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Elements of a Digital Communications System

Source: produces a sequence of information symbols b.
Transmitter: maps symbol sequence to analog signal s(t).

Channel: models corruption of transmitted signal s(t).
Receiver: produces reconstructed sequence of information

symbols b̂ from observed signal R(t).

Source Transmitter Channel Receiver
b s(t) R(t) b̂

Figure: Block Diagram of a Generic Digital Communications System
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The Source

I The source models the statistical properties of the digital
information source.

I Three main parameters:
I Source Alphabet: list of the possible information symbols

the source produces; also called Signal Constellation
I Example: A = {0,1}; symbols are called bits.
I Alphabet for a source with M (typically, a power of 2)

symbols: e.g., A = {±1,±3, . . . ,±(M − 1)}.
I Alphabet with positive and negative symbols is often more

convenient.
I Symbols may be complex valued; e.g., A = {±1,±j}.
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I A priori Probability: relative frequencies with which the
source produces each of the symbols.
I Example: a binary source that produces (on average) equal

numbers of 0 and 1 bits has π0 = π1 = 1
2 .

I Notation: πn denotes the probability of observing the n-th
symbol.

I Typically, a-priori probabilities are all equal, i.e., πn = 1
M .

I A source with M symbols is called an M-ary source.
I binary (M = 2)
I quaternary (M = 4)
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Bit 1 Bit 2 Symbol

0 0 −3
0 1 −1
1 1 +1
1 0 +3

Table: Example: Representing two bits in one quaternary symbol.
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I Symbol Rate: The number of information symbols the
source produces per second. Also called the baud rate R.
I Related: information rate Rb, indicates number of bits

source produces per second.
I Relationship: Rb = R · log2(M).
I Also, T = 1/R is the symbol period.
I Note: for most communication systems, the bandwidth W

occupied by the transmitted signal is approximately equal to
the baud rate R,

W ≈ R
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Remarks

I This view of the source is simplified.
I We have omitted important functionality normally found in

the source, including
I error correction coding and interleaving, and
I Usually, a block that maps bits to symbols is broken out

separately.
I This simplified view is sufficient for our initial discussions.
I Missing functionality will be revisited when needed.
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The Transmitter
I The transmitter translates the information symbols at its

input into signals that are “appropriate” for the channel,
e.g.,
I meet bandwidth requirements due to regulatory or

propagation considerations,
I provide good receiver performance in the face of channel

impairments:
I noise,
I distortion (i.e., undesired linear filtering),
I interference.

I A digital communication system transmits only a discrete
set of information symbols.
I Correspondingly, only a discrete set of possible signals is

employed by the transmitter.
I The transmitted signal is an analog (continuous-time,

continuous amplitude) signal.
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Illustrative Example
I The sources produces symbols from the alphabet
A = {0,1}.

I The transmitter uses the following rule to map symbols to
signals:
I If the n-th symbol is bn = 0, then the transmitter sends the

signal

s0(t) =

{
A for (n− 1)T ≤ t < nT
0 else.

I If the n-th symbol is bn = 1, then the transmitter sends the
signal

s1(t) =





A for (n− 1)T ≤ t < (n− 1
2 )T

−A for (n− 1
2 )T ≤ t < nT

0 else.
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Symbol Sequence b = {1,0,1,1,0,0,1,0,1,0}
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The Communications Channel
I The communications channel models the degradation the

transmitted signal experiences on its way to the receiver.
I For wireless communications systems, we are concerned

primarily with:
I Noise: random signal added to received signal.

I Mainly due to thermal noise from electronic components in
the receiver.

I Can also model interference from other emitters in the
vicinity of the receiver.

I Statistical model is used to describe noise.
I Distortion: undesired filtering during propagation.

I Mainly due to multi-path propagation.
I Both deterministic and statistical models are appropriate

depending on time-scale of interest.
I Nature and dynamics of distortion is a key difference

between wireless and wired systems.
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Thermal Noise
I At temperatures above absolute zero, electrons move

randomly in a conducting medium, including the electronic
components in the front-end of a receiver.

I This leads to a random waveform.
I The power of the random waveform equals PN = kT0W .

I k : Boltzmann’s constant (1.38× 10−23 W s/K).
I T0: temperature in degrees Kelvin (room temperature
≈ 290 K).

I For bandwidth W equal to 1 Hz, PN ≈ 4× 10−21 W
(−174 dBm).

I Noise power is small, but power of received signal
decreases rapidly with distance from transmitter.
I Noise provides a fundamental limit to the range and/or rate

at which communication is possible.
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Exercise: Path Loss and Signal-to-Noise Ratio
I A transmitter emits a signal with:

I bandwidth W = 1 MHz
I transmitted power Pt = 1 mW
I carrier frequency fc = 1 GHz

I During propagation from transmitter to receiver, the signal’s
power decreases; the received power follows Friis law:

Pr = Pt ·
(

c
4πfcd

)2

where c = 3× 108 m/s is the speed of light and d is the
distance between transmitter and receiver (in meters).

I Find:
I the power of the received signal Pr for d = 10 km
I the noise power PN in the bandwidth W occupied by the

transmitted signal
I the ratio Pr

PN
; this is called the signal-to-noise ratio (SNR)
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Multi-Path
I In a multi-path environment, the receiver sees the

combination of multiple scaled and delayed versions of the
transmitted signal.

TX RX
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Distortion from Multi-Path
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I Received signal
“looks” very
different from
transmitted signal.

I Inter-symbol
interference (ISI).

I Multi-path is a very
serious problem
for wireless
systems.
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The Receiver
I The receiver is designed to reconstruct the original

information sequence b.
I Towards this objective, the receiver uses

I the received signal R(t),
I knowledge about how the transmitter works,

I Specifically, the receiver knows how symbols are mapped to
signals.

I the a-priori probability and rate of the source.
I The transmitted signal typically contains information that

allows the receiver to gain information about the channel,
including
I training sequences to estimate the impulse response of the

channel,
I synchronization preambles to determine symbol locations

and adjust amplifier gains.
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The Receiver

I The receiver input is an analog signal and it’s output is a
sequence of discrete information symbols.
I Consequently, the receiver must perform analog-to-digital

conversion (sampling).
I Correspondingly, the receiver can be divided into an

analog front-end followed by digital processing.
I Many receivers have (relatively) simple front-ends and

sophisticated digital processing stages.
I Digital processing is performed on standard digital

hardware (from ASICs to general purpose processors).
I Moore’s law can be relied on to boost the performance of

digital communications systems.
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Measures of Performance

I The receiver is expected to perform its function optimally.
I Question: optimal in what sense?

