ECE 732: Mobile Communications

Dr. B.-P. Paris Dept. Electrical and Comp. Engineering George Mason University

Last updated: September 11, 2018

©2018, B.-P. Paris

Review: Optimum Receiver Principles

Baseband Equivalent Signals

Part I

Introduction

©2018, B.-P. Paris

ECE 732: Mobile Communications

Review: Optimum Receiver Principles

Baseband Equivalent Signals

Part I

Introduction

©2018, B.-P. Paris

ECE 732: Mobile Communications

Review: Optimum Receiver Principles

Baseband Equivalent Signals

Outline

Course Overview

Review: Optimum Receiver Principles

Baseband Equivalent Signals

©2018, B.-P. Paris

ECE 732: Mobile Communications

000 000000 00 000000000

Review: Optimum Receiver Principles

Baseband Equivalent Signals

Learning Objectives

- Understanding of wireless propagation environment:
 - Pathloss and shadowing
 - Multi-path propagation
- Effects of wireless channels on communications performance.
 - Narrowband signals flat (Rayleigh) fading
 - Wideband signals frequency-selective fading
- Techniques to mitigate fading Diversity
 - Time, frequency, and spatial diversity
- **Emphasis:** Point-to-point, physical layer communications.

©2018, B.-P. Paris

Review: Optimum Receiver Principles

Baseband Equivalent Signals

What makes wireless communications challenging

- Wireless Channel:
 - large power losses
 - time-varying, dispersive channel
- Limited Energy:
 - mobile device energy always constrained by battery
 - signals will always be transmitted at minimum possible power
 - at receiver, SNR will be as low as possible
- Limited bandwidth

©2018, B.-P. Paris

Review: Optimum Receiver Principles

Baseband Equivalent Signals

Characteristics of Wireless Channels

Pathloss and Shadowing:

- the power of transmitted signal decays rapidly with distance between transmitter and receiver (typical r⁴).
- additional losses from obstructions, e.g., buildings.
- Losses in excess of 100dB are common.
- Shadowing adds a random component to path loss.
- Insight: Because of limited energy and large losses, received signals will always have marginal SNR.
- Question: how strong is a signal that was transmitted at 20dBm (100mW) and experienced 120dB of path loss? in dBm? in W?

©2018, B.-P. Paris

ECE 732: Mobile Communications

Course	Overview
00000	000

Review: Optimum Receiver Principles oo ooo oo oo oo ooooooo Baseband Equivalent Signals

Characteristics of Wireless Channels

Time-varying, Multipath:

- Wireless channel is not just an AWGN channel!
- Multi-path propagation causes the transmitted signal to reach the receiver along multiple propagation paths.
- Effect: signal experiences undesired, unknown filtering.
- Signal bandwidth determines how multi-path affects communications:
 - Narrow-band signals: flat fading or multiplicative noise (Rayleigh, Rice, or Nakagami distribution)
 - Wide-band signals: frequency-selective fading or intersymbol interference;
- Problem is aggravated by the fact that channel is time-varying.
 - caused primarily by mobility.
 - Doppler effect.

©2018, B.-P. Paris

Course Overview
00000000

Baseband Equivalent Signals

Outline of Topics

- Intro and Review of optimum receiver principles (today)
- Pathloss modeling and shadowing (textbook: chapter 2)
- Time-varying, multi-path modeling (textbook: chapter 3)
 - narrow-band signals
 - wide-band signals
- Digital modulation for wireless communications (textbook: chapter 5)
- Performance of (narrow-band) digital modulation over wireless channels (textbook: chapter 6)

The first half of the class covers the *"classic"* treatment of wireless communications.

©2018, B.-P. Paris

Course Overview
0000000

Baseband Equivalent Signals

Outline of Topics

- The importance of diversity in wireless communications (textbook: chapter 7)
- Time-diversity: coding and interleaving (textbook: chapter 8)
- Frequency-diversity: equalization (textbook: chapter 11)
- Frequency-diversity: OFDM (textbook: chapter 12)
- MIMO: (textbook: chapter 10)
 - spatial multiplexing
 - multiplexing-diversity trade-off

The second half of the class covers *"modern"* developments in wireless communications.

©2018, B.-P. Paris

Review: Optimum Receiver Principles

Baseband Equivalent Signals

Outline

Course Overview

Review: Optimum Receiver Principles

Baseband Equivalent Signals

©2018, B.-P. Paris

ECE 732: Mobile Communications

Course	Overview
00000	

Baseband Equivalent Signals

Elements of a Digital Communications System

Source: produces a sequence of information symbols *b*.

- Transmitter: maps bit sequence to analog signal s(t).
 - Channel: models corruption of transmitted signal s(t).
 - Receiver: produces reconstructed sequence of information symbols \hat{b} from observed signal R(t).

Figure: Block Diagram of a Generic Digital Communications System

©2018, B.-P. Paris

ECE 732: Mobile Communications

Course Overv	

Baseband Equivalent Signals

The Source

The source models the statistical properties of the digital information source.

Three main parameters:

Source Alphabet: list of the possible information symbols the source produces.

- Example: A = {0, 1}; symbols are called bits.
- Alphabet for a source with *M* (typically, a power of 2) symbols: $\mathcal{A} = \{0, 1, ..., M 1\}$ or $\mathcal{A} = \{\pm 1, \pm 3, ..., \pm (M 1)\}.$
- Alphabet with positive and negative symbols is often more convenient.
- Symbols may be complex valued; e.g., A = {±1, ±j}.

©2018, B.-P. Paris

Course Overview	Review: Optimum Receiver Principles	Baseband Equivalent Signals
	00 000 000000 00 00000000	000000 000000

A priori Probability: relative frequencies with which the source produces each of the symbols.

- Example: a binary source that produces (on average) equal numbers of 0 and 1 bits has π₀ = π₁ = ¹/₂.
- Notation: π_n denotes the probability of observing the *n*-th symbol.
- Typically, a-priori probabilities are all equal, i.e., $\pi_n = \frac{1}{M}$.
- A source with M symbols is called an M-ary source.
 - binary (M = 2)
 - ternary (M = 3)
 - quaternary (M = 4)

©2018, B.-P. Paris

Review: Optimum Receiver Principles

Baseband Equivalent Signals

Symbol Rate: The number of information symbols the source produces per second. Also called the baud rate *R*.

- Closely related: information rate R_b indicates the number of bits the source produces per second.
- Relationship: $R_b = R \cdot \log_2(M)$.
- Also, T = 1/R is the symbol period.
- Usually, bandwidth is approximately equal to baud rate *R*.

©2018, B.-P. Paris

ECE 732: Mobile Communications

Course Overview	

Baseband Equivalent Signals

The Transmitter

- The transmitter translates the information symbols at its input into signals that are "appropriate" for the channel – this process is called *modulation*.
 - meet bandwidth requirements due to regulatory or propagation considerations,
 - provide good receiver performance in the face of channel impairments.
- A digital communication system transmits only a discrete set of information symbols.
 - Correspondingly, only a discrete set of possible signals is employed by the transmitter.
 - The transmitted signal is an analog (continuous-time, continuous amplitude) signal.

©2018, B.-P. Paris

Course Overview	

Baseband Equivalent Signals

Illustrative Example

- The sources produces symbols from the alphabet \$\mathcal{A} = \{0, 1\}\$.
- The transmitter uses the following rule to map symbols to signals:
 - If the *n*-th symbol is $b_n = 0$, then the transmitter sends the signal

$$s_0(t) = \left\{ egin{array}{cc} A & ext{for } (n-1) \, T \leq t < nT \ 0 & ext{else.} \end{array}
ight.$$

If the *n*-th symbol is b_n = 1, then the transmitter sends the signal

$$s_1(t) = \begin{cases} A & \text{for } (n-1)T \leq t < (n-\frac{1}{2})T \\ -A & \text{for } (n-\frac{1}{2})T \leq t < nT \\ 0 & \text{else.} \end{cases}$$

©2018, B.-P. Paris

Review: Optimum Receiver Principles

Baseband Equivalent Signals

Symbol Sequence $b = \{1, 0, 1, 1, 0, 0, 1, 0, 1, 0\}$

©2018, B.-P. Paris

Course	Overview

Baseband Equivalent Signals

Linear Modulation

- Linear modulation may be thought of as the digital equivalent of amplitude modulation.
 - The instantaneous amplitude of the transmitted signal is proportional to the current information symbol.
- Specifically, a linearly modulated signal may be written as

$$s(t) = \sum_{n=0}^{N-1} s_n \cdot p(t - nT)$$

where,

- \triangleright s_n denotes the *n*-th information symbol, and
- \blacktriangleright p(t) denotes a pulse of finite duration.
- Recall that T is the duration of a symbol.

©2018, B.-P. Paris

Review: Optimum Receiver Principles

Baseband Equivalent Signals

Linear Modulation

Note, that the expression

$$\mathbf{s}(t) = \sum_{n=0}^{N-1} \mathbf{s}_n \cdot \mathbf{p}(t - nT)$$

is linear in the symbols s_n .

 Different modulation formats are constructed by choosing appropriate symbol alphabets, e.g.,

▶ **PAM:**
$$s_n \in \{\pm 1, ..., \pm (M-1)\}$$

©2018, B.-P. Paris

Review: Optimum Receiver Principles

Baseband Equivalent Signals

Linear Modulation with Sinc Pulses

- Resulting waveform is very smooth; expect good spectral properties.
- Symbols are harder to discern; partial response signaling
 - Transients at beginning and end.

