Elements of a Digital Communications System

Learning Objectives and Course Outline

Part I

Introduction
Elements of a Digital Communications System

Source: produces a sequence of information symbols b.
Transmitter: maps symbol sequence to analog signal $s(t)$.
Channel: models corruption of transmitted signal $s(t)$.
Receiver: produces reconstructed sequence of information symbols \hat{b} from observed signal $R(t)$.

The Source

- The source models the statistical properties of the digital information source.
- Three main parameters:
 - Source Alphabet: list of the possible information symbols the source produces.
 - Example: $\mathcal{A} = \{0, 1\}$; symbols are called bits.
 - Alphabet for a source with M (typically, a power of 2) symbols: e.g., $\mathcal{A} = \{\pm 1, \pm 3, \ldots, \pm (M - 1)\}$.
 - Alphabet with positive and negative symbols is often more convenient.
 - Symbols may be complex valued; e.g., $\mathcal{A} = \{\pm 1, \pm j\}$.
A priori Probability: relative frequencies with which the source produces each of the symbols.

- Example: a binary source that produces (on average) equal numbers of 0 and 1 bits has
 \(\pi_0 = \pi_1 = \frac{1}{2} \).
- Notation: \(\pi_n \) denotes the probability of observing the \(n \)-th symbol.
- Typically, a-priori probabilities are all equal, i.e., \(\pi_n = \frac{1}{M} \).
- A source with \(M \) symbols is called an \(M \)-ary source.
 - binary (\(M = 2 \))
 - quaternary (\(M = 4 \))

Symbol Rate: The number of information symbols the source produces per second. Also called the baud rate \(R \).

- Closely related: information rate \(R_b \) indicates the number of bits the source produces per second.
- Relationship: \(R_b = R \cdot \log_2(M) \).
- Also, \(T = 1 / R \) is the symbol period.

<table>
<thead>
<tr>
<th>Bit 1</th>
<th>Bit 2</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>-3</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Table: Example: How two bits can be represented in one quaternary symbol.
Remarks

- This view of the source is simplified.
- We have omitted important functionality normally found in the source, including
 - error correction coding and interleaving, and
 - Usually, a block that maps bits to symbols is broken out separately.
- This simplified view is sufficient for our initial discussions.
- Missing functionality will be revisited when needed.

The Transmitter

- The transmitter translates the information symbols at its input into signals that are “appropriate” for the channel, e.g.,
 - meet bandwidth requirements due to regulatory or propagation considerations,
 - provide good receiver performance in the face of channel impairments:
 - noise,
 - distortion (i.e., undesired linear filtering),
 - interference.
- A digital communication system transmits only a discrete set of information symbols.
 - Correspondingly, only a discrete set of possible signals is employed by the transmitter.
 - The transmitted signal is an analog (continuous-time, continuous amplitude) signal.
Illustrative Example

- The source produces symbols from the alphabet $\mathcal{A} = \{0, 1\}$.
- The transmitter uses the following rule to map symbols to signals:
 - If the n-th symbol is $b_n = 0$, then the transmitter sends the signal
 $$s_0(t) = \begin{cases} A & \text{for } (n-1)T \leq t < nT \\ 0 & \text{else.} \end{cases}$$
 - If the n-th symbol is $b_n = 1$, then the transmitter sends the signal
 $$s_1(t) = \begin{cases} A & \text{for } (n-1)T \leq t < (n-\frac{1}{2})T \\ -A & \text{for } (n-\frac{1}{2})T \leq t < nT \\ 0 & \text{else.} \end{cases}$$

Symbol Sequence $b = \{1, 0, 1, 1, 0, 0, 1, 0, 1, 0\}$
The Communications Channel

- The communications channel models the degradation the transmitted signal experiences on its way to the receiver.
- For wireless communications systems, we are concerned primarily with:
 - **Noise**: random signal added to received signal.
 - Mainly due to thermal noise from electronic components in the receiver.
 - Can also model interference from other emitters in the vicinity of the receiver.
 - Statistical model is used to describe noise.
 - **Distortion**: undesired filtering during propagation.
 - Mainly due to multi-path propagation.
 - Both deterministic and statistical models are appropriate depending on time-scale of interest.
 - Nature and dynamics of distortion is a key difference between wireless and wired systems.

Thermal Noise

- At temperatures above absolute zero, electrons move randomly in a conducting medium, including the electronic components in the front-end of a receiver.
- This leads to a random waveform.
 - The power of the random waveform equals $P_N = kT_0B$.
 - k: Boltzmann's constant (1.38 \cdot 10$^{-23}$ Ws/K).
 - T_0: temperature in degrees Kelvin (room temperature \approx 290 K).
 - For bandwidth equal to 1 Hz, $P_N \approx 4 \cdot 10^{-21}$ W (-174 dBm).
- Noise power is small, but power of received signal decreases rapidly with distance from transmitter.
 - Noise provides a fundamental limit to the range and/or rate at which communication is possible.
Multi-Path

- In a multi-path environment, the receiver sees the combination of multiple scaled and delayed versions of the transmitted signal.

Distortion from Multi-Path

- Received signal "looks" very different from transmitted signal.
- Inter-symbol interference (ISI).
- Multi-path is a very serious problem for wireless systems.
The Receiver

▶ The receiver is designed to reconstruct the original information sequence b.

▶ Towards this objective, the receiver uses
 ▶ the received signal $R(t)$,
 ▶ knowledge about how the transmitter works,
 ▶ Specifically, the receiver knows how symbols are mapped to signals.
 ▶ the a-priori probability and rate of the source.

▶ The transmitted signal typically contains information that allows the receiver to gain information about the channel, including
 ▶ training sequences to estimate the impulse response of the channel,
 ▶ synchronization preambles to determine symbol locations and adjust amplifier gains.

©2016, B.-P. Paris

Elements of a Digital Communications System

The Receiver

▶ The receiver input is an analog signal and its output is a sequence of discrete information symbols.
 ▶ Consequently, the receiver must perform analog-to-digital conversion (sampling).