I Measure of performance must be statistical in nature.
I observed signal is random, and
I transmitted symbol sequence is random.

I Metric must reflect the reliability with which information is
reconstructed at the receiver.

I Objective: Design the receiver that minimizes the
probability of a symbol error.
I Also referred to as symbol error rate.
I Closely related to bit error rate (BER).
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Learning Objectives

1. Understand the mathematical foundations that lead to the
design of optimal receivers in AWGN channels.
I statistical hypothesis testing
I signal spaces

2. Understand the principles of digital information
transmission.
I baseband and passband transmission
I relationship between data rate and bandwidth

3. Apply receiver design principles to communication systems
with additional channel impairments
I random amplitude or phase
I linear distortion (e.g., multi-path)
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Course Outline
I Mathematical Prerequisites

I Basics of Gaussian Random Variables and Random
Processes

I Signal space concepts
I Principles of Receiver Design

I Optimal decision: statistical hypothesis testing
I Receiver frontend: the matched filter

I Signal design and modulation
I Baseband and passband
I Linear modulation
I Bandwidth considerations

I Advanced topics
I Synchronization in time, frequency, phase
I Introduction to equalization
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Part II

Mathematical Prerequisites
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Gaussian Random Variables — Why we Care

I Gaussian random variables play a critical role in modeling
many random phenomena.
I By central limit theorem, Gaussian random variables arise

from the superposition (sum) of many random phenomena.
I Pertinent example: random movement of very many

electrons in conducting material.
I Result: thermal noise is well modeled as Gaussian.

I Gaussian random variables are mathematically tractable.
I In particular: any linear (more precisely, affine)

transformation of Gaussians produces a Gaussian random
variable.

I Noise added by channel is modeled as being Gaussian.
I Channel noise is the most fundamental impairment in a

communication system.
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Gaussian Random Variables
I A random variable X is said to be Gaussian (or Normal) if

its pdf is of the form

pX (x) =
1√

2πσ2
exp

(
− (x −m)2

2σ2

)
.

I All properties of a Gaussian are determined by the two
parameters m and σ2.

I Notation: X ∼ N (m, σ2).
I Moments:

E[X ] =
∫ ∞
−∞ x · pX (x) dx = m

E[X 2] =
∫ ∞
−∞ x2 · pX (x) dx = m2 + σ2.

© 2018, B.-P. Paris ECE 630: Statistical Communication Theory 24



Gaussian Basics Random Processes Filtering of Random Processes Signal Space Concepts

Plot of Gaussian pdf’s
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The Gaussian Error Integral — Q(x)

I We are often interested in Pr {X > x} for Gaussian
random variables X .

I These probabilities cannot be computed in closed form
since the integral over the Gaussian pdf does not have a
closed form expression.

I Instead, these probabilities are expressed in terms of the
Gaussian error integral

Q(x) =
∫ ∞

x

1√
2π

e−
z2
2 dz.
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The Gaussian Error Integral — Q(x)

I Example: Suppose X ∼ N (1,4), what is Pr {X > 5}?

Pr {X > 5} =
∫ ∞

5
1√

2π·22
e−

(x−1)2

2·22 dx substitute z = x−1
2

=
∫ ∞

2
1√
2π

e−
z2
2 dz = Q(2)
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Exercises

I Let X ∼ N (−3,4), find expressions in terms of Q(·) for
the following probabilities:

1. Pr {X > 5}?
2. Pr {X < −1}?
3. Pr

{
X 2 + X > 2

}
?
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Bounds for the Q-function
I Since no closed form expression is available for Q(x),

bounds and approximations to the Q-function are of
interest.

I The following bounds are tight for large values of x :

(
1− 1

x2

)
e−

x2
2

x
√

2π
≤ Q(x) ≤ e−

x2
2

x
√

2π
.

I The following bound is not as quite as tight but very useful
for analysis

Q(x) ≤ 1
2

e−
x2
2 .

I Note that all three bounds are dominated by the term e−
x2
2 ;

this term determines the asymptotic behaviour of Q(x).
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Plot of Q(x) and Bounds
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Exercise: Chernoff Bound

I For a random variable X , the Chernoff Bound provides a
tight upper bound on the probability Pr {X > x}.

I The Chernoff bound is given by

Pr {X > x} ≤ min
t>0

E[etX ]

etx .

I Let X ∼ N (0,1); use the Chernoff bound to show that

Pr {X > x} = Q(x) ≤ e−x2/2
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Gaussian Random Vectors
I A length N random vector ~X is said to be Gaussian if its

pdf is given by

p~X (~x) =
1

(2π)N/2|K |1/2
exp

(
−1

2
(~x − ~m)T K−1(~x − ~m)

)
.

I Notation: ~X ∼ N (~m,K ).
I Mean vector

~m = E[~X ] =
∫ ∞

−∞
. . .
∫ ∞

−∞
~xp~X (~x) d~x .

I Covariance matrix

K = E[(~X − ~m)(~X − ~m)
T
] =

∫ ∞

−∞
. . .
∫ ∞

−∞
(~x − ~m)(~x − ~m)T p~X (~x) d~x .

I |K | denotes the determinant of K .
I K must be positive definite, i.e.,~zT K~z > 0 for all~z.
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Exercise: Important Special Case: N=2

I Consider a length-2 Gaussian random vector with

~m =~0 and K = σ2

(
1 ρ

ρ 1

)
with |ρ| ≤ 1.

I Find the pdf of ~X .
I Answer:

p~X (~x) =
1

2πσ2
√

1− ρ2
exp

(
x2

1 − 2ρx1x2 + x2
2

2σ2(1− ρ2)

)
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Important Properties of Gaussian Random Vectors

1. If the N Gaussian random variables Xn comprising the
random vector ~X are uncorrelated (Cov[Xi ,Xj ] = 0, for
i 6= j), then they are statistically independent.