©2018, B.-P. Paris

ECE 732: Mobile Communications

Course	Overview
	000

Baseband Equivalent Signals

The Communications Channel

- The communications channel models the degradation the transmitted signal experiences on its way to the receiver.
- For wireless communications systems, we are concerned primarily with:
 - Noise: random signal added to received signal.
 - Mainly due to thermal noise from electronic components in the receiver.
 - Can also model interference from other emitters in the vicinity of the receiver.
 - Statistical model is used to describe noise.
 - Distortion: undesired filtering during propagation will be a major focus of this class.
 - Mainly due to multi-path propagation.
 - Both deterministic and statistical models are appropriate depending on time-scale of interest.
 - Nature and dynamics of distortion is a key difference to wired systems.

©2018, B.-P. Paris

Course Overview	

Baseband Equivalent Signals

Thermal Noise

- At temperatures above absolute zero, electrons move randomly in a conducting medium, including the electronic components in the front-end of a receiver.
- This leads to a random waveform.
 - The power of the random waveform equals $P_N = kT_0B$.
 - ▶ *k*: Boltzmann's constant (1.38 · 10^{-23} Ws/K).
 - T_0 : temperature in degrees Kelvin (room temperature \approx 290 K).
 - For bandwidth equal to 1 MHz, $P_N \approx 4 \cdot 10^{-15}$ W (-114 dBm).
- Noise power is small, but power of received signal decreases rapidly with distance from transmitter.
 - Noise provides a fundamental limit to the range and/or rate at which communication is possible.

©2018, B.-P. Paris

Course Overview	

Baseband Equivalent Signals

The Receiver

- The receiver input is an analog signal and it's output is a sequence of discrete information symbols.
 - Consequently, the receiver must perform analog-to-digital conversion (sampling).
- Correspondingly, the receiver can be divided into an analog front-end followed by digital processing.
 - Modern receivers have simple front-ends and sophisticated digital processing stages.
 - Digital processing is performed on standard digital hardware (from ASICs to general purpose processors).
 - Moore's law can be relied on to boost the performance of digital communications systems.

©2018, B.-P. Paris

Course Overview	

Baseband Equivalent Signals

Receiver

- The receiver is responsible for extracting the sequence of information symbols from the received signal.
 - This task is difficult because of the signal impairments induced by the channel.
 - At this time, we focus on additive, white Gaussian noise as the only source of signal corruption.
 - Remedies for distortion due to multi-path propagation will be studied extensively later.
- Structure of receivers for digital communication systems.
 - Analog front-end and digital post-processing.
- Performance analysis: symbol error rate.
 - Closed form computation of symbol error rate is possible for AWGN channel.

©2018, B.-P. Paris

Course Overview	Review: Optimum Receiver Principles	Baseband Equivalent Signals
	00 000 000000 00 00●000000	000000 000000

Linear Receiver

- ► The general form of a linear receiver is shown below.
 - It is assumed that the receiver is synchronized with the transmitter.
- In AWGN channels, decisions can be made about one symbol at a time.
 - arbitrarily pick first symbol period (symbol s[0]).
- When g(t) = p(t), then this is the matched filter receiver.
- The slicer determines which symbol is "closest" to the matched filter output *R*.

ECE 732: Mobile Communications

Review: Optimum Receiver Principles

Baseband Equivalent Signals

Computing Probability of Error

Analysis of a receiver's error probability proceeds in steps:

- Find conditional distribution of front-end output R, conditioned on transmitted symbol s[0].
- Find optimum decision rule.
- Compute probability of (symbol) error.

©2018, B.-P. Paris

ECE 732: Mobile Communications

Course Overview	

Conditional Distribution of R

• Conditioned on the symbol s[0] having been transmitted, the output from the frontend is a complex, Gaussian random variable with:

- mean: $s[0]\sqrt{P_r} \cdot (g(t), p(t))$ variance: $N_0 \|g(t)\|^2$
- Notation and symbols:
 - inner product: $(g(t), p(t)) = \int_0^T g(t) \cdot p(t) dt$

 - norm: ||g(t)||² = ∫₀^T |g(t)|²dt
 noise power spectral density: N₀

$$f_{R|s[0]}(r) = \mathcal{C}\left(s[0]\sqrt{P_r} \cdot (g(t), p(t)), N_0 \|g(t)\|^2\right)$$

©2018, B.-P. Paris

Course (Dverview

Baseband Equivalent Signals

Optimum Decision Rule - Slicer

- Objective: decide optimally which symbol s_n was sent.
 - Assume prior probabilities π_n are known.
 - Alphabet A of possible symbols is known.

The following decision rule minimizes the probability of a symbol error (maximum likelihood): Among, the possible symbols s_n ∈ A, pick the one that maximizes π_n · f_{R|s_n}(r).

► For AWGN, this rule simplifies to:

Pick the symbol that maximizes $r \cdot \mu_n + \sigma^2 \ln(\pi_n) - \frac{\|\mu_n\|^2}{2}$, where μ_n and σ^2 are means and variance of the conditional distributions of *R*.

©2018, B.-P. Paris

Course Overview	

Baseband Equivalent Signals

Probability of Error

- For the optimum decision rule, the probability of error can be computed.
 - This can be tedious or difficult for sets with more than two signals.
 - When signals are not equally likely, resulting expressions are lengthy.
- For equally likely binary signals symbols (possible symbols s₀ and s₁), probability of error equals:

$$P_e = \mathsf{Q}\left(\sqrt{\frac{2P_r}{N_0}}\frac{((s_0 - s_1)p(t), g(t))}{2\|g(t)\|}\right)$$

31

©2018, B.-P. Paris

Course Overview	

Baseband Equivalent Signals 000000 000000

Optimum Frontend: Matched Filter

- Question: How to choose g(t) to minimize P_e ?
- Since Q(x) is monotonically decreasing, maximize

$$\frac{(s_0 - s_1)(p(t), g(t))}{2\|g(t)\|}$$

with respect to g(t).

For inner products, $(x, y) \le ||x|| \cdot ||y||$. Therefore, best choice is

$$g(t)=p(t).$$

Resulting (binary, equally likely) error probability:

$$P_e = \mathsf{Q}\left(\sqrt{\frac{P_r}{2N_0}}(s_0 - s_1) \|p(t)\|\right)$$

©2018, B.-P. Paris

Course Overview	

Baseband Equivalent Signals

Summary

- In digital communications, transmitted symbols are chosen from a discrete set; each possible symbol has an a-priori probability of being transmitted.
- In linearly modulated system, symbols are pulse-shaped to produce the analog transmitted signal.
- ► The signal is corrupted by AWGN.
- The minimum-probability-of-error receiver is the matched-filter receiver.
- ► To find probability of error of a linear receiver (AWGN):
 - Find conditional distribution of output *R* from frontend.
 - The optimum decision rule follows from the maximum likelihood principle.
 - Compute error probability for optimum decision rule.

©2018, B.-P. Paris

Review: Optimum Receiver Principles

Baseband Equivalent Signals

Outline

Course Overview

Review: Optimum Receiver Principles

Baseband Equivalent Signals

©2018, B.-P. Paris

ECE 732: Mobile Communications

Course Overview	

Baseband Equivalent Signals

Passband Signals

- So far, all modulated signals we considered are baseband signals.
 - Baseband signals have frequency spectra concentrated near zero frequency.
- However, for wireless communications passband signals must be used.
 - Passband signals have frequency spectra concentrated around a carrier frequency f_c.
- Baseband signals can be converted to passband signals through up-conversion.
- Passband signals can be converted to baseband signals through down-conversion.

©2018, B.-P. Paris

©2018, B.-P. Paris

Review: Optimum Receiver Principles

Baseband Equivalent Signals

Up-Conversion

- The passband signal signal sp(t) is constructed from two (digitally modulated) baseband signals, s_I(t) and s_Q(t).
 - Note that two signals can be carried simultaneously!
 - This is a consequence of cos(2πf_ct) and sin(2πf_ct) being orthogonal.

Course	Overview

Baseband Equivalent Signals

Baseband Equivalent Signals

• The passband signal $s_P(t)$ can be written as

$$\mathbf{s}_{P}(t) = \mathbf{A}\mathbf{s}_{I}(t) \cdot \cos(2\pi f_{c}t) - \mathbf{A}\mathbf{s}_{Q}(t) \cdot \sin(2\pi f_{c}t).$$

If we define s(t) = s₁(t) + j ⋅ s_Q(t), then s_P(t) can also be expressed as

$$\begin{aligned} s_{\mathcal{P}}(t) &= \mathbf{A} \cdot \Re\{\mathbf{s}(t)\} \cdot \cos(2\pi f_{c}t) - \mathbf{A} \cdot \Im\{\mathbf{s}(t)\} \cdot \sin(2\pi f_{c}t) \\ &= \mathbf{A} \cdot \Re\{\mathbf{s}(t) \cdot \exp(j2\pi f_{c}t)\}. \end{aligned}$$

• The signal s(t):

- is called the baseband equivalent, complex lowpass representation, or the complex envelope of the passband signal s_P(t).
- It contains the same information as $s_P(t)$.
- Note that s(t) is complex-valued.