▶ Correspondingly, the receiver can be divided into an analog front-end followed by digital processing.
 ▶ Many receivers have (relatively) simple front-ends and sophisticated digital processing stages.
 ▶ Digital processing is performed on standard digital hardware (from ASICs to general purpose processors).
 ▶ Moore's law can be relied on to boost the performance of digital communications systems.
Measures of Performance

- The receiver is expected to perform its function optimally.
- **Question:** optimal in what sense?
 - Measure of performance must be statistical in nature.
 - observed signal is random, and
 - transmitted symbol sequence is random.
 - Metric must reflect the reliability with which information is reconstructed at the receiver.
- **Objective:** Design the receiver that minimizes the probability of a symbol error.
 - Also referred to as **symbol error rate.**
 - Closely related to bit error rate (BER).

Learning Objectives

1. Understand the principles of digital information transmission.
 - baseband and passband transmission
 - relationship between data rate and bandwidth
2. Understand the mathematical foundations that lead to the design of optimal receivers in AWGN channels.
 - statistical hypothesis testing
 - signal spaces
3. Apply receiver design principles to communication systems with additional channel impairments
 - random amplitude or phase
 - linear distortion (e.g., multi-path)
Elements of a Digital Communications System

Course Outline

▶ Mathematical Prerequisites
 ▶ Basics of Gaussian Random Variables and Random Processes
 ▶ Signal space concepts
▶ Principles of Receiver Design
 ▶ Receiver frontend: the matched filter
 ▶ Optimal decision: statistical hypothesis testing
▶ Signal design and modulation
 ▶ Baseband and passband
 ▶ Linear modulation
 ▶ Bandwidth considerations
▶ Advanced topics
 ▶ Synchronization in time, frequency, phase
 ▶ Introduction to equalization

Part II

Mathematical Prerequisites
Gaussian Random Variables - Why we Care

- Gaussian random variables play a critical role in modeling many random phenomena.
 - By central limit theorem, Gaussian random variables arise from the superposition (sum) of many random phenomena.
 - Pertinent example: random movement of very many electrons in conducting material.
 - Result: thermal noise is well modeled as Gaussian.
 - Gaussian random variables are mathematically tractable.
 - In particular: any linear (more precisely, affine) transformation of Gaussians produces a Gaussian random variable.
- Noise added by channel is modeled as being Gaussian.
 - Channel noise is the most fundamental impairment in a communication system.

Gaussian Random Variables

- A random variable X is said to be Gaussian (or Normal) if its pdf is of the form
 \[
p_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left(-\frac{(x - m)^2}{2\sigma^2}\right).
 \]
- All properties of a Gaussian are determined by the two parameters m and σ^2.
- Notation: $X \sim \mathcal{N}(m, \sigma^2)$.
- Moments:
 \[
 E[X] = \int_{-\infty}^{\infty} x \cdot p_X(x) \, dx = m
 \]
 \[
 E[X^2] = \int_{-\infty}^{\infty} x^2 \cdot p_X(x) \, dx = m^2 + \sigma^2.
 \]
The Gaussian Error Integral - $Q(x)$

- We are often interested in $\Pr \{ X > x \}$ for Gaussian random variables X.
- These probabilities cannot be computed in closed form since the integral over the Gaussian pdf does not have a closed form expression.
- Instead, these probabilities are expressed in terms of the Gaussian error integral

$$Q(x) = \int_x^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} \, dz.$$

Example: Suppose $X \sim \mathcal{N}(1, 4)$, what is $\Pr \{ X > 5 \}$?

$$\Pr \{ X > 5 \} = \int_5^{\infty} \frac{1}{\sqrt{2\pi} \cdot 2} e^{-\frac{(x-1)^2}{2 \cdot 2^2}} \, dx \quad \text{substitute } z = \frac{x-1}{2}$$

$$= \int_2^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} \, dz = Q(2)$$
Exercises

Let $X \sim \mathcal{N}(-3, 4)$, find expressions in terms of $Q(\cdot)$ for the following probabilities:

1. $Pr \{X > 5\}$?
2. $Pr \{X < -1\}$?
3. $Pr \{X^2 + X > 2\}$?

Bounds for the Q-function

Since no closed form expression is available for $Q(x)$, bounds and approximations to the Q-function are of interest.

The following bounds are tight for large values of x:

$$\left(1 - \frac{1}{x^2}\right) \frac{e^{-\frac{x^2}{2}}}{x \sqrt{2\pi}} \leq Q(x) \leq \frac{e^{-\frac{x^2}{2}}}{x \sqrt{2\pi}}.$$

The following bound is not as quite as tight but very useful for analysis

$$Q(x) \leq \frac{1}{2} e^{-\frac{x^2}{2}}.$$

Note that all three bounds are dominated by the term $e^{-\frac{x^2}{2}}$; this term determines the asymptotic behaviour of $Q(x)$.

©2016, B.-P. Paris

ECE 201: Intro to Signal Analysis
Gaussian Random Vectors

▶ A length N random vector \mathbf{X} is said to be Gaussian if its pdf is given by

$$p_{\mathbf{X}}(\mathbf{x}) = \frac{1}{(2\pi)^{N/2} |K|^{1/2}} \exp \left(-\frac{1}{2} (\mathbf{x} - \mathbf{m})^T K^{-1} (\mathbf{x} - \mathbf{m}) \right).$$

▶ **Notation:** $\mathbf{X} \sim \mathcal{N}(\mathbf{m}, K)$.
▶ Mean vector

$$\mathbf{m} = \mathbf{E}[\mathbf{X}] = \int_{-\infty}^{\infty} \mathbf{x} p_{\mathbf{X}}(\mathbf{x}) \, d\mathbf{x}.$$

▶ Covariance matrix

$$K = \mathbf{E}[(\mathbf{X} - \mathbf{m})(\mathbf{X} - \mathbf{m})^T] = \int_{-\infty}^{\infty} (\mathbf{x} - \mathbf{m})(\mathbf{x} - \mathbf{m})^T p_{\mathbf{X}}(\mathbf{x}) \, d\mathbf{x}.$$

▶ $|K|$ denotes the determinant of K.
▶ K must be positive definite, i.e., $\mathbf{z}^T K \mathbf{z} > 0$ for all \mathbf{z}.

©2016, B.-P. Paris
ECE 201: Intro to Signal Analysis
28
Exercise: Important Special Case: N=2

▶ Consider a length-2 Gaussian random vector with

\[\bar{m} = \bar{0} \text{ and } K = \sigma^2 \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix} . \]

▶ Find the pdf of \(\vec{X} \).