2. Any affine transformation of a Gaussian random vector is
also a Gaussian random vector.
I Let ~X ∼ N (~m,K )
I Affine transformation: ~Y = A~X +~b
I Then, ~Y ∼ N (A~m +~b,AKAT )
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Exercise: Generating Correlated Gaussian Random
Variables

I Let ~X ∼ N (~m,K ), with

~m =~0 and K = σ2

(
1 0
0 1

)
.

I The elements of ~X are uncorrelated.
I Transform ~Y = A~X , with

A =

( √
1− ρ2 ρ

0 1

)

I Find the pdf of ~Y .

© 2018, B.-P. Paris ECE 630: Statistical Communication Theory 35

Gaussian Basics Random Processes Filtering of Random Processes Signal Space Concepts

Random Processes — Why we Care
I Random processes describe signals that change randomly

over time.
I Compare: deterministic signals can be described by a

mathematical expression that describes the signal exactly
for all time.

I Example: x(t) = 3 cos(2πfc t + π/4) with fc = 1GHz.
I We will encounter three types of random processes in

communication systems:
1. (nearly) deterministic signal with a random parameter —

Example: sinusoid with random phase.
2. signals constructed from a sequence of random variables

— Example: digitally modulated signals with random
symbols

3. noise-like signals
I Objective: Develop a framework to describe and analyze

random signals encountered in the receiver of a
communication system.© 2018, B.-P. Paris ECE 630: Statistical Communication Theory 36
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Random Process — Formal Definition
I Random processes can be defined completely analogous

to random variables over a probability triple space
(Ω,F ,P).

I Definition: A random process is a mapping from each
element ω of the sample space Ω to a function of time
(i.e., a signal).

I Notation: Xt (ω) — we will frequently omit ω to simplify
notation.

I Observations:
I We will be interested in both real and complex valued

random processes.
I Note, for a given random outcome ω0, Xt (ω0) is a

deterministic signal.
I Note, for a fixed time t0, Xt0(ω) is a random variable.
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Sample Functions and Ensemble
I For a given random outcome ω0, Xt (ω0) is a deterministic

signal.
I Each signal that that can be produced by a our random

process is called a sample function of the random process.
I The collection of all sample functions of a random process

is called the ensemble of the process.
I Example: Let Θ(ω) be a random variable with four equally

likely, possible values Ω = {0, π
2 ,π, 3π

2 }. Define the
random process Xt (ω) = cos(2πf0t + Θ(ω)).
The ensemble of this random process consists of the four
sample functions:

Xt (ω1) = cos(2πf0t) Xt (ω2) = − sin(2πf0t)
Xt (ω3) = − cos(2πf0t) Xt (ω4) = sin(2πf0t)
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Probability Distribution of a Random Process
I For a given time instant t , Xt (ω) is a random variable.
I Since it is a random variable, it has a pdf (or pmf in the

discrete case).
I We denote this pdf as pXt (x).

I The statistical properties of a random process are
specified completely if the joint pdf

pXt1 ,...,Xtn
(x1, . . . , xn)

is available for all n and ti , i = 1, . . . ,n.
I This much information is often not available.
I Joint pdfs with many sampling instances can be

cumbersome.
I We will shortly see a more concise summary of the

statistics for a random process.
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Random Process with Random Parameters

I A deterministic signal that depends on a random
parameter is a random process.
I Note, the sample functions of such random processes do

not “look” random.
I Running Examples:

I Example (discrete phase): Let Θ(ω) be a random variable
with four equally likely, possible values Ω = {0, π

2 ,π, 3π
2 }.

Define the random process Xt (ω) = cos(2πf0t + Θ(ω)).
I Example (continuous phase): same as above but phase

Θ(ω) is uniformly distributed between 0 and 2π,
Θ(ω) ∼ U [0,2π).

I For both of these processes, the complete statistical
description of the random process can be found.
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Example: Discrete Phase Process

I Discrete Phase Process: Let Θ(ω) be a random variable
with four equally likely, possible values Ω = {0, π

2 ,π, 3π
2 }.

Define the random process Xt (ω) = cos(2πf0t + Θ(ω)).
I Find the first-order density pXt (x) for this process.
I Find the second-order density pXt1 Xt2

(x1, x2) for this
process.
I Note, since the phase values are discrete the above pdfs

must be expressed with the help of δ-functions.
I Alternatively, one can derive a probability mass function.
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Solution: Discrete Phase Process
I First-order density function:

pXt (x) =
1
4
(δ(x − cos(2πf0t)) + δ(x + sin(2πf0t))+

δ(x + cos(2πf0t)) + δ(x − sin(2πf0t)))

I Second-order density function:

pXt1 Xt2
(x1, x2) =

1
4
(δ(x1 − cos(2πf0t1)) · δ(x2 − cos(2πf0t2))+

δ(x1 + sin(2πf0t1)) · δ(x2 + sin(2πf0t2))+
δ(x1 + cos(2πf0t1)) · δ(x2 + cos(2πf0t2))+
δ(x1 − sin(2πf0t1)) · δ(x2 − sin(2πf0t2)))
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Example: Continuous Phase Process

I Continuous Phase Process: Let Θ(ω) be a random
variable that is uniformly distributed between 0 and 2π,
Θ(ω) ∼ [0,2π). Define the random process
Xt (ω) = cos(2πf0t + Θ(ω)).

I Find the first-order density pXt (x) for this process.
I Find the second-order density pXt1 Xt2

(x1, x2) for this
process.
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Solution: Continuous Phase Process

I First-order density:

pXt (x) =
1

π
√

1− x2
for |x | ≤ 1.

Notice that pXt (x) does not depend on t .
I Second-order density:

pXt1 Xt2
(x1, x2) =

1

π
√

1− x2
2

· [1
2
·

δ(x1 − cos(2πf0(t1 − t2) + arccos(x2)))+

δ(x1 − cos(2πf0(t1 − t2)− arccos(x2)))]
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Random Processes Constructed from Sequence of
Random Experiments

I Model for digitally modulated signals.
I Example:

I Let Xk (ω) denote the outcome of the k -th toss of a coin:

Xk (ω) =

{
1 if heads on k -th toss
−1 if tails on k -th toss.

I Let p(t) denote a pulse of duration T , e.g.,

p(t) =

{
1 for 0 ≤ t ≤ T
0 else.

I Define the random process Xt

Xt (ω) = ∑
k

Xk (ω)p(t − nT )
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Probability Distribution

I Assume that heads and tails are equally likely.
I Then the first-order density for the above random process

is
pXt (x) =

1
2
(δ(x − 1) + δ(x + 1)).

