel.

©2009, B.-P. Paris

Wireless Communications

37

Pathloss and Link Budget

From Physical Propagation to Multi-Path Fading

Statistical Characterization of Channels

Frequency-Selective Fading and ISI

- Frequency-selective fading and ISI are dual concepts.
 - ISI is a time-domain characterization for significant distortion.
 - Frequency-selective fading captures the same idea in the frequency domain.
- Wide-band signals experience ISI and frequency-selective fading.
 - Such signals require an equalizer in the receiver.
 - Wide-band signals provide built-in diversity.
 - Not the entire signal will be subject to fading.
- ▶ Narrow-band signals experience flat fading (no ISI).
 - Simple receiver; no equalizer required.
 - Entire signal may be in a deep fade; no diversity.

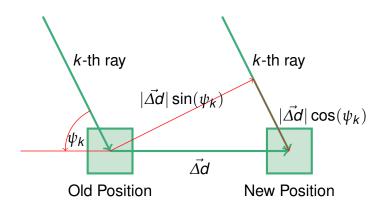
Time-Varying Channel

- Beyond multi-path propagation, a second characteristic of many wireless communication channels is their time variability.
 - The channel is time-varying primarily because users are mobile.
- As mobile users change their position, the characteristics of each propagation path changes correspondingly.
 - Consider the impact a change in position has on
 - path gain,
 - path delay.
 - ▶ Will see that angle of arrival θ_k for k-th path is a factor.

©2009, B.-P. Paris

Wireless Communications

39


Pathloss and Link Budget

From Physical Propagation to Multi-Path Fading

Statistical Characterization of Channels

Path-Changes Induced by Mobility

- ▶ Mobile moves by $\vec{\Delta d}$ from old position to new position.
 - distance: $|\vec{\Delta d}|$ • angle: $\angle \vec{\Delta d} = \delta$
- ▶ Angle between *k*-th ray and $\vec{\Delta d}$ is denoted $\psi_k = \theta_k \delta$.
- ▶ Length of *k*-th path increases by $|\vec{\Delta d}|\cos(\psi_k)$.

Impact of Change in Path Length

- We conclude that the length of each path changes by $|\vec{\Delta d}|\cos(\psi_k)$, where
 - ψ_k denotes the angle between the direction of the mobile and the k-th incoming ray.
- ▶ **Question:** how large is a typical distance $|\vec{\Delta d}|$ between the old and new position is?
 - The distance depends on
 - the velocity v of the mobile, and
 - the time-scale ΔT of interest.
- ▶ In many modern communication system, the transmission of a frame of symbols takes on the order of 1 to 10 ms.
- ▶ Typical velocities in mobile systems range from pedestrian speeds (\approx 1m/s) to vehicle speeds of 150km/h(\approx 40m/s).
- ▶ Distances of interest $|\vec{\Delta d}|$ range from 1mm to 400mm.

©2009, B.-P. Paris

Wireless Communications

41

Pathloss and Link Budget

From Physical Propagation to Multi-Path Fading

Statistical Characterization of Channels

Impact of Change in Path Length

- Question: What is the impact of this change in path length on the parameters of each path?
 - We denote the length of the path to the old position by d_k .
 - ▶ Clearly, $d_k = c \cdot \tau_k$, where c denotes the speed of light.
 - Typically, d_k is much larger than $|\vec{\Delta d}|$.
- ▶ **Path gain** a_k : Assume that path gain a_k decays inversely proportional with the square of the distance, $a_k \sim d_k^{-2}$.
- ► Then, the relative change in path gain is proportional to $(|\vec{\Delta d}|/d_k)^2$ (e.g., $|\vec{\Delta d}| = 0.1$ m and $d_k = 100$ m, then path gain changes by approximately 0.0001%).
 - Conclusion: The change in path gain is generally small enough to be negligible.

Impact of Change in Path Length

- ▶ **Delay** τ_k : By similar arguments, the delay for the k-th path changes by at most $|\vec{\Delta d}|/c$.
- ► The relative change in delay is $|\vec{\Delta d}|/d_k$ (e.g., 0.1% with the values above.)
 - Question: Is this change in delay also negligible?