▶ Answer:

\[p_{\vec{X}}(\vec{x}) = \frac{1}{2\pi\sigma^2 \sqrt{1 - \rho^2}} \exp \left(\frac{x_1^2 - 2\rho x_1 x_2 + x_2^2}{2\sigma^2 (1 - \rho^2)} \right) \]

Important Properties of Gaussian Random Vectors

1. If the \(N \) Gaussian random variables \(X_i \) comprising the random vector \(\vec{X} \) are uncorrelated (Cov\([X_i, X_j] = 0, \) for \(i \neq j \)), then they are statistically independent.

2. Any affine transformation of a Gaussian random vector is also a Gaussian random vector.
 ▶ Let \(\vec{X} \sim \mathcal{N}(\bar{m}, K) \)
 ▶ Affine transformation: \(\vec{Y} = A\vec{X} + \bar{b} \)
 ▶ Then, \(\vec{Y} \sim \mathcal{N}(A\bar{m} + \bar{b}, AKAT) \)
Exercise: Generating Correlated Gaussian Random Variables

- Let \(\vec{X} \sim \mathcal{N}(\vec{m}, \mathbf{K}) \), with
 \[
 \vec{m} = \vec{0} \quad \text{and} \quad \mathbf{K} = \sigma^2 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.
 \]

 - The elements of \(\vec{X} \) are uncorrelated.
 - Transform \(\vec{Y} = A\vec{X} \), with
 \[
 A = \begin{pmatrix} \sqrt{1 - \rho^2} & \rho \\ 0 & 1 \end{pmatrix}
 \]
 - Find the pdf of \(\vec{Y} \).

Random Processes – Why we Care

- Random processes describe signals that change randomly over time.
 - Compare: deterministic signals can be described by a mathematical expression that describes the signal exactly for all time.
 - Example: \(x(t) = 3 \cos(2\pi f_c t + \pi/4) \) with \(f_c = 1 \text{GHz} \).
 - We will encounter three types of random processes in communication systems:
 1. (nearly) deterministic signal with a random parameter – Example: sinusoid with random phase.
 2. signals constructed from a sequence of random variables – Example: digitally modulated signals with random symbols
 3. noise-like signals
 - **Objective:** Develop a framework to describe and analyze random signals encountered in the receiver of a communication system.
Random Process - Formal Definition

- Random processes can be defined completely analogous to random variables over a probability triple space (Ω, \mathcal{F}, P).
- **Definition:** A random process is a mapping from each element ω of the sample space Ω to a function of time (i.e., a signal).
- Notation: $X_t(\omega)$ - we will frequently omit ω to simplify notation.
- Observations:
 - We will be interested in both real and complex valued random processes.
 - Note, for a given random outcome ω_0, $X_t(\omega_0)$ is a deterministic signal.
 - Note, for a fixed time t_0, $X_{t_0}(\omega)$ is a random variable.

Sample Functions and Ensemble

- For a given random outcome ω_0, $X_t(\omega_0)$ is a deterministic signal.
 - Each signal that that can be produced by a our random process is called a sample function of the random process.
 - The collection of all sample functions of a random process is called the ensemble of the process.
- **Example:** Let $\Theta(\omega)$ be a random variable with four equally likely, possible values $\Omega = \{0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}\}$. Define the random process $X_t(\omega) = \cos(2\pi f_0 t + \Theta(\omega))$. The ensemble of this random process consists of the four sample functions:

\[
\begin{align*}
X_t(\omega_1) &= \cos(2\pi f_0 t) & X_t(\omega_2) &= -\sin(2\pi f_0 t) \\
X_t(\omega_3) &= -\cos(2\pi f_0 t) & X_t(\omega_4) &= \sin(2\pi f_0 t)
\end{align*}
\]
Probability Distribution of a Random Process

- For a given time instant t, $X_t(\omega)$ is a random variable.
- Since it is a random variable, it has a pdf (or pmf in the discrete case).
 - We denote this pdf as $p_{X_t}(x)$.
- The statistical properties of a random process are specified completely if the joint pdf
 \[p_{X_{t_1}, \ldots, X_{t_n}}(x_1, \ldots, x_n) \]
is available for all n and t_i, $i = 1, \ldots, n$.
 - This much information is often not available.
 - Joint pdfs with many sampling instances can be cumbersome.
 - We will shortly see a more concise summary of the statistics for a random process.

Random Process with Random Parameters

- A deterministic signal that depends on a random parameter is a random process.
 - Note, the sample functions of such random processes do not “look” random.
- Running Examples:
 - **Example (discrete phase):** Let \(\Theta(\omega) \) be a random variable with four equally likely, possible values \(\Omega = \{0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}\} \). Define the random process \(X_t(\omega) = \cos(2\pi f_0 t + \Theta(\omega)) \).
 - **Example (continuous phase):** same as above but phase \(\Theta(\omega) \) is uniformly distributed between 0 and \(2\pi \), \(\Theta(\omega) \sim U[0, 2\pi] \).
 - For both of these processes, the complete statistical description of the random process can be found.
Exercise: Discrete Phase Process

- **Discrete Phase Process:** Let $\Theta(\omega)$ be a random variable with four equally likely, possible values $\Omega = \{0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}\}$. Define the random process $X_t(\omega) = \cos(2\pi f_0 t + \Theta(\omega))$.
- Find the first-order density $p_{X_t}(x)$ for this process.
- Find the second-order density $p_{X_t X_t}(x_1, x_2)$ for this process.
 - Note, since the phase values are discrete the above pdfs must be expressed with the help of δ-functions.
 - Alternatively, one can derive a probability mass function.

Answer: Discrete Phase Process

- First-order density function:

 $$p_{X_t}(x) = \frac{1}{4} \left(\delta(x - \cos(2\pi f_0 t)) + \delta(x + \sin(2\pi f_0 t)) + \right. \\
 \left. \delta(x + \cos(2\pi f_0 t)) + \delta(x - \sin(2\pi f_0 t)) \right)$$

- Second-order density function:

 $$p_{X_t X_t}(x_1, x_2) = \frac{1}{4} \left(\delta(x_1 - \cos(2\pi f_0 t_1)) \cdot \delta(x_2 - \cos(2\pi f_0 t_2)) + \\
 \delta(x_1 + \sin(2\pi f_0 t_1)) \cdot \delta(x_2 + \sin(2\pi f_0 t_2)) + \\
 \delta(x_1 + \cos(2\pi f_0 t_1)) \cdot \delta(x_2 + \cos(2\pi f_0 t_2)) + \\
 \delta(x_1 - \sin(2\pi f_0 t_1)) \cdot \delta(x_2 - \sin(2\pi f_0 t_2)) \right)$$
Exercise: Continuous Phase Process

- **Continuous Phase Process**: Let $\Theta(\omega)$ be a random variable that is uniformly distributed between 0 and 2π, $\Theta(\omega) \sim [0, 2\pi)$. Define the random process $X_t(\omega) = \cos(2\pi f_0 t + \Theta(\omega))$.
- Find the first-order density $p_{X_t}(x)$ for this process.
- Find the second-order density $p_{X_t X_{t'}}(x_1, x_2)$ for this process.