I The second-order density is:

pXt1 Xt2
(x1, x2) =

{
δ(x1 − x2)pXt1

(x1) if nT ≤ t1, t2 ≤ (n + 1)T
pXt1

(x1)pXt2
(x2) else.

I These expression become more complicated when p(t) is
not a rectangular pulse.
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Probability Density of Random Processs Defined
Directly

I Sometimes the n-th order probability distribution of the
random process is given.
I Most important example: Gaussian Random Process

I Statistical model for noise.
I Definition: The random process Xt is Gaussian if the

vector ~X of samples taken at times t1, . . . , tn

~X =




Xt1
...

Xtn




is a Gaussian random vector for all t1, . . . , tn.
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Second Order Description of Random Processes
I Characterization of random processes in terms of n-th

order densities is
I frequently not available
I mathematically cumbersome

I A more tractable, practical alternative description is
provided by the second order description for a random
process.

I Definition: The second order description of a random
process consists of the
I mean function and the
I autocorrelation function

of the process.
I Note, the second order description can be computed from

the (second-order) joint density.
I The converse is not true — at a minimum the distribution

must be specified (e.g., Gaussian).
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Mean Function

I The second order description of a process relies on the
mean and autocorrelation functions — these are defined
as follows

I Definition: The mean of a random process is defined as:

E[Xt ] = mX (t) =
∫ ∞

−∞
x · pXt (x) dx

I Note, that the mean of a random process is a deterministic
signal.

I The mean is computed from the first oder density function.
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Autocorrelation Function

I Definition: The autocorrelation function of a random
process is defined as:

RX (t ,u) = E[XtXu ] =
∫ ∞

−∞

∫ ∞

−∞
xy · pXt ,Xu (x , y) dx dy

I Autocorrelation is computed from second order density
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Autocovariance Function

I Closely related: autocovariance function:

CX (t ,u) = E[(Xt −mX (t))(Xu −mX (u))]
= RX (t ,u)−mX (t)mX (u)
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Exercise: Discrete Phase Example

I Find the second-order description for the discrete phase
random process.
I Discrete Phase Process: Let Θ(ω) be a random variable

with four equally likely, possible values Ω = {0, π
2 ,π, 3π

2 }.
Define the random process Xt (ω) = cos(2πf0t + Θ(ω)).

I Answer:
I Mean: mX (t) = 0.
I Autocorrelation function:

RX (t ,u) =
1
2
cos(2πf0(t − u)).
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Exercise: Continuous Phase Example

I Find the second-order description for the continuous phase
random process.
I Continuous Phase Process: Let Θ(ω) be a random

variable that is uniformly distributed between 0 and 2π,
Θ(ω) ∼ [0,2π). Define the random process
Xt (ω) = cos(2πf0t + Θ(ω)).

I Answer:
I Mean: mX (t) = 0.
I Autocorrelation function:

RX (t ,u) =
1
2
cos(2πf0(t − u)).
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Properties of the Autocorrelation Function

I The autocorrelation function of a (real-valued) random
process satisfies the following properties:

1. RX (t , t) ≥ 0
2. RX (t ,u) = RX (u, t) (symmetry)
3. |RX (t ,u)| ≤ 1

2 (RX (t , t) + RX (u,u))
4. |RX (t ,u)|2 ≤ RX (t , t) ·RX (u,u)
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Stationarity

I The concept of stationarity is analogous to the idea of
time-invariance in linear systems.

I Interpretation: For a stationary random process, the
statistical properties of the process do not change with
time.

I Definition: A random process Xt is strict-sense stationary
(sss) to the n-th order if:

pXt1 ,...,Xtn
(x1, . . . , xn) = pXt1+T ,...,Xtn+T (x1, . . . , xn)

for all T .
I The statistics of Xt do not depend on absolute time but only

on the time differences between the sample times.
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Wide-Sense Stationarity

I A simpler and more tractable notion of stationarity is based
on the second-order description of a process.

I Definition: A random process Xt is wide-sense stationary
(wss) if

1. the mean function mX (t) is constant and
2. the autocorrelation function RX (t ,u) depends on t and u

only through t − u, i.e., RX (t ,u) = RX (t − u)
I Notation: for a wss random process, we write the

autocorrelation function in terms of the single
time-parameter τ = t − u:

RX (t ,u) = RX (t − u) = RX (τ).
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Exercise: Stationarity
I True or False: Every random process that is strict-sense

stationarity to the second order is also wide-sense
stationary.
I Answer: True

I True or False: Every random process that is wide-sense
stationary must be strict-sense stationarity to the second
order.
I Answer: False

I True or False: The discrete phase process is strict-sense
stationary.
I Answer: False; first order density depends on t , therefore,

not even first-order sss.
I True or False: The discrete phase process is wide-sense

stationary.
I Answer: True
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White Gaussian Noise

I Definition: A (real-valued) random process Xt is called
white Gaussian Noise if
I Xt is Gaussian for each time instance t
I Mean: mX (t) = 0 for all t
I Autocorrelation function: RX (τ) =

N0
2 δ(τ)

I White Gaussian noise is a good model for noise in
communication systems.

I Note, that the variance of Xt is infinite:

Var(Xt ) = E[X 2
t ] = RX (0) =

N0
2

δ(0) = ∞.

I Also, for t 6= u: E[XtXu ] = RX (t ,u) = RX (t − u) = 0.
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Integrals of Random Processes

I We will see, that receivers always include a linear,
time-invariant system, i.e., a filter.

I Linear, time-invariant systems convolve the input random
process with the impulse response of the filter.
I Convolution is fundamentally an integration.

I We will establish conditions that ensure that an expression
like

Z (ω) =
∫ b

a
Xt (ω)h(t) dt

is “well-behaved”.
I The result of the (definite) integral is a random variable.

I Concern: Does the above integral converge?
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Mean Square Convergence
I There are different senses in which a sequence of random

variables may converge: almost surely, in probability,
mean square, and in distribution.