©2009, B.-P. Paris

Wireless Communications

43

Pathloss and Link Budget

From Physical Propagation to Multi-Path Fading

Statistical Characterization of Channels

Relating Delay Changes to Phase Changes

▶ **Recall:** the impulse response of the multi-path channel is

$$h(t) = \sum_{k=1}^{K} a_k \cdot e^{j\phi_k} \cdot e^{-j2\pi f_c \tau_k} \cdot \delta(t - \tau_k)$$

▶ Note that the delays, and thus any delay changes, are multiplied by the carrier frequency *f*_c to produce phase shifts.

Relating Delay Changes to Phase Changes

 Consequently, the phase change arising from the movement of the mobile is

$$\Delta \phi_k = -2\pi f_c/c|\vec{\Delta d}|\cos(\psi_k) = -2\pi |\vec{\Delta d}|/\lambda_c\cos(\psi_k),$$

where

- $\lambda_c = c/f_c$ denotes the wave-length at the carrier frequency (e.g., at $f_c = 1 \text{GHz}$, $\lambda_c \approx 0.3 \text{m}$),
- ψ_k angle between direction of mobile and k-th arriving path.
- ► **Conclusion:** These phase changes are significant and lead to changes in the channel properties over short time-scales (fast fading).

©2009, B.-P. Paris

Wireless Communications

45

Pathloss and Link Budget

From Physical Propagation to Multi-Path Fading

Statistical Characterization of Channels

Illustration

- ► To quantify these effects, compute the phase change over a time interval $\Delta T = 1$ ms as a function of velocity.
 - Assume $\psi_k = 0$, and, thus, $\cos(\psi_k) = 1$.
 - $f_c = 1 \text{GHz}$.

v (m/s)	$ \vec{\Delta d} $ (mm)	$\Delta \phi$ (degrees)	Comment	
1	1	1.2	Pedestrian; negligible	
			phase change.	
10	10	12	Residential area vehi-	
			cle speed.	
100	100	120	High-way speed;	
			phase change signifi-	
			cant.	
1000	1000	1200	High-speed train or	
			low-flying aircraft;	
			receiver must track	
			phase changes.	

Doppler Shift and Doppler Spread

- If a mobile is moving at a constant velocity v, then the distance between an old position and the new position is a function of time, $|\vec{\Delta d}| = vt$.
- Consequently, the phase change for the k-th path is

$$\Delta \phi_k(t) = -2\pi v/\lambda_c \cos(\psi_k)t = -2\pi v/c \cdot f_c \cos(\psi_k)t.$$

- ▶ The phase is a linear function of *t*.
- ► Hence, along this path the signal experiences a frequency shift $f_{d,k} = v/c \cdot f_c \cdot \cos(\psi_k) = v/\lambda_c \cdot \cos(\psi_k)$.
- This frequency shift is called Doppler shift.
- Each path experiences a different Doppler shift.
 - Angles of arrival θ_k are different.
 - Consequently, instead of a single Doppler shift a number of shifts create a Doppler Spectrum.

MASO UNIVERSI

©2009, B.-P. Paris

Wireless Communications

47

Pathloss and Link Budget

From Physical Propagation to Multi-Path Fading

Statistical Characterization of Channels

Illustration: Time-Varying Frequency Response

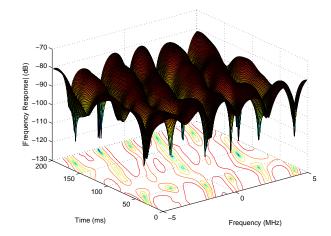


Figure: Time-varying Frequency Response for Ray-Tracing Data; velocity v = 10m/s, $f_c = 1$ GHz, maximum Doppler frequency ≈ 33 Hz.

Illustration: Time-varying Response to a Sinusoidal Input

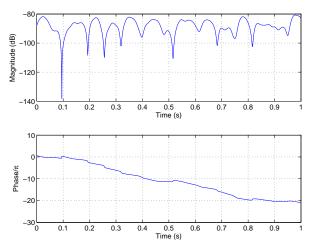


Figure: Response of channel to sinusoidal input signal; base-band equivalent input signal s(t) = 1, velocity v = 10m/s, $f_c = 1$ GHz, maximum Doppler frequency \approx 33Hz.