Answer: Continuous Phase Process

- First-order density:

 $$p_{X_t}(x) = \frac{1}{\pi \sqrt{1 - x^2}} \quad \text{for } |x| \leq 1.$$

 Notice that $p_{X_t}(x)$ does **not** depend on t.

- Second-order density:

 $$p_{X_t X_{t'}}(x_1, x_2) = \frac{1}{\pi \sqrt{1 - x_2^2}} \cdot \frac{1}{2} \cdot \delta(x_1 - \cos(2\pi f_0 (t_1 - t_2) + \arccos(x_2))) +$$

 $$\delta(x_1 - \cos(2\pi f_0 (t_1 - t_2) - \arccos(x_2))))$$
Random Processes Constructed from Sequence of Random Experiments

- Model for digitally modulated signals.
- Example:
 - Let $X_k(\omega)$ denote the outcome of the k-th toss of a coin:
 \[
 X_k(\omega) = \begin{cases}
 1 & \text{if heads on } k\text{-th toss} \\
 -1 & \text{if tails on } k\text{-th toss.}
 \end{cases}
 \]
 - Let $p(t)$ denote a pulse of duration T, e.g.,
 \[
 p(t) = \begin{cases}
 1 & \text{for } 0 \leq t \leq T \\
 0 & \text{else.}
 \end{cases}
 \]
 - Define the random process X_t
 \[
 X_t(\omega) = \sum_k X_k(\omega)p(t - nT)
 \]

First Order Density

- Assume that heads and tails are equally likely.
- Then the first-order density for the above random process is
 \[
 p_{X_t}(x) = \frac{1}{2}(\delta(x - 1) + \delta(x + 1)).
 \]
- The second-order density is:
 \[
 p_{X_{t_1}X_{t_2}}(x_1, x_2) = \begin{cases}
 \delta(x_1 - x_2)p_{X_{t_1}}(x_1) & \text{if } nT \leq t_1, t_2 \leq (n + 1)T \\
 p_{X_{t_1}}(x_1)p_{X_{t_2}}(x_2) & \text{else.}
 \end{cases}
 \]
- These expression become more complicated when $p(t)$ is not a rectangular pulse.
Probability Density of Random Processes Defined Directly

- Sometimes the n-th order probability distribution of the random process is given.
 - Most important example: Gaussian Random Process
 - Statistical model for noise.
 - Definition: The random process X_t is Gaussian if the vector \vec{X} of samples taken at times t_1, \cdots, t_n

 $$
 \vec{X} = \begin{pmatrix}
 X_{t_1} \\
 \vdots \\
 X_{t_n}
 \end{pmatrix}
 $$

 is a Gaussian random vector for all t_1, \cdots, t_n.

Second Order Description of Random Processes

- Characterization of random processes in terms of n-th order densities is
 - frequently not available
 - mathematically cumbersome
- A more tractable, practical alternative description is provided by the second order description for a random process.
 - Definition: The second order description of a random process consists of the
 - mean function and the
 - autocorrelation function of the process.
 - Note, the second order description can be computed from the (second-order) joint density.
 - The converse is not true - at a minimum the distribution must be specified (e.g., Gaussian).
Mean and Autocorrelation Functions

- The second order description of a process relies on the mean and autocorrelation functions – these are defined as follows

 - **Definition:** The mean of a random process is defined as:
 \[
 E[X_t] = m_X(t) = \int_{-\infty}^{\infty} x \cdot p_X(x) \, dx
 \]
 - Note, that the mean of a random process is a deterministic signal.
 - The mean is computed from the first order density function.

 - **Definition:** The autocorrelation function of a random process is defined as:
 \[
 R_X(t, u) = E[X_tX_u] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy \cdot p_{X_t, X_u}(x, y) \, dx \, dy
 \]
 - Autocorrelation is computed from second order density

Autocovariance Function

- Closely related: autocovariance function:
 \[
 C_X(t, u) = E[(X_t - m_X(t))(X_u - m_X(u))] = R_X(t, u) - m_X(t)m_X(u)
 \]
Exercise: Discrete Phase Example

- Find the second-order description for the discrete phase random process.
 - **Discrete Phase Process**: Let $\Theta(\omega)$ be a random variable with four equally likely, possible values $\Omega = \{0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}\}$. Define the random process $X_t(\omega) = \cos(2\pi f_0 t + \Theta(\omega))$.

- **Answer**:
 - Mean: $m_X(t) = 0$.
 - Autocorrelation function:
 $$R_X(t, u) = \frac{1}{2} \cos(2\pi f_0 (t - u)).$$

Exercise: Continuous Phase Example

- Find the second-order description for the continuous phase random process.
 - **Continuous Phase Process**: Let $\Theta(\omega)$ be a random variable that is uniformly distributed between 0 and 2π, $\Theta(\omega) \sim [0, 2\pi)$. Define the random process $X_t(\omega) = \cos(2\pi f_0 t + \Theta(\omega))$.

- **Answer**:
 - Mean: $m_X(t) = 0$.
 - Autocorrelation function:
 $$R_X(t, u) = \frac{1}{2} \cos(2\pi f_0 (t - u)).$$
Properties of the Autocorrelation Function

The autocorrelation function of a (real-valued) random process satisfies the following properties:

1. \(R_X(t, t) \geq 0 \)
2. \(R_X(t, u) = R_X(u, t) \) (symmetry)
3. \(|R_X(t, u)| \leq \frac{1}{2} (R_X(t, t) + R_X(u, u)) \)
4. \(|R_X(t, u)|^2 \leq R_X(t, t) \cdot R_X(u, u) \)

Stationarity

The concept of stationarity is analogous to the idea of time-invariance in linear systems.