I We will focus exclusively on mean square convergence.
I For our integral, mean square convergence means that the

Rieman sum and the random variable Z satisfy:
I Given ε > 0, there exists a δ > 0 so that

E[(
n

∑
k=1

Xτk h(τk )(tk − tk−1)− Z )
2

] ≤ ε.

with:
I a = t0 < t1 < · · · < tn = b
I tk−1 ≤ τk ≤ tk
I δ = maxk (tk − tk−1)
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Mean Square Convergence — Why We Care
I It can be shown that the integral converges if

∫ b

a

∫ b

a
RX (t ,u)h(t)h(u) dt du < ∞

I We will see shortly that this implies E[|Z |2] < ∞.
I Important: When the integral converges, then the order of

integration and expectation can be interchanged, e.g.,

E[Z ] = E[
∫ b

a
Xth(t) dt ] =

∫ b

a
E[Xt ]h(t) dt =

∫ b

a
mX (t)h(t) dt

I Throughout this class, we will focus exclusively on cases
where RX (t ,u) and h(t) are such that our integrals
converge.
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Exercise: Brownian Motion

I Definition: Let Nt be white Gaussian noise with N0
2 = σ2.

The random process

Wt =
∫ t

0
Ns ds for t ≥ 0

is called Brownian Motion or Wiener Process.

I Compute the mean and autocorrelation functions of Wt .
I Answer: mW (t) = 0 and RW (t ,u) = σ2 min(t ,u)
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Integrals of Gaussian Random Processes
I Let Xt denote a Gaussian random process with second

order description mX (t) and RX (t , s).
I Then, the integral

Z =
∫ b

a
X (t)h(t) dt

is a Gaussian random variable.
I Moreover mean and variance are given by

µ = E[Z ] =
∫ b

a
mX (t)h(t) dt

Var[Z ] = E[(Z − E[Z ])2] = E[(
∫ b

a
(Xt −mx (t))h(t) dt)

2

]

=
∫ b

a

∫ b

a
CX (t ,u)h(t)h(u) dt du
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Jointly Defined Random Processes

I Let Xt and Yt be jointly defined random processes.
I E.g., input and output of a filter.

I Then, joint densities of the form pXt Yu (x , y) can be defined.
I Additionally, second order descriptions that describe the

correlation between samples of Xt and Yt can be defined.
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Crosscorrelation and Crosscovariance
I Definition: The crosscorrelation function RXY (t ,u) is

defined as:

RXY (t ,u) = E[XtYu ] =
∫ ∞

−∞

∫ ∞

−∞
xypXt Yu (x , y) dx dy .

I Definition: The crosscovariance function CXY (t ,u) is
defined as:

CXY (t ,u) = RXY (t ,u)−mX (t)mY (u).

I Definition: The processes Xt and Yt are called jointly
wide-sense stationary if:

1. RXY (t ,u) = RXY (t − u) and
2. mX (t) and mY (t) are constants.
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Filtering of Random Processes

Filtered Random Process

Xt h(t) Yt

© 2018, B.-P. Paris ECE 630: Statistical Communication Theory 66



Gaussian Basics Random Processes Filtering of Random Processes Signal Space Concepts

Filtering of Random Processes

I Clearly, Xt and Yt are jointly defined random processes.
I Standard LTI system — convolution:

Yt =
∫

h(t − σ)Xσ dσ = h(t) ∗ Xt

I Recall: this convolution is “well-behaved” if
∫ ∫

RX (σ, ν)h(t − σ)h(t − ν) dσ dν < ∞

I E.g.:
∫∫

RX (σ, ν) dσ dν < ∞ and h(t) stable.

© 2018, B.-P. Paris ECE 630: Statistical Communication Theory 67

Gaussian Basics Random Processes Filtering of Random Processes Signal Space Concepts

Second Order Description of Output: Mean

I The expected value of the filter’s output Yt is:

E[Yt ] = E[
∫

h(t − σ)Xσ dσ]

=
∫

h(t − σ)E[Xσ] dσ

=
∫

h(t − σ)mX (σ) dσ

I For a wss process Xt , mX (t) is constant. Therefore,

E[Yt ] = mY (t) = mX

∫
h(σ) dσ

is also constant.

© 2018, B.-P. Paris ECE 630: Statistical Communication Theory 68



Gaussian Basics Random Processes Filtering of Random Processes Signal Space Concepts

Crosscorrelation of Input and Output
I The crosscorrelation between input and ouput signals is:

RXY (t ,u) = E[XtYu ] = E[Xt

∫
h(u − σ)Xσ dσ

=
∫

h(u − σ)E[XtXσ] dσ

=
∫

h(u − σ)RX (t , σ) dσ

I For a wss input process

RXY (t ,u) =
∫

h(u − σ)RX (t , σ) dσ =
∫

h(ν)RX (t ,u − ν) dν

=
∫

h(ν)RX (t − u + ν) dν = RXY (t − u)

I Input and output are jointly stationary.
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Autocorelation of Output
I The autocorrelation of Yt is given by

RY (t ,u) = E[YtYu ] = E[
∫

h(t − σ)Xσ dσ
∫

h(u − ν)Xν dν]

=
∫ ∫

h(t − σ)h(u − ν)RX (σ, ν) dσ dν

I For a wss input process:

RY (t ,u) =
∫ ∫

h(t − σ)h(u − ν)RX (σ, ν) dσ dν

=
∫ ∫

h(λ)h(λ− γ)RX (t − λ,u − λ + γ) dλ dγ

=
∫ ∫

h(λ)h(λ− γ)RX (t − u − γ) dλ dγ = RY (t − u)

I Define Rh(γ) =
∫

h(λ)h(λ− γ) dλ = h(λ) ∗ h(−λ).
I Then, RY (τ) =

∫
Rh(γ)RX (τ − γ) dγ = Rh(τ) ∗RX (τ)

© 2018, B.-P. Paris ECE 630: Statistical Communication Theory 70



Gaussian Basics Random Processes Filtering of Random Processes Signal Space Concepts

Exercise: Filtered White Noise Process
I Let the white Gaussian noise process Xt be input to a filter

with impulse response

h(t) = e−atu(t) =

{
e−at for t ≥ 0
0 for t < 0

I Compute the second order description of the output
process Yt .