©2009, B.-P. Paris

Wireless Communications

From Physical Propagation to Multi-Path Fading 00000000000000

Doppler Spread and Coherence Time

- ► The time over which the channel remains approximately constant is called the coherence time of the channel.
- Coherence time and Doppler spectrum are dual characterizations of the time-varying channel.
 - Doppler spectrum provides frequency-domain interpretation:
 - It indicates the range of frequency shifts induced by the time-varying channel.
 - Frequency shifts due to Doppler range from $-f_d$ to f_d , where $f_d = v/c \cdot f_c$.
 - ightharpoonup The **coherence time** T_c of the channel provides a time-domain characterization:
 - It indicates how long the channel can be assumed to be approximately constant.
- ightharpoonup Maximum Doppler shift f_d and coherence time T_c are related to each through an inverse relationship $T_c \approx 1/f_d$. Mason

System Considerations

► The time-varying nature of the channel must be accounted for in the design of the system.

► Transmissions are shorter than the coherence time:

- Many systems are designed to use frames that are shorter than the coherence time.
- Example: GSM TDMA structure employs time-slots of duration 4.6ms.
- Consequence: During each time-slot, channel may be treated as constant.
- From one time-slot to the next, channel varies significantly; this provides opportunities for diversity.

Transmission are longer than the coherence time:

- Channel variations must be tracked by receiver.
- Example: use recent symbol decisions to estimate current channel impulse response.

©2009, B.-P. Paris

Wireless Communications

51

Pathloss and Link Budget

From Physical Propagation to Multi-Path Fading

Statistical Characterization of Channels

Illustration: Time-varying Channel and TDMA

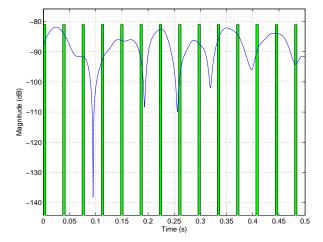


Figure: Time varying channel response and TDMA time-slots; time-slot duration 4.6ms, 8 TDMA users, velocity v = 10m/s, $f_c = 1$ GHz, maximum Doppler frequency ≈ 33 Hz.

Summary

- Illustrated by means of a concrete example the two main impairments from a mobile, wireless channel.
 - Multi-path propagation,
 - Doppler spread due to time-varying channel.
- ► **Multi-path** propagation induces ISI if the symbol duration exceeds the delay spread of the channel.
 - ► In frequency-domain terms, frequency-selective fading occurs if the signal bandwidth exceeds the coherence band-width of the channel.
- Doppler Spreading results from time-variations of the channel due to mobility.
 - ► The maximum Doppler shift $f_d = v/c \cdot f_c$ is proportional to the speed of the mobile.
 - ► In time-domain terms, the channel remains approximately constant over the coherence-time of the channel.

©2009, B.-P. Paris

Wireless Communications

53

Pathloss and Link Budget

From Physical Propagation to Multi-Path Fading

Statistical Characterization of Channels

Outline

Part III: Learning Objectives

Pathloss and Link Budget

From Physical Propagation to Multi-Path Fading

Statistical Characterization of Channels

Statistical Characterization of Channel

- We have looked at the characterization of a concrete realization of a mobile, wire-less channel.
- ► For different locations, the properties of the channel will likely be very different.
- Objective: develop statistical models that capture the salient features of the wireless channel for areas of interest.
 - Models must capture multi-path and time-varying nature of channel.
- Approach: Models reflect correlations of the time-varying channel impulse response or frequency response.
 - Time-varying descriptions of channel are functions of two parameters:
 - Time t when channel is measured,
 - Frequency f or delay τ .

©2009, B.-P. Paris Wireless Communications

Statistical Characterization of Channels

Power Delay Profile

- ▶ The impulse response of a wireless channel is time-varying, $h(t, \tau)$.
 - The parameter t indicates when the channel is used,
 - The parameter τ reflects time since the input was applied (delay).
 - ► Time-varying convolution: $r(t) = \int h(t, \tau) \cdot s(t \tau) d\tau$.
- ► The power-delay profile measures the average power in the impulse response over delay τ .
 - Thought experiment: Send impulse through channel at time t_0 and measure response $h(t_0, \tau)$.
 - ▶ Repeat K times, measuring $h(t_k, \tau)$.
 - Power delay profile:

$$\Psi_h(\tau) = \frac{1}{K+1} \sum_{k=0}^{K} |h(t_k, \tau)|^2.$$

Power Delay Profile

- ► The power delay profile captures the statistics of the multi-path effects of the channel.
- The underlying, physical model assumes a large number of propagation paths:
 - each path has a an associated delay τ ,
 - the gain for a path is modeled as a complex Gaussian random variable with second moment equal to $\Psi_h(\tau)$.
 - If the mean of the path loss is zero, the path is said to be Rayleigh fading.
 - Otherwise, it is Ricean.
 - The channel gains associated with different delays are assumed to be uncorrelated.