Interpretation: For a stationary random process, the statistical properties of the process do not change with time.

Definition: A random process \(X_t \) is strict-sense stationary (sss) to the \(n \)-th order if:

\[
p_{X_{t_1}, \ldots, X_{t_n}}(x_1, \ldots, x_n) = p_{X_{t_1+T}, \ldots, X_{t_n+T}}(x_1, \ldots, x_n)
\]

for all \(T \).

The statistics of \(X_t \) do not depend on absolute time but only on the time differences between the sample times.
Wide-Sense Stationarity

▶ A simpler and more tractable notion of stationarity is based on the second-order description of a process.

▶ **Definition:** A random process X_t is **wide-sense stationary (wss)** if

1. the mean function $m_X(t)$ is constant **and**
2. the autocorrelation function $R_X(t, u)$ depends on t and u only through $t - u$, i.e., $R_X(t, u) = R_X(t - u)$

▶ **Notation:** for a wss random process, we write the autocorrelation function in terms of the single time-parameter $\tau = t - u$:

$$R_X(t, u) = R_X(t - u) = R_X(\tau).$$

Exercise: Stationarity

▶ **True or False:** Every random process that is strict-sense stationarity to the second order is also wide-sense stationary.

▶ **Answer:** True

▶ **True or False:** Every random process that is wide-sense stationary must be strict-sense stationarity to the second order.

▶ **Answer:** False

▶ **True or False:** The discrete phase process is strict-sense stationary.

▶ **Answer:** False; first order density depends on t, therefore, not even first-order sss.

▶ **True or False:** The discrete phase process is wide-sense stationary.

▶ **Answer:** True
White Gaussian Noise

- **Definition:** A (real-valued) random process X_t is called **white Gaussian Noise** if
 - X_t is Gaussian for each time instance t
 - Mean: $m_X(t) = 0$ for all t
 - Autocorrelation function: $R_X(\tau) = \frac{N_0}{2} \delta(\tau)$
 - White Gaussian noise is a good model for noise in communication systems.
 - Note, that the variance of X_t is infinite:
 $$\text{Var}(X_t) = \mathbb{E}[X_t^2] = R_X(0) = \frac{N_0}{2} \delta(0) = \infty.$$
 - Also, for $t \neq u$: $\mathbb{E}[X_t X_u] = R_X(t, u) = R_X(t-u) = 0$.

Integrals of Random Processes

- We will see, that receivers always include a linear, time-invariant system, i.e., a filter.
- Linear, time-invariant systems *convolve* the input random process with the impulse response of the filter.
 - Convolution is fundamentally an integration.
- We will establish conditions that ensure that an expression like
 $$Z(\omega) = \int_{a}^{b} X_t(\omega) h(t) \, dt$$
 is “well-behaved”.
 - The result of the (definite) integral is a random variable.
- **Concern:** Does the above integral *converge*?
Mean Square Convergence

▶ There are different senses in which a sequence of random variables may converge: almost surely, in probability, mean square, and in distribution.

▶ We will focus exclusively on mean square convergence.

▶ For our integral, mean square convergence means that the Riemann and the random variable Z satisfy:

Given $\epsilon > 0$, there exists a $\delta > 0$ so that

$$E[(\sum_{k=1}^{n} X_{\tau_k} h(\tau_k)(t_k - t_{k-1}) - Z)^2] \leq \epsilon.$$

with:

▶ $a = t_0 < t_1 < \ldots < t_n = b$
▶ $t_{k-1} \leq \tau_k \leq t_k$
▶ $\delta = \max_k (t_k - t_{k-1})$

Mean Square Convergence - Why We Care

▶ It can be shown that the integral converges if

$$\int_a^b \int_a^b R_X(t, u) h(t) h(u) \, dt \, du < \infty$$

▶ Important: When the integral converges, then the order of integration and expectation can be interchanged, e.g.,

$$E[Z] = E[\int_a^b X_t h(t) \, dt] = \int_a^b E[X_t] h(t) \, dt = \int_a^b m_X(t) h(t) \, dt$$

▶ Throughout this class, we will focus exclusively on cases where $R_X(t, u)$ and $h(t)$ are such that our integrals converge.
Exercise: Brownian Motion

▶ **Definition:** Let N_t be white Gaussian noise with $\frac{N_0}{2} = \sigma^2$. The random process

$$ W_t = \int_0^t N_s \, ds \quad \text{for } t \geq 0 $$

is called Brownian Motion or Wiener Process.

▶ Compute the mean and autocorrelation functions of W_t.
▶ **Answer:** $m_W(t) = 0$ and $R_W(t, u) = \sigma^2 \min(t, u)$
Jointly Defined Random Processes

Let X_t and Y_t be jointly defined random processes.
- E.g., input and output of a filter.
- Then, joint densities of the form $p_{X_tY_u}(x, y)$ can be defined.
- Additionally, second order descriptions that describe the correlation between samples of X_t and Y_t can be defined.

Crosscorrelation and Crosscovariance

Definition: The crosscorrelation function $R_{XY}(t, u)$ is defined as:

$$R_{XY}(t, u) = E[X_tY_u] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy p_{X_tY_u}(x, y) \, dx \, dy.$$

Definition: The crosscovariance function $C_{XY}(t, u)$ is defined as:

$$C_{XY}(t, u) = R_{XY}(t, u) - m_X(t)m_Y(u).$$

Definition: The processes X_t and Y_t are called jointly wide-sense stationary if:
1. $R_{XY}(t, u) = R_{XY}(t-u)$ and
2. $m_X(t)$ and $m_Y(t)$ are constants.
Filtering of Random Processes

Clearly, \(X_t \) and \(Y_t \) are jointly defined random processes.

Standard LTI system – convolution:

\[
Y_t = \int h(t - \tau) X_\tau \, d\tau = h(t) * X_t
\]

Recall: this convolution is “well-behaved” if

\[
\int \int R_X(\tau, \nu) h(t - \tau) h(t - \nu) \, d\tau \, d\nu < \infty
\]

E.g.: \(\int \int R_X(\tau, \nu) \, d\tau \, d\nu < \infty \) and \(h(t) \) stable.