©2018, B.-P. Paris

ECE 732: Mobile Communications

Course Overview

Review: Optimum Receiver Principles

Baseband Equivalent Signals

Illustration: QPSK with $f_c = 2/T$

- Passband signal (top): segments of sinusoids with different phases.
 - Phase changes occur at multiples of T.
- Baseband signal (bottom) is complex valued; magnitude and phase are plotted.
 - Magnitude is constant (rectangular pulses).

©2018, B.-P. Paris

Course	Overview

Baseband Equivalent Signals ○○○○○○

Frequency Domain Perspective

In the frequency domain:

$$S(f) = \begin{cases} 2 \cdot S_P(f+f_c) & \text{for } f+f_c > 0\\ 0 & \text{else.} \end{cases}$$
$$S_P(f) = \frac{1}{2} \left(S(f-f_c) + S^*(-f-f_c) \right).$$

Course Overview

Review: Optimum Receiver Principles

Baseband Equivalent Signals

Baseband Equivalent System

- The baseband description of the transmitted signal is very convenient:
 - it is more compact than the passband signal as it does not include the carrier component,
 - while retaining all relevant information.
- However, we are also concerned what happens to the signal as it propagates to the receiver.
 - Question: Do baseband techniques extend to other parts of a passband communications system?

©2018, B.-P. Paris

ECE 732: Mobile Communications

Course Overview	Review: Optimum Receiver Principles	Baseband Equivalent Signals ○○○○○○ ○●○○○○

Passband System

©2018, B.-P. Paris

Course Overview

Review: Optimum Receiver Principles

Baseband Equivalent Signals

Baseband Equivalent System

- The passband system can be interpreted as follows to yield an equivalent system that employs only baseband signals:
 - baseband equivalent transmitted signal:

 $\boldsymbol{s}(t) = \boldsymbol{s}_{l}(t) + \boldsymbol{j} \cdot \boldsymbol{s}_{Q}(t).$

- baseband equivalent channel with complex valued impulse response: h(t).
- ► baseband equivalent received signal: $R(t) = R_I(t) + j \cdot R_Q(t).$
- complex valued, additive Gaussian noise: N(t)

©2018, B.-P. Paris

Course	Overview

Baseband Equivalent Signals

Baseband Equivalent Channel

- The baseband equivalent channel corresponds to the entire shaded box in the block diagram for the passband system (excluding additive noise).
- The relationship between the passband and baseband equivalent channel is

$$h_{\mathcal{P}}(t) = 2 \cdot \Re\{h(t) \cdot \exp(j2\pi f_{c}t)\}$$

in the time domain.

Example:

$$h_{P}(t) = \sum_{k} a_{k} \cdot \delta(t - \tau_{k}) \Longrightarrow h(t) = \sum_{k} a_{k} \cdot e^{-j2\pi f_{c}\tau_{k}} \cdot \delta(t - \tau_{k}).$$

©2018, B.-P. Paris

Course	Overview	

Baseband Equivalent Signals

Baseband Equivalent Channel

 $H(f) = \begin{cases} H_P(f+f_c) & \text{for } f+f_c > 0\\ 0 & \text{else.} \end{cases}$

$$H_p(f) = H(f - f_c) + H^*(-f - f_c)$$

Course	Overview

Baseband Equivalent Signals ○○○○○ ○○○○●

Summary

- The baseband equivalent channel is much simpler than the passband model.
 - Up and down conversion are eliminated.
 - Expressions for signals do not contain carrier terms.
- The baseband equivalent signals are easier to represent for simulation.
 - Since they are low-pass signals, they are easily sampled.
- No information is lost when using baseband equivalent signals, instead of passband signals.
- Standard, linear system equations hold:

R(t) = s(t) * h(t) + n(t) and $R(f) = S(f) \cdot H(f) + N(f)$.

 Conclusion: Use baseband equivalent signals and systems.

©2018, B.-P. Paris

om Physical Propagation to Multi-Path Fading

Part II

The Wireless Channel

©2018, B.-P. Paris

ECE 732: Mobile Communications

rom Physical Propagation to Multi-Path Fadir

The Wireless Channel

Characterization of the wireless channel and its impact on digitally modulated signals.

- Path loss models, link budgets, shadowing.
- From the physics of propagation to multi-path fading channels.
- Statistical characterization of wireless channels:
 - Doppler spectrum,
 - Delay spread
 - Coherence time
 - Coherence bandwidth
- Simulating multi-path, fading channels in MATLAB.
- Lumped-parameter models:
 - discrete-time equivalent channel.

©2018, B.-P. Paris

ECE 732: Mobile Communications

Pathloss and Link Budget con ococococo ococococo ococococo ocococo om Physical Propagation to Multi-Path Fadin

Outline

Learning Objectives

Pathloss and Link Budget

From Physical Propagation to Multi-Path Fading

Statistical Characterization of Channels

©2018, B.-P. Paris

ECE 732: Mobile Communications

rom Physical Propagation to Multi-Path Fadin

Learning Objectives

- Large-scale effects:
 - path loss and link budget
- Understand models describing the nature of typical wireless communication channels.
 - The origin of multi-path and fading.
 - Concise characterization of multi-path and fading in both the time and frequency domain.
 - Doppler spectrum and time-coherence
 - Multi-path delay spread and frequency coherence
- Appreciate the impact of wireless channels on transmitted signals.
 - Distortion from multi-path: frequency-selective fading and inter-symbol interference.
 - The consequences of time-varying channels.

©2018, B.-P. Paris

om Physical Propagation to Multi-Path Fading

Outline

Learning Objectives

Pathloss and Link Budget

From Physical Propagation to Multi-Path Fading

Statistical Characterization of Channels

©2018, B.-P. Paris

ECE 732: Mobile Communications

om Physical Propagation to Multi-Path Fadir

Path Loss

Path loss L_P relates the received signal power P_r to the transmitted signal power P_t:

$$P_r = P_t \cdot \frac{G_r \cdot G_t}{L_P},$$

where G_t and G_r are antenna gains.

Path loss is very important for cell and frequency planning or range predictions.

Not needed when designing signal sets, receiver, etc.

©2018, B.-P. Paris

rom Physical Propagation to Multi-Path Fadin

Received Signal Power

Received Signal Power:

$$P_r = P_t \cdot \frac{G_r \cdot G_t}{L_P \cdot L_R},$$

where L_R is implementation loss, typically 2–3 dB.

©2018, B.-P. Paris

ECE 732: Mobile Communications

From Physical Propagation to Multi-Path Fadir

Noise Power

$P_N = kT_0 \cdot B_W \cdot F$, where

- ▶ k Boltzmann's constant (1.38 · 10⁻²³ Ws/K),
- T_0 temperature in K (typical room temperature, $T_0 = 290$ K),
- ► $\Rightarrow kT_0 = 4 \cdot 10^{-21}$ W/Hz = $4 \cdot 10^{-18}$ mW/Hz = -174 dBm/Hz,
- \triangleright B_W signal bandwidth,
- F noise figure, figure of merit for receiver (typical value: 5dB).

©2018, B.-P. Paris

rom Physical Propagation to Multi-Path Fadir

Signal-to-Noise Ratio

- The ratio of received signal power and noise power is denoted by SNR.
- From the above, SNR equals:

$$SNR = rac{P_r}{P_N} = rac{P_t G_r \cdot G_t}{kT_0 \cdot B_W \cdot F \cdot L_P \cdot L_R}$$

- SNR increases with transmitted power P_t and antenna gains.
- SNR decreases with bandwidth B_W, noise figure F, and path loss L_P.

©2018, B.-P. Paris

rom Physical Propagation to Multi-Path Fadir

E_s/N_0

- For the symbol error rate performance of communications system the ratio of signal energy E_s and noise power spectral density N₀ is more relevant than SNR.
- Since $E_s = P_r \cdot T_s = \frac{P_r}{R_s}$ and $N_0 = kT_0 \cdot F = P_N/B_W$, it follows that

$$rac{E_s}{N_0} = {
m SNR} \cdot rac{B_W}{R_s}$$
,

where T_s and R_s denote the symbol period and symbol rate, respectively.

The ratio $\frac{R_S}{B_W}$ is called the bandwidth efficiency; it is a property of the signaling scheme.

©2018, B.-P. Paris

rom Physical Propagation to Multi-Path Fadin

E_s/N_0

Thus, E_s/N_0 is given by:

$$\frac{E_s}{N_0} = \frac{P_t G_r \cdot G_t}{kT_0 \cdot R_s \cdot F \cdot L_P \cdot L_R}.$$

► in dB:

$$\begin{pmatrix} \underline{E_s} \\ N_0 \end{pmatrix}_{(dB)} = P_{t(dBm)} + G_{t(dB)} + G_{r(dB)} \\ -(kT_0)_{(dBm/Hz)} - R_{s(dBHz)} - F_{(dB)} - L_{R(dB)}.$$

©2018, B.-P. Paris

ECE 732: Mobile Communications

rom Physical Propagation to Multi-Path Fadi

Receiver Sensitivity

All receiver-related terms are combined into receiver sensitivity, S_R:

$$S_R = rac{E_s}{N_0} \cdot kT_0 \cdot R_s \cdot F \cdot L_R.$$

in dB:

$$S_{R(dBm)} = (\frac{E_s}{N_0})_{(dB)} + (kT_0)_{(dBm/Hz)} + R_{s(dBHz)} + F_{(dB)} + L_{R(dB)}.$$

Receiver sensitivity indicates the minimum required received power to close the link.