©2009, B.-P. Paris

Wireless Communications

57

Pathloss and Link Budget

From Physical Propagation to Multi-Path Fading

Statistical Characterization of Channels

Example

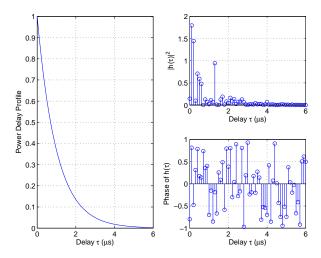


Figure: Power Delay Profile and Channel Impulse Response; the power delay profile (left) equals $\Psi_h(\tau) = \exp(-\tau/T_h)$ with $T_h = 1\mu$ s; realization of magnitude and phase of impulse response (left).

- From a systems perspective, the extent (spread) of the delays is most significant.
 - The length of the impulse response of the channel determines how much ISI will be introduced by the channel.
- The spread of delays is measured concisely by the RMS delay spread T_d :

$$T_d^2=\int_0^\infty \Psi_h^{(n)}(au) au^2d au-(\int_0^\infty \Psi_h^{(n)}(au) au d au)^2,$$

where

$$\Psi_h^{(n)} = \Psi_h / \int_0^\infty \Psi_h(\tau) d\tau.$$

- **Example:** For $\Psi_h(\tau) = \exp(-\tau/T_h)$, RMS delay spread equals T_h .
 - In urban environments, typical delay spreads are a few us. MASON

©2009, B.-P. Paris

Wireless Communications

Statistical Characterization of Channels

Frequency Coherence Function

▶ The Fourier transform of the Power Delay Spread $\Psi_h(\tau)$ is called the Frequency Coherence Function $\Psi_H(\Delta f)$

$$\Psi_h(\tau) \leftrightarrow \Psi_H(\Delta f)$$
.

- The frequency coherence function measures the correlation of the channel's frequency response.
 - Thought Experiment: Transmit two sinusoidal signal of frequencies f_1 and f_2 , such that $f_1 - f_2 = \Delta f$.
 - ▶ The gain each of these signals experiences is $H(t, f_1)$ and $H(t, f_2)$, respectively.
 - Repeat the experiment many times and average the products $H(t, f_1) \cdot H^*(t, f_2)$.
 - $\Psi_H(\Delta f)$ indicates how similar the gain is that two sinusoids separated by Δf experience.

Coherence Bandwidth

- ▶ The width of the main lobe of the frequency coherence function is the coherence bandwidth B_c of the channel.
 - ► Two signals with frequencies separated by less than the coherence bandwidth will experience very similar gains.
- Because of the Fourier transform relationship between the power delay profile and the frequency coherence function:

$$B_c pprox rac{1}{T_d}$$
.

Example: Fourier transform of $\Psi_h(\tau) = \exp(-\tau/T_h)$

$$\Psi_H(\Delta f) = \frac{T_h}{1 + j2\pi\Delta f T_h};$$

the 3-dB bandwidth of $\Psi_H(\Delta f)$ is $B_c = 1/(2\pi \cdot T_h)$.

For urban channels, coherence bandwidth is a few 100KHz MASON

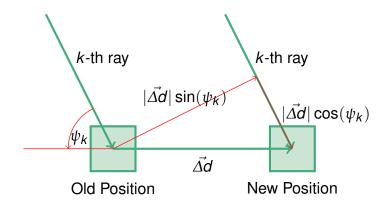
©2009, B.-P. Paris

Wireless Communications

Statistical Characterization of Channels

•000000

Time Coherence


- ▶ The time-coherence function $\Psi_H(\Delta t)$ captures the time-varying nature of the channel.
 - Thought experiment: Transmit a sinusoidal signal of frequency f through the channel and measure the output at times t_1 and $t_1 + \Delta t$.
 - ▶ The gains the signal experiences are $H(t_1, f)$ and $H(t_1 + \Delta t, f)$, respectively.
 - Repeat experiment and average the products $H(t_k, f) \cdot H^*(t_k + \Delta t, f)$.
- ▶ Time coherence function measures, how quickly the gain of the channel varies.
 - ▶ The width of the time coherence function is called the coherence-time T_c of the channel.
 - ▶ The channel remains approximately constant over the coherence time of the channel.