Second Order Description of Output: Mean

The expected value of the filter’s output \(Y_t \) is:

\[
E[Y_t] = E[\int h(t - \tau) X_\tau \, d\tau]
\]

\[
= \int h(t - \tau) E[X_\tau] \, d\tau
\]

\[
= \int h(t - \tau) m_X(\tau) \, d\tau
\]

For a wss process \(X_t \), \(m_X(t) \) is constant. Therefore,

\[
E[Y_t] = m_Y(t) = m_X \int h(\tau) \, d\tau
\]

is also constant.
Crosscorrelation of Input and Output

- The crosscorrelation between input and output signals is:
 \[R_{XY}(t, u) = E[X_t Y_u] = E[X_t \int h(u - \tau) X_\tau \, d\tau] \]
 \[= \int h(u - \tau) E[X_t X_\tau] \, d\tau \]
 \[= \int h(u - \tau) R_X(t, \tau) \, d\tau \]

- For a wss input process:
 \[R_{XY}(t, u) = \int h(u - \tau) R_X(t, \tau) \, d\tau = \int h(v) R_X(t, u - v) \, dv \]
 \[= \int h(v) R_X(t - u + v) \, dv = R_{XY}(t - u) \]

- Input and output are jointly stationary.

Autocorrelation of Output

- The autocorrelation of \(Y_t \) is given by
 \[R_Y(t, u) = E[Y_t Y_u] = E[\int h(t - \tau) X_\tau \, d\tau \int h(u - \nu) X_\nu \, d\nu] \]
 \[= \int \int h(t - \tau) h(u - \nu) R_X(\tau, \nu) \, d\tau \, d\nu \]

- For a wss input process:
 \[R_Y(t, u) = \int \int h(t - \tau) h(u - \nu) R_X(\tau, \nu) \, d\tau \, d\nu \]
 \[= \int \int h(\lambda) h(\lambda - \gamma) R_X(t - \lambda, u - \lambda + \gamma) \, d\lambda \, d\gamma \]
 \[= \int \int h(\lambda) h(\lambda - \gamma) R_X(t - u - \gamma) \, d\lambda \, d\gamma = R_Y(t - u) \]

- Define \(R_h(\gamma) = \int h(\lambda) h(\lambda - \gamma) \, d\lambda = h(\lambda) * h(-\lambda) \).
- Then, \(R_Y(\tau) = \int R_h(\gamma) R_X(\tau - \gamma) \, d\gamma = R_h(\tau) * R_X(\tau) \)
Exercise: Filtered White Noise Process

Let the white Gaussian noise process X_t be input to a filter with impulse response

$$h(t) = e^{-at} u(t) = \begin{cases} e^{-at} & \text{for } t \geq 0 \\ 0 & \text{for } t < 0 \end{cases}$$

Compute the second order description of the output process Y_t.

Answers:

- Mean: $m_Y = 0$
- Autocorrelation:

$$R_Y(\tau) = N_0 \frac{e^{-a|\tau|}}{2a}$$

Power Spectral Density — Concept

Power Spectral Density (PSD) measures how the power of a random process is distributed over frequency.

- Notation: $S_X(f)$
- Units: Watts per Hertz (W/Hz)

Thought experiment:

- Pass random process X_t through a narrow bandpass filter:
 - center frequency f
 - bandwidth Δf
 - denote filter output as Y_t
- Measure the power P at the output of bandpass filter:

$$P = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} |Y_t|^2 \, dt$$

Relationship between power and (PSD)

$$P \approx S_X(f) \cdot \Delta f.$$
Relation to Autocorrelation Function

- For a wss random process, the power spectral density is closely related to the autocorrelation function $R_X(\tau)$.
- **Definition:** For a random process X_t with autocorrelation function $R_X(t)$, the power spectral density $S_X(f)$ is defined as the Fourier transform of the autocorrelation function,

$$S_X(f) = \int_{-\infty}^{\infty} R_X(\tau) e^{-j2\pi f \tau} d\tau.$$

- For non-stationary processes, it is possible to define a spectral representation of the process.
- However, the spectral contents of a non-stationary process will be time-varying.
- **Example:** If N_t is white noise, i.e., $R_N(\tau) = \frac{N_0}{2}\delta(\tau)$, then

$$S_X(f) = \frac{N_0}{2} \text{ for all } f$$

Properties of the PSD

- **Inverse Transform:**

$$R_X(\tau) = \int_{-\infty}^{\infty} S_X(f) e^{-j2\pi f \tau} df.$$

- The total power of the process is

$$E[|X_t|^2] = R_X(0) = \int_{-\infty}^{\infty} S_X(f) df.$$

- $S_X(f)$ is even and non-negative.
 - Evenness of $S_X(f)$ follows from evenness of $R_X(\tau)$.
 - Non-negativeness is a consequence of the autocorrelation function being positive definite

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(t)f^*(u)R_X(t, u) dt du \geq 0$$

for all choices of $f(\cdot)$.
Filtering of Random Processes

- Random process X_t with autocorrelation $R_X(\tau)$ and PSD $S_X(f)$ is input to LTI filter with impulse response $h(t)$ and frequency response $H(f)$.
- The PSD of the output process Y_t is
 $$S_Y(f) = |H(f)|^2 S_X(f).$$
- Recall that $R_Y(\tau) = R_X(\tau) \ast C_h(\tau)$,
- where $C_h(\tau) = h(\tau) \ast h(-\tau)$.
- In frequency domain: $S_Y(f) = S_X(f) \cdot \mathcal{F}\{C_h(\tau)\}$
- With
 $$\mathcal{F}\{C_h(\tau)\} = \mathcal{F}\{h(\tau) \ast h(-\tau)\}$$
 $$= \mathcal{F}\{h(\tau)\} \cdot \mathcal{F}\{h(-\tau)\}$$
 $$= H(f) \cdot H^*(f) = |H(f)|^2.$$

Exercise: Filtered White Noise

- Let N_t be a white noise process that is input to the above circuit. Find the power spectral density of the output process.
- Answer:
 $$S_Y(f) = \left| \frac{1}{1 + j2\pi fRC} \right|^2 \frac{N_0}{2}.$$
Signal Space Concepts – Why we Care

- **Signal Space Concepts** are a powerful tool for the analysis of communication systems and for the design of optimum receivers.