MASON UNIVERSITY

57

©2018, B.-P. Paris

rom Physical Propagation to Multi-Path Fading

Exercise: Receiver Sensitivity

Find the sensitivity of a receiver with the following specifications:

- Modulation: BPSK
- ▶ bit error rate: 10⁻⁴
- data rate: $R_s = 1 \text{ Mb/s}$
- noise figure: $F = 5 \, dB$
- receiver loss: $L_R = 3 \, \text{dB}$

Bit error probability for BPSK in AWGN

©2018, B.-P. Paris

om Physical Propagation to Multi-Path Fading

Exercise: Maximum Permissible Pathloss

A communication system has the following specifications:

- Transmit power: $P_t = 1 \text{ W}$
- Antenna gains: $G_t = 3 \, dB$ and $G_R = 0 \, dB$
- Receiver sensitivity: $S_R = -98 \, \text{dBm}$
- What is the maximum pathloss that this system can tolerate?

©2018, B.-P. Paris

ECE 732: Mobile Communications

om Physical Propagation to Multi-Path Fadin

Path Loss

Path loss modeling may be "more an art than a science."

- Typical approach: fit model to empirical data.
- Parameters of model:
 - d distance between transmitter and receiver,
 - \blacktriangleright *f_c* carrier frequency,
 - h_b, h_m antenna heights,
 - Terrain type, building density,
- Examples that admit closed form expression: free space propagation, two-ray model

©2018, B.-P. Paris

rom Physical Propagation to Multi-Path Fadin

Example: Free Space Propagation

ln free space, path loss L_P is given by Friis's formula:

$$L_{P} = \left(\frac{4\pi d}{\lambda_{c}}\right)^{2} = \left(\frac{4\pi f_{c} d}{c}\right)^{2}.$$

Path loss increases proportional to the square of distance d and frequency f_c.

In dB:

$$L_{P(dB)} = -20 \log_{10}(\frac{c}{4\pi}) + 20 \log_{10}(f_c) + 20 \log_{10}(d).$$

Example:
$$f_c = 1$$
 GHz and $d = 1$ km

$$L_{P(dB)} = -146 \, dB + 180 \, dB + 60 \, dB = 94 \, dB.$$

61

©2018, B.-P. Paris

rom Physical Propagation to Multi-Path Fading

Example: Two-Ray Channel

- Antenna heights: h_b and h_m .
- Two propagation paths:
 - 1. direct path, free space propagation,
 - 2. reflected path, free space with perfect reflection.
- Depending on distance d, the signals received along the two paths will add constructively or destructively.

©2018, B.-P. Paris

ECE 732: Mobile Communications

Example: Two-Ray Channel

For the two-ray channel, path loss is approximately:

$$L_{P} = \frac{1}{4} \cdot \left(\frac{4\pi f_{c}d}{c}\right)^{2} \cdot \left(\frac{1}{\sin(\frac{2\pi f_{c}h_{b}h_{m}}{cd})}\right)^{2}$$

For $\lambda d \gg h_b h_m$, path loss is further approximated by:

$$L_P \approx \left(\frac{d^2}{h_b h_m}\right)^2$$

Path loss proportional to d⁴ is typical for urban environment.

©2018, B.-P. Paris

ECE 732: Mobile Communications

rom Physical Propagation to Multi-Path Fading

Statistical Characterization of Channels oo ooooooo oooooooo

Example: Two-Ray Channel

64

©2018, B.-P. Paris

om Physical Propagation to Multi-Path Fadir

Exercise: Maximum Communications range

- Path loss models allow translating between path loss P_L and range d.
- A communication system can tolerate a maximum path loss of 131 dB.
- What is the maximum distance between transmitter and receiver if path loss is according to the free-space model.
- ► How does your answer change when path loss is modeled by the two-ray model and $h_m = 1 \text{ m}$, $h_b = 10 \text{ m}$.

©2018, B.-P. Paris

ECE 732: Mobile Communications

rom Physical Propagation to Multi-Path Fadir

Okumura-Hata Model for Urban Area

- Okumura and Hata derived empirical path loss models from extensive path loss measurements.
 - Models differ between urban, suburban, and open areas, large, medium, and small cities, etc.
- Illustrative example: Model for Urban area (small or medium city)

$$L_{P(dB)} = A + B \log_{10}(d),$$

where

$$\begin{array}{rcl} A & = & 69.55 + 26.16 \log_{10}(f_c) - 13.82 \log_{10}(h_b) - a(h_m) \\ B & = & 44.9 - 6.55 \log_{10}(h_b) \\ a(h_m) & = & (1.1 \log_{10}(f_c) - 0.7) \cdot h_m - (1.56 \log_{10}(f_c) - 0.8) \\ \end{array}$$

©2018, B.-P. Paris

rom Physical Propagation to Multi-Path Fadir

Simplified Model

- Often a simpler path loss model that emphasizes the dependence on distance suffices.
- Simplified path loss model:

$$L_P = K \cdot \left(rac{d}{d_0}
ight)^{\gamma}$$

in dB:

$$L_{P(dB)} = 10 \log_{10}(K) + 10\gamma \log_{10}(\frac{d}{d_0}).$$

- Frequency dependence, antenna gains, and geometry are absorbed in K.
- d_0 is a reference distance, typically 10m 100m; model is valid only for $d > d_0$.
- > Path loss exponent γ is usually between 3 and 5.
- Model is easy to calibrate from measurements.

©2018, B.-P. Paris

ECE 732: Mobile Communications

rom Physical Propagation to Multi-Path Fadir

Shadowing

- Shadowing or shadow fading describes random fluctuations of the path loss.
 - due to small scale propagation effects, e.g., blockage from small obstructions.
- > Path loss becomes a random variable Ψ_{dB} .
- Commonly used model: log-normal shadowing; path loss Ψ_{dB} in dB is modeled as a Gaussian random variable with:
 - mean: $P_{L(dB)}(d)$ deterministic part of path loss
 - standard deviation: σ_{Ψ} describes variation around $P_{L(dB)}$; common value 4dB 10dB.
- When fitting measurements to an empirical model, σ_{Ψ} captures the model error (residuals).

©2018, B.-P. Paris

ECE 732: Mobile Communications

rom Physical Propagation to Multi-Path Fadi

Outage Probability

- As discussed earlier, the received power must exceed a minimum level P_{min} so that communications is possible; we called that level the receiver sensitivity S_R.
- Since path loss Ψ_{dB} is random, it cannot be guaranteed that a link covering distance *d* can be closed.
- The probability that the received power P_{r(dB)}(d) falls below the required minimum is given by:

$$\Pr(P_{r(dB)}(d) \leq S_R) = Q(\frac{P_t + G_t + G_R - P_{L(dB)}(d) - S_R}{\sigma_{\Psi}}).$$

• The quantitity $P_t + G_t + G_R - P_{L(dB)}(d) - S_R$ is called the fade margin.

©2018, B.-P. Paris

rom Physical Propagation to Multi-Path Fadir

Exercise: Outage Probability

- Assume that a communication system is characterized by:
 - Transmit power: $P_t = 1 \text{ W}$
 - Antenna gains: $G_t = 3 \, dB$ and $G_R = 0 \, dB$
 - Receiver sensitivity: $S_R = -98 \, \text{dBm}$
 - Path loss according to the two-ray model with $h_m = 1$ m, $h_b = 10$ m.
 - Communications range: d = 1 km

Querstion: What is the outage probability of the system when the shadowing standard deviation $\sigma_{\Psi} = 6 \, dB$?

• Question: For a channel with $\sigma_{\Psi} = 6 \, dB$, how much fade margin is required to achieve an outage probability of 10^{-3} ?

©2018, B.-P. Paris

ECE 732: Mobile Communications

Cell Coverage Area

- Expected percentage of cell area where received power is above S_R.
- For a circular cell of radius R, cell coverage area is computed as:

$$C = \frac{1}{\pi R^2} \int_0^{2\pi} \int_0^R Q(\frac{S_R - (P_t - P_{L(dB)}(r))}{\sigma_{\Psi}}) dr d\theta.$$

71

©2018, B.-P. Paris

rom Physical Propagation to Multi-Path Fadi

Cell Coverage Area

For the simplified (range only) path loss model

 $L_P = K \cdot \left(\frac{d}{d_0}\right)^{\gamma}$ this can be computed in closed form:

$$C = Q(a) + \exp(\frac{2-2ab}{b^2}) \cdot Q(\frac{2-ab}{b})$$

where:

$$a = \frac{S_{R} - (P_{t} - 10 \log_{10}(K) - 10\gamma \log_{10}(R/d_{0}))}{\sigma_{\Psi}}$$

and

$$b = \frac{10\gamma \log_{10}(e)}{\sigma_{\Psi}}.$$

Mason UNIVERSITY

72

©2018, B.-P. Paris
Outline

Learning Objectives

Pathloss and Link Budget

From Physical Propagation to Multi-Path Fading

Statistical Characterization of Channels

©2018, B.-P. Paris

ECE 732: Mobile Communications

Multi-path Propagation

- The transmitted signal propagates from the transmitter to the receiver along many different paths.
- These paths have different
 - path attenuation a_k ,
 - path delay τ_k ,
 - phase shift ϕ_k ,
 - angle of arrival θ_k .
 - For simplicity, we assume a 2-D model, so that the angle of arrival is the azimuth.
 - In 3-D models, the elevation angle of arrival is an additional parameter.