Example: Isotropic Scatterer

- ▶ Old location: $H(t_1, f = 0) = a_k \cdot \exp(-j2\pi f_c \tau_k)$.
- At new location: the gain a_k is unchanged; phase changes by $f_d \cos(\psi_k) \Delta t$:

$$H(t_1 + \Delta t, f = 0) = a_k \cdot \exp(-j2\pi(f_c\tau_k + f_d\cos(\psi_k)\Delta t)).$$

©2009, B.-P. Paris

Wireless Communications

63

Pathloss and Link Budget

From Physical Propagation to Multi-Path Fading

Statistical Characterization of Channels

Example: Isotropic Scatterer

- ► The average of $H(t_1, 0) \cdot H^*(t_1 + \Delta t, 0)$ yields the time-coherence function.
- ▶ Assume that the angle of arrival ψ_k is uniformly distributed.
 - This allows computation of the average (isotropic scatterer assumption:

$$\Psi_{H}(\Delta t) = |a_{k}|^{2} \cdot J_{0}(2\pi f_{d}\Delta t)$$

Time-Coherence Function for Isotropic Scatterer

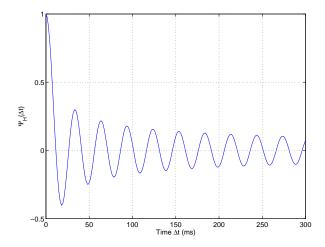


Figure: Time-Coherence Function for Isotropic Scatterer; velocity $v=10\text{m/s}, f_c=1\text{GHz},$ maximum Doppler frequency $f_d\approx 33\text{Hz}.$ First zero at $\Delta t\approx 0.4/f_d.$

©2009, B.-P. Paris

Wireless Communications

65

Pathloss and Link Budget

From Physical Propagation to Multi-Path Fading

Statistical Characterization of Channels

Doppler Spread Function

The Fourier transform of the time coherence function $\Psi_H(\Delta t)$ is the Doppler Spread Function $\Psi_d(f_d)$

$$\Psi_{H}(\Delta t) \leftrightarrow \Psi_{d}(f_{d}).$$

- ► The Doppler spread function indicates the range of frequencies observed at the output of the channel when the input is a sinusoidal signal.
 - ▶ Maximum Doppler shift $f_{d,max} = v/c \cdot f_c$.
- Thought experiment:
 - Send a sinusoidal signal of
 - ► The PSD of the received signal is the Doppler spread function.

Doppler Spread Function for Isotropic Scatterer

► **Example:** The Doppler spread function for the isotropic scatterer is

$$\Psi_d(f_d) = \frac{|a_k|^2}{4\pi f_d} \frac{1}{\sqrt{1 - (f/f_d)^2}} \text{ for } |f| < f_d.$$

©2009, B.-P. Paris

Wireless Communications

67

Pathloss and Link Budget

From Physical Propagation to Multi-Path Fading

Statistical Characterization of Channels
○○○○○
○○○○○

Doppler Spread Function for Isotropic Scatterer

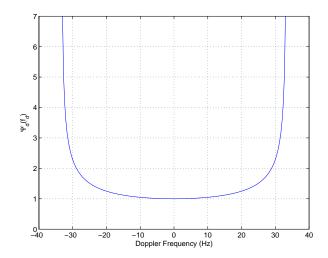


Figure: Doppler Spread Function for Isotropic Scatterer; velocity $v=10\text{m/s}, f_c=1\text{GHz},$ maximum Doppler frequency $f_d\approx 33\text{Hz}.$ First zero at $\Delta t\approx 0.4/f_d.$

MASON UNIVERSIT

Simulation of Multi-Path Fading Channels

We would like to be able to simulate the effects of time-varying, multi-path channels.