- **Key Concepts:**
 - Orthonormal basis functions – tailored to signals of interest – span the signal space.
 - **Representation theorem:** allows any signal to be represented as a (usually finite dimensional) vector
 - Signals are interpreted as points in signal space.
 - For random processes, representation theorem leads to random signals being described by random vectors with uncorrelated components.
 - **Theorem of Irrelavance** allows us to disregard nearly all components of noise in the receiver.
 - We will briefly review key ideas that provide underpinning for signal spaces.

Linear Vector Spaces

- The basic structure needed by our signal spaces is the idea of linear vector space.

- **Definition:** A **linear vector space** \mathcal{S} is a collection of elements (vectors) with the following properties:
 - Addition of vectors is defined and satisfies the following conditions for any $x, y, z \in \mathcal{S}$:
 1. $x + y \in \mathcal{S}$ (closed under addition)
 2. $x + y = y + x$ (commutative)
 3. $(x + y) + z = x + (y + z)$ (associative)
 4. The zero vector $\vec{0}$ exists and $\vec{0} \in \mathcal{S}$. $x + \vec{0} = x$ for all $x \in \mathcal{S}$.
 5. For each $x \in \mathcal{S}$, a unique vector ($-x$) is also in \mathcal{S} and $x + (-x) = \vec{0}$.
Linear Vector Spaces - continued

Definition - continued:
- Associated with the set of vectors in \(S \) is a set of scalars. If \(a, b \) are scalars, then for any \(x, y \in S \) the following properties hold:
 1. \(a \cdot x \) is defined and \(a \cdot x \in S \).
 2. \(a \cdot (b \cdot x) = (a \cdot b) \cdot x \)
 3. Let 1 and 0 denote the multiplicative and additive identities of the field of scalars, then \(1 \cdot x = x \) and \(0 \cdot x = \vec{0} \) for all \(x \in S \).
 4. Associate properties:
 \[
 a \cdot (x + y) = a \cdot x + a \cdot y
 \]
 \[
 (a + b) \cdot x = a \cdot x + b \cdot y
 \]

Running Examples
- The space of length-\(N \) vectors \(\mathbb{R}^N \)
 \[
 \begin{pmatrix}
 x_1 \\
 \vdots \\
 x_N
 \end{pmatrix} + \begin{pmatrix}
 y_1 \\
 \vdots \\
 y_N
 \end{pmatrix} = \begin{pmatrix}
 x_1 + y_1 \\
 \vdots \\
 x_N + y_N
 \end{pmatrix}
 \]
 and
 \[
 a \cdot \begin{pmatrix}
 x_1 \\
 \vdots \\
 x_N
 \end{pmatrix} = \begin{pmatrix}
 a \cdot x_1 \\
 \vdots \\
 a \cdot x_N
 \end{pmatrix}
 \]
- The collection of all square-integrable signals over \([T_a, T_b]\), i.e., all signals \(x(t) \) satisfying
 \[
 \int_{T_a}^{T_b} |x(t)|^2 \, dt < \infty.
 \]
 Verifying that this is a linear vector space is easy.
 This space is called \(L^2(T_a, T_b) \) (pronounced: ell-two).
Subspaces

- **Definition:** Let S be a linear vector space. The space L is a **subspace** of S if
 1. L is a subset of S and
 2. L is closed.
- **Example:** Let S be $L^2(T_a, T_b)$. Define L as the set of all sinusoids of frequency f_0, i.e., signals of the form $x(t) = A \cos(2\pi f_0 t + \phi)$, with $0 \leq A < \infty$ and $0 \leq \phi < 2\pi$
 1. All such sinusoids are square integrable.
 2. Linear combination of two sinusoids of frequency f_0 is a sinusoid of the same frequency.

Inner Product

- To be truly useful, we need linear vector spaces to provide
 - means to measure the length of vectors and
 - to measure the distance between vectors.
- Both of these can be achieved with the help of **inner products**.
- **Definition:** The **inner product** of two vectors $x, y \in S$ is denoted by $\langle x, y \rangle$. The inner product is a scalar assigned to x and y so that the following conditions are satisfied:
 1. $\langle x, y \rangle = \langle y, x \rangle$
 2. $\langle a \cdot x, y \rangle = a \cdot \langle x, y \rangle$, with scalar a
 3. $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$, with vector z
 4. $\langle x, x \rangle > 0$, except when $x = \vec{0}$; then, $\langle x, x \rangle = 0$.

Exercise: Valid Inner Products?

- \(x, y \in \mathbb{R}^N \) with
 \[
 \langle x, y \rangle = \sum_{n=1}^{N} x_n y_n
 \]

 - **Answer:** Yes; this is the standard *dot product*.

- \(x, y \in \mathbb{R}^N \) with
 \[
 \langle x, y \rangle = \sum_{n=1}^{N} x_n \cdot \sum_{n=1}^{N} y_n
 \]

 - **Answer:** No; last condition does not hold, which makes this inner product useless for measuring distances.

- \(x(t), y(t) \in L^2(a, b) \) with
 \[
 \langle x(t), y(t) \rangle = \int_{a}^{b} x(t)y(t) \, dt
 \]

 - **Answer:** Yes; this is the continuous-time equivalent of the

Exercise: Valid Inner Products?

- \(x, y \in \mathbb{C}^N \) with
 \[
 \langle x, y \rangle = \sum_{n=1}^{N} x_n y_n^\ast
 \]

 - **Answer:** Yes; the conjugate complex is critical to meet the last condition (e.g., \(\langle j, j \rangle = -1 < 0 \)).

- \(x, y \in \mathbb{R}^N \) with
 \[
 \langle x, y \rangle = x^T K y = \sum_{n=1}^{N} \sum_{m=1}^{N} x_n K_{n,m} y_m
 \]

 with \(K \) an \(N \times N \)-matrix

 - **Answer:** Only if \(K \) is positive definite (i.e., \(x^T K x > 0 \) for all \(x \neq 0 \)).
Norm of a Vector

Definition: The norm of vector \(x \in S \) is denoted by \(\| x \| \) and is defined via the inner product as

\[
\| x \| = \sqrt{\langle x, x \rangle}.
\]

- Notice that \(\| x \| > 0 \) unless \(x = \vec{0} \), then \(\| x \| = 0 \).
- The norm of a vector measures the length of a vector.
- For signals \(\| x(t) \|^2 \) measures the *energy* of the signal.