©2018, B.-P. Paris

74

From Physical Propagation to Multi-Path Fading

Channel Impulse Response

- From the above parameters, one can easily determine the channel's (baseband equivalent) impulse response.
- Impulse Response:

$$h(t) = \sum_{k=1}^{K} a_k \cdot e^{j\phi_k} \cdot e^{-j2\pi f_c \tau_k} \cdot \delta(t - \tau_k)$$

Note that the delays τ_k cause the phase shifts ϕ_k .

75

©2018, B.-P. Paris

Received Signal

Ignoring noise for a moment, the received signal is the convolution of the transmitted signal s(t) and the impulse response

$$\boldsymbol{R}(t) = \boldsymbol{s}(t) * \boldsymbol{h}(t) = \sum_{k=1}^{K} \boldsymbol{a}_{k} \cdot \boldsymbol{e}^{j\phi_{k}} \cdot \boldsymbol{e}^{-j2\pi f_{c}\tau_{k}} \cdot \boldsymbol{s}(t-\tau_{k}).$$

The received signal consists of multiple

scaled (by a_k · e^{jφ_k} · e<sup>-j2πf_cτ_k),
 delayed (by τ_k)
</sup>

copies of the transmitted signal.

MASON

©2018, B.-P. Paris

From Physical Propagation to Multi-Path Fading

Channel Frequency Response

- Similarly, one can compute the frequency response of the channel.
- Direct Fourier transformation of the expression for the impulse response yields

$$H(f) = \sum_{k=1}^{K} a_k \cdot e^{j\phi_k} \cdot e^{-j2\pi f_c \tau_k} \cdot e^{-j2\pi f_c \tau_k}$$

- For any given frequency f, the frequency response is a sum of complex numbers.
- When these terms add destructively, the frequency response is very small or even zero at that frequency.
- These nulls in the channel's frequency response are typical for wireless communications and are referred to as frequency-selective fading.

©2018, B.-P. Paris

ECE 732: Mobile Communications

From Physical Propagation to Multi-Path Fading

Example: Ray Tracing

Figure: All propagation paths between the transmitter and receiver in the indicated located were determined through ray tracing.

©2018, B.-P. Paris

ECE 732: Mobile Communications

From Physical Propagation to Multi-Path Fading

Impulse Response

Figure: (Baseband equivalent) Impulse response shows attenuation, delay, and phase for each of the paths between receiver and transmitter.

©2018, B.-P. Paris

ECE 732: Mobile Communications

From Physical Propagation to Multi-Path Fading

Frequency Response

Figure: (Baseband equivalent) Frequency response for a multi-path channel is characterized by deep "notches".

©2018, B.-P. Paris

ECE 732: Mobile Communications

From Physical Propagation to Multi-Path Fading

Implications of Multi-path

- Multi-path leads to signal distortion.
 - The received signal "looks different" from the transmitted signal.
 - This is true, in particular, for wide-band signals.
- Multi-path propagation is equivalent to undesired filtering with a linear filter.
 - The impulse response of this undesired filter is the impulse response h(t) of the channel.
- The effects of multi-path can be described in terms of both time-domain and frequency-domain concepts.
 - It is useful to distinguish between narrow-band and wide-band signals when assessing the impact of multi-path.

©2018, B.-P. Paris

From Physical Propagation to Multi-Path Fading

Example: Transmission of a Linearly Modulated Signal

- Transmission of a linearly modulated signal through the above channel is simulated.
 - ► BPSK,
 - (full response) raised-cosine pulse.
- Symbol period is varied; the following values are considered
 - $T_s = 30 \mu s$ (bandwidth approximately 60 KHz)
 - $T_s = 3\mu s$ (bandwidth approximately 600 KHz)
 - $T_s = 0.3 \mu s$ (bandwidth approximately 6 MHz)
- For each case, the transmitted and (suitably scaled) received signal is plotted.
 - Look for distortion.
 - Note that the received signal is complex valued; real and imaginary part are plotted.

MASON

©2018, B.-P. Paris

From Physical Propagation to Multi-Path Fading

Example: Transmission of a Linearly Modulated Signal

Figure: Transmitted and received signal; $T_s = 30 \mu s$. No distortion is evident.

©2018, B.-P. Paris

ECE 732: Mobile Communications

From Physical Propagation to Multi-Path Fading $_{\odot}$

Example: Transmission of a Linearly Modulated Signal

Figure: Transmitted and received signal; $T_s = 3\mu s$. Some distortion is visible near the symbol boundaries.

©2018, B.-P. Paris

ECE 732: Mobile Communications

From Physical Propagation to Multi-Path Fading

Example: Transmission of a Linearly Modulated Signal

Figure: Transmitted and received signal; $T_s = 0.3 \mu s$. Distortion is clearly visible and spans multiple symbol periods.

©2018, B.-P. Paris

ECE 732: Mobile Communications

Pathloss and	Link Budget
000	
00000000	
00000000	
00000	

Eye Diagrams for Visualizing Distortion

- An eye diagram is a simple but useful tool for quickly gaining an appreciation for the amount of distortion present in a received signal.
- An eye diagram is obtained by plotting many segments of the received signal on top of each other.
 - The segments span two symbol periods.
- This can be accomplished in MATLAB via the command plot(tt(1:2*fsT), real(reshape(Received(1:Ns*fsT), 2*fsT, [])))
 - Ns number of symbols; should be large (e.g., 1000),
 - Received vector of received samples.
 - The reshape command turns the vector into a matrix with 2*fsT rows, and
 - the plot command plots each column of the resulting matrix individually.

©2018, B.-P. Paris

From Physical Propagation to Multi-Path Fading

Eye Diagram without Distortion

Figure: Eye diagram for received signal; $T_s = 30 \mu s$. No distortion: "the eye is fully open".

©2018, B.-P. Paris

ECE 732: Mobile Communications

From Physical Propagation to Multi-Path Fading

Eye Diagram with Distortion

Figure: Eye diagram for received signal; $T_s = 0.3 \mu s$. Significant distortion: "the eye is partially open".

©2018, B.-P. Paris

ECE 732: Mobile Communications

From Physical Propagation to Multi-Path Fading

Inter-Symbol Interference

The distortion described above is referred to as inter-symbol interference (ISI).

- As the name implies, the undesired filtering by the channel causes energy to be spread from one transmitted symbol across several adjacent symbols.
- This interference makes detection mored difficult and must be compensated for at the receiver.
 - Devices that perform this compensation are called equalizers.

©2018, B.-P. Paris

ECE 732: Mobile Communications

From Physical Propagation to Multi-Path Fading

Inter-Symbol Interference

- Question: Under what conditions does ISI occur?
- Answer: depends on the channel and the symbol rate.
 - The difference between the longest and the shortest delay of the channel is called the delay spread T_d of the channel.
 - The delay spread indicates the length of the impulse response of the channel.
 - Consequently, a transmitted symbol of length T_s will be spread out by the channel.
 - When received, its length will be the symbol period plus the delay spread, T_s + T_d.

Rules of thumb:

- if the delay spread is much smaller than the symbol period $(T_d \ll T_s)$, then ISI is negligible.
- If delay is similar to or greater than the symbol period, then ISI must be compensated at the receiver.

©2018, B.-P. Paris

ECE 732: Mobile Communications

From Physical Propagation to Multi-Path Fading

Frequency-Domain Perspective

- It is interesting to compare the bandwidth of the transmitted signals to the frequency response of the channel.
 - In particular, the bandwidth of the transmitted signal relative to variations in the frequency response is important.
 - The bandwidth over which the channel's frequency response remains approximately constant is called the coherence bandwidth ($B_c \approx 1/T_d$).

(Dual) Rules of thumb:

- When the frequency response of the channel remains approximately constant over the bandwidth of the transmitted signal, the channel is said to be flat fading.
- Conversely, if the channel's frequency response varies significantly over the bandwidth of the signal, the channel is called a frequency-selective fading channel.

©2018, B.-P. Paris

Figure: Frequency Response of Channel and bandwidth of signal; $T_s = 30 \mu s$, Bandwidth ≈ 60 KHz; the channel's frequency response is approximately constant over the bandwidth of the signal.

©2018, B.-P. Paris

ECE 732: Mobile Communications

Figure: Frequency Response of Channel and bandwidth of signal; $T_s = 0.3 \mu s$, Bandwidth \approx 6 MHz; the channel's frequency response varies significantly over the bandwidth of the channel.

©2018, B.-P. Paris

ECE 732: Mobile Communications

From Physical Propagation to Multi-Path Fading

Frequency-Selective Fading and ISI

Frequency-selective fading and ISI are dual concepts.

- ISI is a time-domain characterization for significant distortion.
- Frequency-selective fading captures the same idea in the frequency domain.
- Wide-band signals experience ISI and frequency-selective fading.
 - Such signals require an equalizer in the receiver.
 - Wide-band signals provide built-in diversity.
 - Not the entire signal will be subject to fading.
- Narrow-band signals experience flat fading (no ISI).
 - Simple receiver; no equalizer required.
 - Entire signal may be in a deep fade; no diversity.