Approach:

- The simulator operates in discrete-time; the sampling rate is given by the sampling rate for the input signal.
- The multi-path effects can be well modeled by an FIR (tapped delay-line)filter.
 - The number of taps for the filter is given by the product of delay spread and sampling rate.
 - Example: With a delay spread of 2μ s and a sampling rate of 2MHz, four taps are required.
 - ▶ The taps should be random with a Gaussian distribution.
 - The magnitude of the tap weights should reflect the power-delay profile.

©2009, B.-P. Paris

Wireless Communications

69

Pathloss and Link Budget

ooooo

From Physical Propagation to Multi-Path Fading

Statistical Characterization of Channels

Simulation of Multi-Path Fading Channels

Approach (cont'd):

- ► The **time-varying** nature of the channel can be captured by allowing the taps to be time-varying.
 - ► The time-variations should reflect the Doppler Spectrum.

0000000000000

Simulation of Multi-Path Fading Channels

- The taps are modeled as
 - Gaussian random processes
 - with variances given by the power delay profile, and
 - power spectral density given by the Doppler spectrum.

©2009, B.-P. Paris

Wireless Communications

71

Pathloss and Link Budget

From Physical Propagation to Multi-Path Fading

Statistical Characterization of Channels

Channel Model Parameters

- Concrete parameters for models of the above form have been proposed by various standards bodies.
 - ► For example, the following table is an excerpt from a document produced by the COST 259 study group.

Tap number	Relative Time (µs)	Relative Power (dB)	Doppler Spectrum
1	0	-5.7	Class
2	0.217	-7.6	Class
3	0.512	-10.1	Class
:	i i	i :	i i
20	2.140	-24.3	Class

00000000000000

Channel Model Parameters

- ► The table provides a concise, statistical description of a time-varying multi-path environment.
- Each row corresponds to a path and is characterized by
 - the delay beyond the delay for the shortest path,
 - the average power of this path;
 - this parameter provides the variance of the Gaussian path gain.
 - the Doppler spectrum for this path;
 - ► The notation Class denotes the classical Doppler spectrum for the isotropic scatterer.
- The delay and power column specify the power-delay profile.
- The Doppler spectrum is given directly.
 - ▶ The Doppler frequency f_d is an additional parameter.

©2009, B.-P. Paris Wireless Communications

Statistical Characterization of Channels 00000000000000

Toolbox Function SimulateCOSTChannel

The result of our efforts will be a toolbox function for simulating time-varying multi-path channels:

```
function OutSig = SimulateCOSTChannel( InSig, ChannelParams, fs)
```

Its input arguments are

```
% Inputs:
                   - baseband equivalent input signal
     InSig
   % ChannelParams - structure ChannelParams must have fields
                     Delay - relative delay
11
   응
                     Power - relative power in dB
                     Doppler - type of Dopller spectrum
                     fd - max. Doppler shift
     fs
                     - sampling rate
```


Discrete-Time Considerations

- ► The delays in the above table assume a continuous time axis; our time-varying FIR will operate in discrete time.
- To convert the model to discrete-time:
 - Continuous-time is divided into consecutive "bins" of width equal to the sampling period, 1/fs.
 - For all paths arriving in same "bin," powers are added.
 - This approach reflects that paths arriving closer together than the sampling period cannot be resolved;
 - their effect is combined in the receiver front-end.
 - The result is a reduced description of the multi-path channel:
 - Power for each tap reflects the combined power of paths arriving in the corresponding "bin".
 - ► This power will be used to set the variance of the random process for the corresponding tap.

©2009, B.-P. Paris Wireless Communications

Statistical Characterization of Channels 00000000000000

Converting to a Discrete-Time Model in MATLAB

```
%% convert powers to linear scale
   Power_lin = dB2lin( ChannelParams.Power);
   %% Bin the delays according to the sample rate
29  QDelay = floor( ChannelParams.Delay*fs );
   % set surrogate delay for each bin, then sum up the power in each bin
   Delays = ( (0:QDelay(end)) + 0.5 ) / fs;
   Powers = zeros( size(Delays) );
34 for kk = 1:length(Delays)
       Powers( kk ) = sum( Power_lin( QDelay == kk-1 ) );
   end
```