I Answers:
I Mean: mY = 0
I Autocorrelation:

RY (τ) =
N0
2

e−a|τ|

2a
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Power Spectral Density — Concept
I Power Spectral Density (PSD) measures how the power

of a random process is distributed over frequency.
I Notation: SX (f )
I Units: Watts per Hertz (W/Hz)

I Thought experiment:
I Pass random process Xt through a narrow bandpass filter:

I center frequency f
I bandwidth ∆f
I denote filter output as Yt

I Measure the power P at the output of bandpass filter:

P = lim
T→∞

1
T

∫ T /2

−T /2
|Yt |2 dt

I Relationship between power and (PSD)

P ≈ SX (f ) ·∆f .
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Relation to Autocorrelation Function
I For a wss random process, the power spectral density is

closely related to the autocorrelation function RX (τ).
I Definition: For a random process Xt with autocorrelation

function RX (τ), the power spectral density SX (f ) is defined
as the Fourier transform of the autocorrelation function,

SX (f ) =
∫ ∞

−∞
RX (τ)ej2πf τ dτ.

I For non-stationary processes, it is possible to define a
spectral represenattion of the process.

I However, the spectral contents of a non-stationary process
will be time-varying.

I Example: If Nt is white noise, i.e., RN(τ) =
N0
2 δ(τ), then

SX (f ) =
N0

2
for all f

i.e., the PSD of white noise is flat over all frequencies.© 2018, B.-P. Paris ECE 630: Statistical Communication Theory 73
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Properties of the PSD
I Inverse Transform:

RX (τ) =
∫ ∞

−∞
SX (f )e−j2πf τ df .

I The total power of the process is

E[|Xt |2] = RX (0) =
∫ ∞

−∞
SX (f ) df .

I SX (f ) is even and non-negative.
I Evenness of SX (f ) follows from evenness of RX (τ).
I Non-negativeness is a consequence of the autocorrelation

function being positive definite
∫ ∞

−∞

∫ ∞

−∞
f (t)f ∗(u)RX (t ,u) dt du ≥ 0

for all choices of f (·), including f (t) = e−j2πft .
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Filtering of Random Processes
I Random process Xt with autocorrelation RX (τ) and PSD

SX (f ) is input to LTI filter with impuse response h(t) and
frequency response H(f ).

I The PSD of the output process Yt is

SY (f ) = |H(f )|2SX (f ).

I Recall that RY (τ) = RX (τ) ∗Ch(τ),
I where Ch(τ) = h(τ) ∗ h(−τ).
I In frequency domain: SY (f ) = SX (f ) · F{Ch(τ)}
I With

F{Ch(τ)} = F{h(τ) ∗ h(−τ)}
= F{h(τ)} · F{h(−τ)}
= H(f ) ·H∗(f ) = |H(f )|2.
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Exercise: Filtered White Noise
R

CNt Yt

I Let Nt be a white noise process that is input to the above
circuit. Find the power spectral density of the output
process.

I Answer:

SY (f ) =
∣∣∣∣

1
1 + j2πfRC

∣∣∣∣
2 N0

2
=

1

1 + (2πfRC)2
N0

2
.
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Signal Space Concepts — Why we Care
I Signal Space Concepts are a powerful tool for the

analysis of communication systems and for the design of
optimum receivers.

I Key Concepts:
I Orthonormal basis functions — tailored to signals of

interest — span the signal space.
I Representation theorem: allows any signal to be

represented as a (usually finite dimensional) vector
I Signals are interpreted as points in signal space.

I For random processes, representation theorem leads to
random signals being described by random vectors with
uncorrelated components.
I Theorem of Irrelavance allows us to disregrad nearly all

components of noise in the receiver.
I We will briefly review key ideas that provide underpinning

for signal spaces.
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Linear Vector Spaces

I The basic structure needed by our signal spaces is the
idea of linear vector space.

I Definition: A linear vector space S is a collection of
elements (“vectors”) with the following properties:
I Addition of vectors is defined and satisfies the following

conditions for any x , y , z ∈ S :
1. x + y ∈ S (closed under addition)
2. x + y = y + x (commutative)
3. (x + y) + z = x + (y + z) (associative)
4. The zero vector~0 exists and~0 ∈ S . x +~0 = x for all x ∈ S .
5. For each x ∈ S , a unique vector (−x) is also in S and

x + (−x) =~0.
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Linear Vector Spaces — continued

I Definition — continued:
I Associated with the set of vectors in S is a set of scalars. If

a,b are scalars, then for any x , y ∈ S the following
properties hold:

1. a · x is defined and a · x ∈ S .
2. a · (b · x) = (a · b) · x
3. Let 1 and 0 denote the multiplicative and additive identies of

the field of scalars, then 1 · x = x and 0 · x =~0 for all x ∈ S .
4. Associative properties:

a · (x + y) = a · x + a · y
(a + b) · x = a · x + b · x
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Running Examples
I The space of length-N vectors RN




x1
...

xN


+




y1
...

yN


 =




x1 + y1
...

xN + yN


 and a ·




x1
...

xN


 =




a · x1
...

a · xN




I The collection of all square-integrable signals over [Ta,Tb],
i.e., all signals x(t) satisfying

∫ Tb

Ta

|x(t)|2 dt < ∞.

I Verifying that this is a linear vector space is easy.
I This space is called L2(Ta,Tb) (pronounced: ell-two).
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Inner Product

I To be truly useful, we need linear vector spaces to provide
I means to measure the length of vectors and
I to measure the distance between vectors.

I Both of these can be achieved with the help of inner
products.

I Definition: The inner product of two vectors x , y ,∈ S is
denoted by 〈x , y〉. The inner product is a scalar assigned
to x and y so that the following conditions are satisfied:

1. 〈x , y〉 = 〈y , x〉 (for complex vectors 〈x , y〉 = 〈y , x〉∗)
2. 〈a · x , y〉 = a · 〈x , y〉, with scalar a
3. 〈x + y , z〉 = 〈x , z〉+ 〈y , z〉, with vector z
4. 〈x , x〉 > 0, except when x =~0; then, 〈x , x〉 = 0.
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Exercise: Valid Inner Products?

I x , y ∈ RN with

〈x , y〉 =
N

∑
n=1

xnyn

I Answer: Yes; this is the standard dot product.
I x , y ∈ RN with

〈x , y〉 =
N

∑
n=1

xn ·
N

∑
n=1

yn

I Answer: No; last condition does not hold, which makes
this inner product useless for measuring distances.
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Exercise: Valid Inner Products?
I x(t), y(t) ∈ L2(a,b) with

〈x(t), y(t)〉 =
∫ b

a
x(t)y(t) dt

I Answer: Yes; continuous-time equivalent of the
dot-product.