MASON

©2018, B.-P. Paris

ECE 732: Mobile Communications

From Physical Propagation to Multi-Path Fading

Time-Varying Channel

- Beyond multi-path propagation, a second characteristic of many wireless communication channels is their time variability.
 - The channel is time-varying primarily because users are mobile.
- As mobile users change their position, the characteristics of each propagation path changes correspondingly.
 - Consider the impact a change in position has on
 - path gain,
 - path delay.
 - Will see that angle of arrival θ_k for k-th path is a factor.

©2018, B.-P. Paris

Path-Changes Induced by Mobility

- Mobile moves by $\vec{\Delta d}$ from old position to new position.
 - distance: $|\vec{\Delta d}|$
 - angle: $\angle \vec{\Delta d} = \delta$ (in diagram $\delta = 0$)
- Angle between k-th ray and $\vec{\Delta d}$ is denoted $\psi_k = \theta_k \delta$.
- Length of *k*-th path increases by $|\vec{\Delta d}| \cos(\psi_k)$.

©2018, B.-P. Paris

Pathloss and Link Budget
000
0000000
0000000
00000

Impact of Change in Path Length

- We conclude that the length of each path changes by
 - $|\vec{\Delta d}|\cos(\psi_k)$, where
 - ψ_k denotes the angle between the direction of the mobile and the *k*-th incoming ray.
- **Question:** how large is a typical distance $|\vec{\Delta d}|$ between the old and new position is?
 - The distance depends on
 - the velocity v of the mobile, and
 - the time-scale ΔT of interest.
- In many modern communication system, the transmission of a frame of symbols takes on the order of 1 to 10 ms.
- ► Typical velocities in mobile systems range from pedestrian speeds (\approx 1m/s) to vehicle speeds of 150km/h(\approx 40m/s).
- Distances of interest $|\vec{\Delta d}|$ range from 1mm to 400mm.

©2018, B.-P. Paris

From Physical Propagation to Multi-Path Fading

Impact of Change in Path Length

- Question: What is the impact of this change in path length on the parameters of each path?
 - We denote the length of the path to the old position by d_k .
 - Clearly, $d_k = c \cdot \tau_k$, where c denotes the speed of light.
 - Typically, d_k is much larger than $|\Delta d|$.
- ▶ Path gain a_k : Assume that path gain a_k decays inversely proportional with the square of the distance, $a_k \sim d_k^{-2}$.
- Then, the relative change in path gain is proportional to $(|\vec{\Delta d}|/d_k)^2$ (e.g., $|\vec{\Delta d}| = 0.1$ m and $d_k = 100$ m, then path gain changes by approximately 0.0001%).
 - Conclusion: The change in path gain is generally small enough to be negligible.

©2018, B.-P. Paris

From Physical Propagation to Multi-Path Fading

Impact of Change in Path Length

- **Delay** τ_k : By similar arguments, the delay for the *k*-th path changes by at most $|\vec{\Delta d}|/c$.
- The relative change in delay is $|\vec{\Delta d}| / d_k$ (e.g., 0.1% with the values above.)
 - Question: Is this change in delay also negligible?

©2018, B.-P. Paris

ECE 732: Mobile Communications

Relating Delay Changes to Phase Changes

Recall: the impulse response of the multi-path channel is

$$h(t) = \sum_{k=1}^{K} a_k \cdot e^{j\phi_k} \cdot e^{-j2\pi f_c \tau_k} \cdot \delta(t - \tau_k)$$

Note that the delays, and thus any delay changes, are multiplied by the carrier frequency *f_c* to produce phase shifts.

©2018, B.-P. Paris

ECE 732: Mobile Communications

From Physical Propagation to Multi-Path Fading

Relating Delay Changes to Phase Changes

Consequently, the phase change arising from the movement of the mobile is

$$\Delta \phi_k = -2\pi f_c / c |\vec{\Delta d}| \cos(\psi_k) = -2\pi |\vec{\Delta d}| / \lambda_c \cos(\psi_k),$$

where

- ► $\lambda_c = c/f_c$ denotes the wave-length at the carrier frequency (e.g., at $f_c = 1$ GHz, $\lambda_c \approx 0.3$ m),
- ψ_k angle between direction of mobile and *k*-th arriving path.

Conclusion: These phase changes are significant and lead to changes in the channel properties over short time-scales (fast fading).

101

©2018, B.-P. Paris

Pathloss and Link Budget
000
0000000
0000000
00000

Illustration

- To quantify these effects, compute the phase change over a time interval $\Delta T = 1$ ms as a function of velocity.
 - Assume $\psi_k = 0$, and, thus, $\cos(\psi_k) = 1$.
 - $f_c = 1 \text{GHz}.$

<i>v</i> (m/s)	$ ec{\Delta d} $ (mm)	$\Delta \phi$ (degrees)	Comment
1	1	1.2	Pedestrian; negligible phase change.
10	10	12	Residential area vehi- cle speed.
100	100	120	High-way speed; phase change signifi- cant.
1000	1000	1200	High-speed train or low-flying aircraft; receiver must track phase changes.

©2018, B.-P. Paris

ECE 732: Mobile Communications

Pathloss and Link Budget
000
0000000
0000000
00000

Doppler Shift and Doppler Spread

- ► If a mobile is moving at a constant velocity *v*, then the distance between an old position and the new position is a function of time, $|\vec{\Delta d}| = vt$.
- Consequently, the phase change for the k-th path is

 $\Delta \phi_k(t) = -2\pi v / \lambda_c \cos(\psi_k) t = -2\pi v / c \cdot f_c \cos(\psi_k) t.$

- The phase is a linear function of t.
- Hence, along this path the signal experiences a frequency shift $f_{d,k} = v/c \cdot f_c \cdot \cos(\psi_k) = v/\lambda_c \cdot \cos(\psi_k)$.
- This frequency shift is called Doppler shift.
- Each path experiences a different Doppler shift.
 - Angles of arrival θ_k are different.
 - Consequently, instead of a single Doppler shift a number of shifts create a Doppler Spectrum.

©2018, B.-P. Paris

ECE 732: Mobile Communications

From Physical Propagation to Multi-Path Fading $_{\odot}$

Illustration: Time-Varying Frequency Response

Figure: Time-varying Frequency Response for Ray-Tracing Data; velocity v = 10 m/s, $f_c = 1$ GHz, maximum Doppler frequency ≈ 33 Hz.

MASON UNIVERSITY

©2018, B.-P. Paris

ECE 732: Mobile Communications

Illustration: Time-varying Response to a Sinusoidal Input

Figure: Response of channel to sinusoidal input signal; base-band equivalent input signal s(t) = 1, velocity v = 10m/s, $f_c = 1$ GHz, maximum Doppler frequency ≈ 33 Hz.

©2018, B.-P. Paris

ECE 732: Mobile Communications

From Physical Propagation to Multi-Path Fading

Doppler Spread and Coherence Time

- The time over which the channel remains approximately constant is called the coherence time of the channel.
- Coherence time and (bandwidth of) Doppler spectrum are dual characterizations of the time-varying channel.
 - Doppler spectrum provides frequency-domain interpretation:
 - It indicates the range of frequency shifts induced by the time-varying channel.
 - Frequency shifts due to Doppler range from $-f_d$ to f_d , where $f_d = v/c \cdot f_c$.
 - The coherence time T_c of the channel provides a time-domain characterization:
 - It indicates how long the channel can be assumed to be approximately constant.
- ► Maximum Doppler shift f_d and coherence time T_c are related to each through an inverse relationship $T_c \approx 1/f_d$.

©2018, B.-P. Paris

ECE 732: Mobile Communications

Pathloss and Link Budget
00
0000000
0000000
00000

System Considerations

The time-varying nature of the channel must be accounted for in the design of the system.

Transmissions are shorter than the coherence time:

- Many systems are designed to use frames that are shorter than the coherence time.
- Example: GSM TDMA structure employs time-slots of duration 4.6ms.
- Consequence: During each time-slot, channel may be treated as constant.
- From one time-slot to the next, channel varies significantly; this provides opportunities for diversity.

Transmission are longer than the coherence time:

- Channel variations must be tracked by receiver.
- Example: use recent symbol decisions to estimate current channel impulse response.

Mason

©2018, B.-P. Paris

Figure: Time varying channel response and TDMA time-slots; time-slot duration 4.6ms, 8 TDMA users, velocity v = 10m/s, $f_c = 1$ GHz, maximum Doppler frequency ≈ 33 Hz.

©2018, B.-P. Paris

ECE 732: Mobile Communications
From Physical Propagation to Multi-Path Fading

Summary

- Illustrated by means of a concrete example the two main impairments from a mobile, wireless channel.
 - Multi-path propagation,
 - Doppler spread due to time-varying channel.
- Multi-path propagation induces ISI if the symbol duration exceeds the delay spread of the channel.
 - In frequency-domain terms, frequency-selective fading occurs if the signal bandwidth exceeds the coherence band-width of the channel.
- Doppler Spreading results from time-variations of the channel due to mobility.
 - The maximum Doppler shift $f_d = v/c \cdot f_c$ is proportional to the speed of the mobile.
 - In time-domain terms, the channel remains approximately constant over the coherence-time of the channel.