- The time-varying taps of the FIR filter must be Gaussian random processes with specified variance and power spectral density.
- To accomplish this, we proceed in two steps:
 - 1. Create a filter to shape the power spectral density of the random processes for the tap weights.
 - 2. Create the random processes for the tap weights by passing complex, white Gaussian noise through the filter.
 - Variance is adjusted in this step.
- Generating the spectrum shaping filter:

```
% desired frequency response of filter:
           = sqrt( ClassDoppler( ff, ChannelParams.fd ) );
       % design filter with desired frequency response
       hh = Persistent_firpm(NH-1, 0:1/(NH-1):1, HH);
77
       hh = hh/norm(hh); % ensure filter has unit norm
```

©2009, B.-P. Paris Wireless Communications

Statistical Characterization of Channels 00000000000000

Generating Time-Varying Filter Taps

- The spectrum shaping filter is used to filter a complex white noise process.
 - Care is taken to avoid transients at the beginning of the output signal.
 - Also, filtering is performed at a lower rate with subsequent interpolation to avoid numerical problems.
 - Recall that f_d is quite small relative to f_s.

```
% generate a white Gaussian random process
       ww = sqrt(Powers(kk)/2)*...
93
            ( randn( 1, NSamples) + j*randn( 1, NSamples) );
       % filter so that spectrum equals Doppler spectrum
       ww = conv(ww, hh);
       ww = ww( length( hh )+1:NSamples ).';
98
       % interpolate to a higher sampling rate
       % ww = interp( ww, Down );
       ww = interpft(ww, Down*length(ww));
       % store time-varying filter taps for later use
```


- ▶ The final step in the simulator is filtering the input signal with the time-varying filter taps.
 - MATLAB's filtering functions conv or filter cannot be used (directly) for this purpose.
- ► The simulator breaks the input signal into short segments for which the channel is nearly constant.
 - Each segment is filtered with a slightly different set of taps.

```
while ( Start < length(InSig) )</pre>
        EndIn = min( Start+QDeltaH, length(InSig) );
        EndOut = EndIn + length(Powers)-1;
        OutSig(Start:EndOut) = OutSig(Start:EndOut) + ...
118
            conv( Taps(kk,:), InSig(Start:EndIn) );
        kk = kk+1;
        Start = EndIn+1;
```


©2009, B.-P. Paris Wireless Communications

Statistical Characterization of Channels 00000000000000

Testing SimulateCOSTChannel

A simple test for the channel simulator consists of "transmitting" a baseband equivalent sinusoid.

```
%% Initialization
  ChannelParameters = tux();
                                 % COST model parameters
                                 % Doppler frequency
6 ChannelParameters.fd = 10;
  fs
                     = 1e5; % sampling rate
  SigDur
                     = 1;
                                  % duration of signal
 %% generate input signal and simulate channel
  tt = 0:1/fs:SigDur; % time axis
          = ones( size(tt) ); % baseband-equivalent carrier
  Received = SimulateCOSTChannel(Sig, ChannelParameters, fs);
```


Testing SimulateCOSTChannel

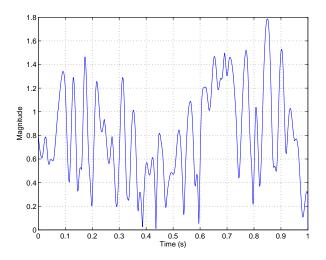


Figure: Simulated Response to a Sinusoidal Signal; $f_d = 10$ Hz, baseband equivalent frequency f = 0.

©2009, B.-P. Paris

Wireless Communications

81

Pathloss and Link Budget

From Physical Propagation to Multi-Path Fading

Statistical Characterization of Channels

Summary

- Highlighted unique aspects of mobile, wireless channels:
 - time-varying, multi-path channels.
- Statistical characterization of channels via
 - power-delay profile (RMS delay spread),
 - frequency coherence function (coherence bandwidth),
 - ▶ time coherence function (coherence time), and
 - Doppler spread function (Doppler spread).
- Relating channel parameters to system parameters:
 - signal bandwidth and coherence bandwidth,
 - frame duration and coherence time.
- Channel simulator in MATLAB.

Where we are ...

- Having characterized the nature of mobile, wireless channels, we can now look for ways to overcome the detrimental effects of the channel.
 - ► The importance of diversity to overcome fading.
 - Sources of diversity:
 - ► Time,
 - ► Frequency,
 - Space.
- Equalizers for overcoming frequency-selective fading.
 - Equalizers also exploit frequency diversity.

©2009, B.-P. Paris Wireless Communications