Example: For \(x \in \mathbb{R}^N \), Cartesian length of a vector

\[
\| x \| = \sqrt{\sum_{n=1}^{N} |x_n|^2}
\]

Illustration:

\[
\| a \cdot x \| = \sqrt{\langle a \cdot x, a \cdot x \rangle} = a \| x \|
\]

Inner Product Space

- We call a linear vector space with an associated, valid inner product an inner product space.

Definition: An inner product space is a linear vector space in which a inner product is defined for all elements of the space and the norm is given by \(\| x \| = \langle x, x \rangle \).

Standard Examples:
1. \(\mathbb{R}^N \) with \(\langle x, y \rangle = \sum_{n=1}^{N} x_n y_n \).
2. \(L^2(a, b) \) with \(\langle x(t), y(t) \rangle = \int_{a}^{b} x(t) y(t) \, dt \).
Schwartz Inequality

▶ The following relationship between norms and inner products holds for all inner product spaces.

▶ **Schwartz Inequality:** For any \(x, y \in S \), where \(S \) is an inner product space,

\[
|\langle x, y \rangle| \leq \|x\| \cdot \|y\|
\]

with equality if and only if \(x = c \cdot y \) with scalar \(c \).

▶ Proof follows from \(\|x + a \cdot y\|^2 \geq 0 \) with \(a = -\langle x, y \rangle \frac{1}{\|y\|^2} \).

Orthogonality

▶ **Definition:** Two vectors are **orthogonal** if the inner product of the vectors is zero, i.e.,

\[
\langle x, y \rangle = 0.
\]

▶ **Example:** The standard basis vectors \(e_m \) in \(\mathbb{R}^N \) are orthogonal; recall

\[
e_m = \begin{pmatrix} 0 \\ \vdots \\ 1 \ldots 0 \end{pmatrix} \quad \text{the 1 occurs on the } m\text{-th row}
\]

▶ The basis functions for the Fourier Series expansion \(w_m(t) \) in \(L^2(0, T) \) are orthogonal; recall

\[
w_m(t) = \frac{1}{T} e^{j2\pi mt/T}.
\]
Distance between Vectors

- **Definition:** The distance d between two vectors is defined as the norm of their difference, i.e.,
 $$d(x, y) = \|x - y\|$$

- **Example:** The Cartesian (or Euclidean) distance between vectors in \mathbb{R}^N:
 $$d(x, y) = \|x - y\| = \sqrt{\sum_{n=1}^{N} |x_n - y_n|^2}.$$

- **Example:** The root-mean-squared error (RMSE) between two signals in $L^2(a, b)$ is
 $$d(x(t), y(t)) = \|x(t) - y(t)\| = \sqrt{\int_{a}^{b} |x(t) - y(t)|^2 dt}$$

Properties of Distances

- Distance measures defined by the norm of the difference between vectors x, y have the following properties:
 1. $d(x, y) = d(y, x)$
 2. $d(x, y) = 0$ if and only if $x = y$
 3. $d(x, y) \leq d(x, z) + d(y, z)$ for all vectors z (Triangle inequality)
Exercise: Prove the Triangle Inequality

Begin like this:

\[d^2(x, y) = \|x - y\|^2 \]
\[= \|(x - z) + (z - y)\|^2 \]
\[= (\langle x - z, z - y \rangle, (x - z) + (z - y)) \]

\[d^2(x, y) = \langle x - z, x - z \rangle + 2\langle x - z, z - y \rangle + \langle z - y, z - y \rangle \]
\[\leq \langle x - z, x - z \rangle + 2|\langle x - z, z - y \rangle| + |\langle z - y, z - y \rangle| \]
\[\leq (x - z, x - z) + 2\|x - z\| \cdot \|z - y\| + \langle z - y, z - y \rangle (Schwartz) \]
\[= (d(x, z) + (d(y, z))|^2 \]

Hilbert Spaces – Why we Care

We would like our vector spaces to have one more property.

- We say the sequence of vectors \(\{x_n\} \) converges to vector \(x \), if
 \[\lim_{n \to \infty} \|x_n - x\| = 0. \]

- We would like the limit point \(x \) of any sequence \(\{x_n\} \) to be in our vector space.
- Integrals and derivatives are fundamentally limits; we want derivatives and integrals to stay in the vector space.
- A vector space is said to be closed if it contains all of its limit points.

Definition: A closed, inner product space is a Hilbert Space.

Examples: Both \(\mathbb{R}^N \) and \(L^2(a, b) \) are Hilbert Spaces.

Counter Example: The space of rational number \(\mathbb{Q} \) is not closed (i.e., not a Hilbert space)
Projection Theorem

Definition: Let \(\mathcal{L} \) be a subspace of the Hilbert Space \(\mathcal{H} \). The vector \(x \in \mathcal{H} \) (and \(x \notin \mathcal{L} \)) is orthogonal to the subspace \(\mathcal{L} \) if \(\langle x, y \rangle = 0 \) for every \(y \in \mathcal{L} \).

Projection Theorem: Let \(\mathcal{H} \) be a Hilbert Space and \(\mathcal{L} \) is a subspace of \(\mathcal{H} \). Every vector \(x \in \mathcal{H} \) has a unique decomposition

\[
x = y + z
\]

with \(y \in \mathcal{L} \) and \(z \) orthogonal to \(\mathcal{L} \).
Furthermore,

\[
\|z\| = \|x - y\| = \min_{v \in \mathcal{L}} \|x - v\|.
\]

- \(y \) is called the projection of \(x \) onto \(\mathcal{L} \).
- The distance between \(x \) and all elements of \(\mathcal{L} \) is minimized by \(y \).

Exercise: Fourier Series

- Let \(x(t) \) be a signal in the Hilbert space \(L^2(0, T) \).
- Define the subspace \(\mathcal{L} \) of signals \(v_n(t) = A_n \cos(2\pi nt / T) \) for a fixed \(n \).
- Find the signal \(y(t) \in \mathcal{L} \) that minimizes

\[
\min_{y(t) \in \mathcal{L}} \|x(t) - y(t)\|^2.
\]

Answer: \(y(t) \) is the sinusoid with amplitude

\[
A_n = \frac{2}{T} \int_0^T x(t) \cos(2\pi nt / T) \, dt = \frac{2}{T} \langle x(t), \cos(2\pi nt / T) \rangle.
\]

- Note that this is (part of the trigonometric form of) the Fourier Series expansion.
- Note that the inner product performs the projection of \(x(t) \) onto \(\mathcal{L} \).