©2018, B.-P. Paris

Outline

om Physical Propagation to Multi-Path Fading

Statistical Characterization of Channels

Learning Objectives

Pathloss and Link Budget

From Physical Propagation to Multi-Path Fading

Statistical Characterization of Channels

©2018, B.-P. Paris

ECE 732: Mobile Communications

Pathloss and Link Budget co o oocococo oocococo oocococo oocococo rom Physical Propagation to Multi-Path Fadin

Statistical Characterization of Channel

- We have looked at the characterization of a concrete realization of a mobile, wire-less channel.
- For different locations, the properties of the channel will likely be very different.
- Objective: develop statistical models that capture the salient features of the wireless channel for areas of interest.
 - Models must capture multi-path and time-varying nature of channel.
- Approach: Models reflect correlations of the time-varying channel impulse response or frequency response.
 - Time-varying descriptions of channel are functions of two parameters:
 - ► Time *t* when channel is measured,
 - Frequency f or delay τ .

©2018, B.-P. Paris

rom Physical Propagation to Multi-Path Fadir

Power Delay Profile

- The impulse response of a wireless channel is time-varying, $h(t, \tau)$.
 - The parameter t indicates when the channel is used,
 - The parameter τ reflects time since the input was applied (delay).
 - Time-varying convolution: $r(t) = \int h(t, \tau) \cdot s(t-\tau) d\tau$.
- The power-delay profile measures the average power in the impulse response over delay τ.
 - **Thought experiment:** Send impulse through channel at time t_0 and measure response $h(t_0, \tau)$.
 - Repeat *K* times, measuring $h(t_k, \tau)$.
 - Power delay profile:

$$\Psi_h(\tau) = \frac{1}{K+1} \sum_{k=0}^{K} |h(t_k, \tau)|^2.$$

ECE 732: Mobile Communications

©2018, B.-P. Paris

rom Physical Propagation to Multi-Path Fadir

Statistical Characterization of Channels

Power Delay Profile

- The power delay profile captures the statistics of the multi-path effects of the channel.
- The underlying, physical model assumes a large number of propagation paths:
 - each path has a an associated delay τ ,
 - the gain for a path is modeled as a complex Gaussian random variable with second moment equal to $\Psi_h(\tau)$.
 - If the mean of the gain is zero, the path is said to be Rayleigh fading.
 - Otherwise, it is Ricean.
 - The channel gains associated with different delays are assumed to be uncorrelated (uncorrelated scattering assumption).

©2018, B.-P. Paris

ECE 732: Mobile Communications

rom Physical Propagation to Multi-Path Fadin

Statistical Characterization of Channels

Example

Figure: Power Delay Profile and Channel Impulse Response; the power delay profile (left) equals $\Psi_h(\tau) = \exp(-\tau/T_h)$ with $T_h = 1\mu$ s; one possible realization of magnitude and phase of impulse response (left).

©2018, B.-P. Paris

ECE 732: Mobile Communications

Statistical Characterization of Channels 000000

RMS Delay Spread

- From a systems perspective, the extent (spread) of the delays is most significant.
 - The length of the impulse response of the channel determines how much ISI will be introduced by the channel.
- The spread of delays is measured concisely by the RMS delay spread T_d :

$$T_d^2 = \int_0^\infty \Psi_h^{(n)}(\tau) \tau^2 d\tau - (\int_0^\infty \Psi_h^{(n)}(\tau) \tau d\tau)^2,$$

where

$$\Psi_h^{(n)} = \Psi_h / \int_0^\infty \Psi_h(\tau) d\tau.$$

Example: For $\Psi_h(\tau) = \exp(-\tau / T_h)$, RMS delay spread equals T_h .

In urban environments, typical delay spreads are a few μ s.

©2018, B.-P. Paris

rom Physical Propagation to Multi-Path Fading

Statistical Characterization of Channels

Frequency Coherence Function

► The Fourier transform of the Power Delay Spread $\Psi_h(\tau)$ is called the Frequency Coherence Function $\Psi_H(\Delta f)$

$$\Psi_h(\tau) \leftrightarrow \Psi_H(\Delta f).$$

- The frequency coherence function measures the correlation of the channel's frequency response.
 - **Thought Experiment:** Transmit at time t_0 two sinusoidal signal of frequencies f_1 and f_2 , such that $f_1 f_2 = \Delta f$.
 - The gain each of these signals experiences is H(t₀, f₁) and H(t, f₂), respectively.
 - Repeat the experiment many times and average the products $H(t_k, f_1) \cdot H^*(t_k, f_2)$.
 - $\Psi_H(\Delta f)$ indicates how similar the gain is that two sinusoids separated by Δf experience.

©2018, B.-P. Paris

ECE 732: Mobile Communications

From Physical Propagation to Multi-Path Fad

Statistical Characterization of Channels

Coherence Bandwidth

- The width of the main lobe of the frequency coherence function is the coherence bandwidth B_c of the channel.
 - Two signals with frequencies separated by less than the coherence bandwidth will experience very similar gains.
- Because of the Fourier transform relationship between the power delay profile and the frequency coherence function:

$$B_c \approx rac{1}{T_d}.$$

Example: Fourier transform of $\Psi_h(\tau) = \exp(-\tau / T_h)$

$$\Psi_H(\Delta f) = \frac{T_h}{1 + j2\pi\Delta fT_h};$$

the two-sided, 3-dB bandwidth of $\Psi_H(\Delta f)$ is $B_c = 1/(\pi \cdot T_h)$.

For urban channels, coherence bandwidth is a few 100KHz

©2018, B.-P. Paris

ECE 732: Mobile Communications

rom Physical Propagation to Multi-Path Fadir

Statistical Characterization of Channels

Time Coherence

- The time-coherence function $\Psi_H(\Delta t)$ captures the time-varying nature of the channel.
 - **Thought experiment:** Transmit a sinusoidal signal of frequency *f* through the channel and measure the output at times t_0 and $t_0 + \Delta t$.
 - The gains the signal experiences are $H(t_0, f)$ and $H(t_0 + \Delta t, f)$, respectively.
 - Repeat experiment and average the products $H(t_k, f) \cdot H^*(t_k + \Delta t, f)$.
- Time coherence function measures, how quickly the gain of the channel varies.
 - The width of the time coherence function is called the coherence-time T_c of the channel.
 - The channel remains approximately constant over the coherence time of the channel.

©2018, B.-P. Paris

ECE 732: Mobile Communications

Pathloss and Link Budget co ococococo ococococo ococococo ococococo	From Physical Propagation to Multi-Path Fading o oooooooooooooooooooooooooooooooooo	Statistical Characterization of Channels

Example: Isotropic Scatterer

- ► Old location: $H(t_0, f = 0) = a_k \cdot \exp(-j2\pi f_c \tau_k)$.
- At new location: the gain a_k is unchanged; phase changes by $f_d \cos(\psi_k) \Delta t$:

$$H(t_0 + \Delta t, f = 0) = a_k \cdot \exp(-j2\pi(f_c\tau_k + f_d\cos(\psi_k)\Delta t)).$$

©2018, B.-P. Paris

rom Physical Propagation to Multi-Path Fadin

Statistical Characterization of Channels

Example: Isotropic Scatterer

- The average of H(t₀, 0) · H^{*}(t₀ + ∆t, 0) yields the time-coherence function.
- To compute average, assume that the angles of arrival ψ_k are uniformly distributed (isotropic scatterer assumption).
 - This allows computation of the average:

$$\Psi_{\mathcal{H}}(\Delta t) = \mathsf{E}[\sum_{k} |a_{k}|^{2}] \cdot J_{0}(2\pi f_{d} \Delta t)$$

©2018, B.-P. Paris

ECE 732: Mobile Communications

rom Physical Propagation to Multi-Path Fading

Statistical Characterization of Channels

Time-Coherence Function for Isotropic Scatterer

Figure: Time-Coherence Function for Isotropic Scatterer; velocity v = 10 m/s, $f_c = 1$ GHz, maximum Doppler frequency $f_d \approx 33$ Hz. First zero at $\Delta t \approx 0.4/f_d$.

MASON UNIVERSITY

121

©2018, B.-P. Paris

rom Physical Propagation to Multi-Path Fadi

Statistical Characterization of Channels

Doppler Spread Function

• The Fourier transform of the time coherence function $\Psi_H(\Delta t)$ is the Doppler Spread Function $\Psi_d(f_d)$

 $\Psi_{H}(\Delta t) \leftrightarrow \Psi_{d}(f_{d}).$

- The Doppler spread function indicates the range of frequencies observed at the output of the channel when the input is a sinusoidal signal.
 - Maximum Doppler shift $f_{d,max} = v/c \cdot f_c$.
- Thought experiment:
 - Send a sinusoidal signal of baseband equivalent frequency f = 0.
 - The PSD of the received signal is the Doppler spread function.

©2018, B.-P. Paris

om Physical Propagation to Multi-Path Fadin

Statistical Characterization of Channels

Doppler Spread Function for Isotropic Scatterer

Example: The Doppler spread function for the isotropic scatterer is

$$\Psi_d(f_d) = \frac{\mathsf{E}[\sum_k |a_k|^2]}{4\pi f_d} \frac{1}{\sqrt{1 - (f/f_d)^2}} \text{ for } |f| < f_d.$$

123

©2018, B.-P. Paris

Figure: Doppler Spread Function for Isotropic Scatterer; velocity v = 10 m/s, $f_c = 1$ GHz, maximum Doppler frequency $f_d \approx 33$ Hz. First zero at $\Delta t \approx 0.4/f_d$.