I x , y ∈ CN with

〈x , y〉 =
N

∑
n=1

xny∗n

I Answer: Yes; the conjugate complex is critical to meet the
last condition (e.g., 〈j , j〉 = −1 < 0).

I x , y ∈ RN with

〈x , y〉 = xT Ky =
N

∑
n=1

N

∑
m=1

xnKn,mym

with K an N ×N-matrix
I Answer: Only if K is positive definite (i.e., xT Kx > 0 for all

x 6=~0).
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Exercise: Valid Inner Products?

I x , y ∈ RN with

〈x , y〉 = xT Ky =
N

∑
n=1

N

∑
m=1

xnKn,mym

with K an N ×N-matrix
I Answer: Only if K is positive definite (i.e., xT Kx > 0 for all

x 6=~0).
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Norm of a Vector
I Definition: The norm of vector x ∈ S is denoted by ‖x‖

and is defined via the inner product as

‖x‖ =
√
〈x , x〉.

I Notice that ‖x‖ > 0 unless x =~0, then ‖x‖ = 0.
I The norm of a vector measures the length of a vector.
I For signals ‖x(t)‖2 measures the energy of the signal.

I Example: For x ∈ RN , Cartesian length of a vector

‖x‖ =

√√√√ N

∑
n=1
|xn|2
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Norm of a Vector — continued

I Illustration:

‖a · x‖ =
√
〈a · x ,a · x〉 = |a|‖x‖

I Scaling the vector by a, scales its length by a.
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Inner Product Space

I We call a linear vector space with an associated, valid
inner product an inner product space.
I Definition: An inner product space is a linear vector space

in which a inner product is defined for all elements of the
space and the norm is given by ‖x‖ = 〈x , x〉.

I Standard Examples:
1. RN with 〈x , y〉 = ∑N

n=1 xnyn.
2. L2(a,b) with 〈x(t), y(t)〉 =

∫ b
a x(t)y(t) dt .

© 2018, B.-P. Paris ECE 630: Statistical Communication Theory 87

Gaussian Basics Random Processes Filtering of Random Processes Signal Space Concepts

Schwartz Inequality

I The following relationship between norms and inner
products holds for all inner product spaces.

I Schwartz Inequality: For any x , y ∈ S , where S is an
inner product space,

|〈x , y〉| ≤ ‖x‖ · ‖y‖

with equality if and only if x = c · y with scalar c
I Proof follows from ‖x + a · y‖2 ≥ 0 with a = − 〈x ,y〉‖y‖2 .
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Orthogonality
I Definition: Two vectors are orthogonal if the inner product

of the vectors is zero, i.e.,

〈x , y〉 = 0.

I Example: The standard basis vectors em in RN are
orthogonal; recall

em =




0
...
1
...
0




the 1 occurs on the m-th row
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Orthogonality

I Example: The basis functions for the Fourier Series
expansion wm(t) ∈ L2(0,T ) are orthogonal; recall

wm(t) =
1√
T

ej2πmt/T .
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Distance between Vectors
I Definition: The distance d between two vectors is defined

as the norm of their difference, i.e.,

d(x , y) = ‖x − y‖
I Example: The Cartesian (or Euclidean) distance between

vectors in RN :

d(x , y) = ‖x − y‖ =

√√√√ N

∑
n=1
|xn − yn|2.

I Example: The root-mean-squared error (RMSE) between
two signals in L2(a,b) is

d(x(t), y(t)) = ‖x(t)− y(t)‖ =
√∫ b

a
|x(t)− y(t)|2 dt
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Properties of Distances

I Distance measures defined by the norm of the difference
between vectors x , y have the following properties:

1. d(x , y) = d(y , x)
2. d(x , y) = 0 if and only if x = y
3. d(x , y) ≤ d(x , z) + d(y , z) for all vectors z (Triangle

inequality)
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Exercise: Prove the Triangle Inequality
I Begin like this:

d2(x , y) = ‖x − y‖2

= ‖(x − z) + (z − y)‖2

= 〈(x − z) + (z − y), (x − z) + (z − y)〉
I

d2(x , y) = 〈x − z, x − z〉+ 2〈x − z, z − y〉+ 〈z − y , z − y〉
≤ 〈x − z, x − z〉+ 2|〈x − z, z − y〉|+ 〈z − y , z − y〉

(Schwartz) : ≤ 〈x − z, x − z〉+ 2‖x − z‖ · ‖z − y‖+ 〈z − y , z − y〉
= d(x , z)2 + 2d(x , z) · d(y , z) + d(y , z)2

= (d(x , z) + d(y , z))2

© 2018, B.-P. Paris ECE 630: Statistical Communication Theory 93

Gaussian Basics Random Processes Filtering of Random Processes Signal Space Concepts

Hilbert Spaces — Why we Care
I We would like our vector spaces to have one more

property.
I We say the sequence of vectors {xn} converges to vector

x , if
lim

n→∞
‖xn − x‖ = 0.

I We would like the limit point x of any sequence {xn} to be
in our vector space.

I Integrals and derivatives are fundamentally limits; we want
derivatives and integrals to stay in the vector space.

I A vector space is said to be closed if it contains all of its
limit points.

I Definition: A closed, inner product space is A Hilbert
Space.
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Hilbert Spaces — Examples

I Examples: Both RN and L2(a,b) are Hilbert Spaces.
I Counter Example: The space of rational number Q is not

closed (i.e., not a Hilbert space)
I E.g.,

∞

∑
n=0

1
n!

= e /∈ Q,

even though all 1
n! ∈ Q.
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Subspaces

I Definition: Let S be a linear vector space. The space L is
a subspace of S if

1. L is a subset of S and
2. L is closed.

I If x , y ∈ L then also x , y ,∈ S .
I And, a · x + b · y ∈ L for all scalars a,b.

I Example: Let S be L2(Ta,Tb). Define L as the set of all
sinusoids of frequency f0, i.e., signals of the form
x(t) = A cos(2πf0t + φ), with 0 ≤ A < ∞ and 0 ≤ φ < 2π

1. All such sinusoids are square integrable.
2. Linear combination of two sinusoids of frequency f0 is a

sinusoid of the same frequency.
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Projection Theorem
I Definition: Let L be a subspace of the Hilbert Space H.