©2018, B.-P. Paris

ECE 732: Mobile Communications

124

GEORG

rom Physical Propagation to Multi-Path Fading

Statistical Characterization of Channels

Simulation of Multi-Path Fading Channels

- We would like to be able to simulate the effects of time-varying, multi-path channels.
- Approach:
 - The simulator operates in discrete-time; the sampling rate is given by the sampling rate for the input signal.
 - The multi-path effects can be well modeled by an FIR (tapped delay-line)filter.
 - The number of taps for the filter is given by the product of delay spread and sampling rate.
 - Example: With a delay spread of 2µs and a sampling rate of 2MHz, four taps are required.
 - The taps must be random with a Gaussian distribution.
 - The magnitude of the tap weights must reflect the power-delay profile.

©2018, B.-P. Paris

ECE 732: Mobile Communications

rom Physical Propagation to Multi-Path Fading

Statistical Characterization of Channels

Simulation of Multi-Path Fading Channels

Approach (cont'd):

- The time-varying nature of the channel can be captured by allowing the taps to be time-varying.
 - The time-variations must reflect the Doppler Spectrum.

©2018, B.-P. Paris

ECE 732: Mobile Communications

rom Physical Propagation to Multi-Path Fadin

Statistical Characterization of Channels

Simulation of Multi-Path Fading Channels

- The taps are modeled as
 - Gaussian random processes
 - with variances given by the power delay profile, and
 - power spectral density given by the Doppler spectrum.

©2018, B.-P. Paris

rom Physical Propagation to Multi-Path Fadin

Statistical Characterization of Channels

Channel Model Parameters

- Concrete parameters for models of the above form have been proposed by various standards bodies.
 - For example, the following table is an excerpt from a document produced by the COST 259 study group.

Tap number	Relative Time (µs)	Relative Power (dB)	Doppler Spectrum
1	0	-5.7	Class
2	0.217	-7.6	Class
3	0.512	-10.1	Class
:	÷		÷
20	2.140	-24.3	Class

MASON UNIVERSITY

128

©2018, B.-P. Paris

rom Physical Propagation to Multi-Path Fadir

Statistical Characterization of Channels

Channel Model Parameters

- The table provides a concise, statistical description of a time-varying multi-path environment.
- Each row corresponds to a path and is characterized by
 - the delay beyond the delay for the shortest path,
 - the average power of this path;
 - this parameter provides the variance of the Gaussian path gain.
 - the Doppler spectrum for this path;
 - The notation Class denotes the classical Doppler spectrum for the isotropic scatterer.
- The delay and power column specify the power-delay profile.
- The Doppler spectrum is given directly.
 - The Doppler frequency f_d is an additional parameter.

©2018, B.-P. Paris

ECE 732: Mobile Communications

Pathloss and Link Budget cop occocococo occocococo occocococo occococo rom Physical Propagation to Multi-Path Fading

Statistical Characterization of Channels

Toolbox Function SimulateCOSTChannel

MATLAB function for simulating time-varying multi-path channels:

function OutSig = SimulateCOSTChannel(InSig, ChannelParams, fs)

Its input arguments are

00	Inputs:	
00	InSig	– baseband equivalent input signal
00	ChannelParams	- structure ChannelParams must have fields
00		Delay – relative delay
00		<i>Power – relative power in dB</i>
00		Doppler – type of Dopller spectrum
00		fd - max. Doppler shift
00	fs	- sampling rate

©2018, B.-P. Paris

ECE 732: Mobile Communications

rom Physical Propagation to Multi-Path Fading

Statistical Characterization of Channels

Discrete-Time Considerations

- The delays in the above table assume a continuous time axis; our time-varying FIR will operate in discrete time.
- To convert the model to discrete-time:
 - Continuous-time is divided into consecutive "bins" of width equal to the sampling period, 1 / fs.
 - For all paths arriving in same "bin," powers are added.
 - reflects paths arriving closer together than the sampling period and cannot be resolved;
 - their effect is combined in the receiver front-end.
 - The result is a reduced description of the multi-path channel:
 - Power for each tap reflects the combined power of paths arriving in the corresponding "bin".
 - This power will be used to set the variance (power) of the random process for the corresponding tap.

MASON

©2018, B.-P. Paris

om Physical Propagation to Multi-Path Fading

Statistical Characterization of Channels

Converting to a Discrete-Time Model in MATLAB

©2018, B.-P. Paris

ECE 732: Mobile Communications

rom Physical Propagation to Multi-Path Fadin

Statistical Characterization of Channels

Generating Time-Varying Filter Taps

The time-varying taps of the FIR filter must be Gaussian random processes with specified variance and power spectral density.

To accomplish this, we proceed in two steps:

- 1. Create a filter to shape the power spectral density of the random processes for the tap weights.
- 2. Create the random processes for the tap weights by passing complex, white Gaussian noise through the filter.
 - Variance is adjusted in this step.

Generating the spectrum shaping filter:

```
% desired frequency response of filter:
HH = sqrt( ClassDoppler( ff, ChannelParams.fd ) );
% design filter with desired frequency response
hh = Persistent_firpm( NH-1, 0:1/(NH-1):1, HH );
hh = hh/norm(hh); % ensure filter has unit norm
```


133

©2018, B.-P. Paris

rom Physical Propagation to Multi-Path Fading

Statistical Characterization of Channels

Generating Time-Varying Filter Taps

- The spectrum shaping filter is used to filter a complex white noise process.
 - Care is taken to avoid transients at the beginning of the output signal.
 - Also, filtering is performed at a lower rate with subsequent interpolation to avoid numerical problems.
 - Recall that f_d is quite small relative to f_s .

```
% generate a white Gaussian random process
ww = sqrt( Powers( kk )/2)*...
  ( randn( 1, NSamples) + j*randn( 1, NSamples) );
% filter so that spectrum equals Doppler spectrum
ww = conv( ww, hh );
ww = ww( length( hh )+1:NSamples ).';
% interpolate to a higher sampling rate
ww = interp( ww, Down );
```

MASON

©2018, B.-P. Paris

ECE 732: Mobile Communications

rom Physical Propagation to Multi-Path Fadir

Statistical Characterization of Channels

Time-Varying Filtering

- The final step in the simulator is filtering the input signal with the time-varying filter taps.
 - MATLAB's filtering functions conv or filter cannot be used (directly) for this purpose.
- The simulator breaks the input signal into short segments for which the channel is nearly constant.
 - Each segment is filtered with a slightly different set of taps.

```
while ( Start < length(InSig) )
    EndIn = min( Start+QDeltaH, length(InSig) );
    EndOut = EndIn + length(Powers)-1;
    OutSig(Start:EndOut) = OutSig(Start:EndOut) + ...
        conv( Taps(kk,:), InSig(Start:EndIn) );
    }
}</pre>
```

kk = kk+1; Start = EndIn+1;

135

©2018, B.-P. Paris

rom Physical Propagation to Multi-Path Fading

Statistical Characterization of Channels

Testing SimulateCOSTChannel

A simple test for the channel simulator consists of "transmitting" a baseband equivalent sinusoid.

%% Initialization						
ChannelParameters	= tux();	% COST model parameters				
ChannelParameters.fd	= 10;	<pre>% Doppler frequency</pre>				
fs	= 1e5;	% sampling rate				
SigDur	= 1;	<pre>% duration of signal</pre>				
%% generate input signal and simulate channel						
tt = 0:1/fs:S	SigDur; % tin	ne axis				
Sig = ones(si	. ze (tt)); % bas	eband-equivalent carrier				
Received = Simulat	eCOSTChannel(Si	g, ChannelParameters, fs);				

©2018, B.-P. Paris

ECE 732: Mobile Communications

rom Physical Propagation to Multi-Path Fading

Statistical Characterization of Channels

Testing SimulateCOSTChannel

Figure: Simulated Response to a Sinusoidal Signal; $f_d = 10$ Hz, baseband equivalent frequency f = 0.

©2018, B.-P. Paris

ECE 732: Mobile Communications

om Physical Propagation to Multi-Path Fadin

Statistical Characterization of Channels

Summary

- Highlighted unique aspects of mobile, wireless channels:
 - time-varying, multi-path channels.
- Statistical characterization of channels via
 - power-delay profile (RMS delay spread),
 - frequency coherence function (coherence bandwidth),
 - time coherence function (coherence time), and
 - Doppler spread function (Doppler spread).
- Relating channel parameters to system parameters:
 - signal bandwidth and coherence bandwidth,
 - frame duration and coherence time.
- Channel simulator in MATLAB.

©2018, B.-P. Paris

ECE 732: Mobile Communications

om Physical Propagation to Multi-Path Fading

Statistical Characterization of Channels

Where we are ...

- Having characterized the nature of mobile, wireless channels, we can now look for ways to overcome the detrimental effects of the channel.
 - The importance of diversity to overcome fading.
 - Sources of diversity:
 - Time,
 - Frequency,
 - Space.
- Equalizers for overcoming frequency-selective fading.
 - Equalizers also exploit frequency diversity.

©2018, B.-P. Paris

ECE 732: Mobile Communications