The vector x ∈ H (and x /∈ L) is orthogonal to the
subspace L if 〈x , y〉 = 0 for every y ∈ L.

I Projection Theorem: Let H be a Hilbert Space and L is a
subspace of H.
Every vector x ∈ H has a unique decomposition

x = y + z

with y ∈ L and z orthogonal to L.
Furthermore,

‖z‖ = ‖x − y‖ = min
ν∈L
‖x − ν‖.

I y is called the projection of x onto L.
I Distance from x to all elements of L is minimized by y .
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Exercise: Fourier Series
I Let x(t) be a signal in the Hilbert space L2(0,T ).
I Define the subspace L of signals νn(t) = An cos(2πnt/T )

for a fixed n and T .
I Find the signal y(t) ∈ L that minimizes

min
y(t)∈L

‖x(t)− y(t)‖2.

I Answer: y(t) is the sinusoid with amplitude

An =
2
T

∫ T

0
x(t) cos(2πnt/T ) dt =

2
T
〈x(t), cos(2πnt/T )〉.

I Note that this is (part of the trigonometric form of) the
Fourier Series expansion.

I Note that the inner product involves the projection of x(t)
onto an element of L.
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Projection Theorem

I The Projection Theorem is most useful when the subspace
L has certain structural properties.

I In particular, we will be interested in the case when L is
spanned by a set of orthonormal vectors.
I Let’s define what that means.
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Separable Vector Spaces

I Definition: A Hilbert space H is said to be separable if
there exists a set of vectors {Φn}, n = 1,2, . . . that are
elements of H and such that every element x ∈ H can be
expressed as

x =
∞

∑
n=1

XnΦn.

I The coefficients Xn are scalars associated with vectors Φn.
I Equality is taken to mean

lim
n→∞

∥∥∥∥∥x −
∞

∑
n=1

XnΦn

∥∥∥∥∥

2

= 0.
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Representation of a Vector

I The set of vectors {Φn} is said to be complete if the above
is valid for every x ∈ H.

I A complete set of vectors {Φn} is said to form a basis for
H.

I Definition: The representation of the vector x (with
respect to the basis {Φn}) is the sequence of coefficients
{Xn}.

I Definition: The number of vectors Φn that is required to
express every element x of a separable vector space is
called the dimension of the space.
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Example: Length-N column Vectors

I The space RN is separable and has dimension N.
I Basis vectors (m = 1, . . . ,N):

Φm = em =




0
...
1
...
0




the 1 occurs on the m-th row

I There are N basis vectors; dimension is N.
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Example: Length-N column Vectors — continued

I (con’t)
I For any vector x ∈ RN :

x =




x1

x2
...

xN




=
N

∑
m=1

xmem
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Examples: L2

I Fourier Bases: The following is a complete basis for
L2(0,T )

Φ2n(t) =

√
2
T

cos(2πnt/T )

Φ2n+1(t) =

√
2
T

sin(2πnt/T )

n = 0,1,2, . . .

I This implies that L2(0,T ) is a separable vector space.
I L2(0,T ) is infinite-dimensional.
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Examples: L2

I Piecewise Linear Signals: The set of vectors (signals)

Φn(t) =

{
1√
T

(n− 1)T ≤ t < nT

0 else

is not a basis for L2(0,∞).
I Only piecewise constant signals can be represented.
I But, this is a basis for the subspace of L2 consisting of

piecewise constant signals.

© 2018, B.-P. Paris ECE 630: Statistical Communication Theory 105

Gaussian Basics Random Processes Filtering of Random Processes Signal Space Concepts

Orthonormal Bases

I Definition: A basis for a separable vector space is an
orthonormal basis if the elements of the vectors that
constitute the basis satisfy

1. 〈Φn,Φm〉 = 0 for all n 6= m. (orthogonal)
2. ‖Φn‖ = 1, for all n = 1,2, . . . (normalized)

I Note:
I Not every basis is orthonormal.

I We will see shortly, every basis can be turned into an
orthonormal basis.

I Not every set of orthonornal vectors constitutes a basis.
I Example: Piecewise Linear Signals.
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Representation with Orthonormal Basis
I An orthonormal basis is much prefered over an arbitrary

basis because the representation of vector x is very easy
to compute.

I The representation {Xn} of a vector x

x =
∞

∑
n=1

XnΦn

with respect to an orthonormal basis {Φn} is computed
using

Xn = 〈x ,Φn〉.
The representation Xn is obtained by projecting x onto the
basis vector Φn!
I In contrast, when bases are not orthonormal, finding the

representation of x requires solving a system of linear
equations.
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Parsevals Relationship

I Parsevals Theorem: If vectors x and y are represented
with respect to an orthonormal basis {Φn} by {Xn} and
{Yn}, respectively, then

〈x , y〉 =
∞

∑
n=1

Xn · Yn
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Parsevals Relationship

I Parsevals theorem implies

‖x‖2 =
∞

∑
n=1

X 2
n

and

‖x − y‖2 =
∞

∑
n=1
|Xn − Yn|2

I Inner products, norms, and distances can be computed
using vectors or their representations; the results are the
same.
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Back to the Projection Theorem
I We claimed earlier that the projection theorem is

particularly useful when the subspace L is structured.
I Specifically, let L be a subspace of S spanned by a

(usually finite) orthonormal basis {Φn}N−1
n=0 .

I Note that {Φn}N−1
n=0 is not a complete basis for S .

I There are x ∈ S that cannot be represented by this basis.
I Then, the projection y ∈ L of a vector x ∈ S is simply

y =
N−1

∑
n=0

YnΦn with Yn = 〈x ,Φn〉.

I Examples:
I Band-limited Fourier series expansion
I Polynomial regression with Legendre polynomials
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Exercise: Orthonormal Basis

I Show that for orthonormal basis {Φn}, the representation
Xn of x is obtained by projection

〈x ,Φn〉 = Xn

I Hint: You need to find

X̂n = argmin
Xn
‖x − XnΦn − ∑

m 6=n
XmΦm‖2

I Show that Parsevals theorem is true.

© 2018, B.-P. Paris ECE 630: Statistical Communication Theory 111

Gaussian Basics Random Processes Filtering of Random Processes Signal Space Concepts

The Gram-Schmidt Procedure

I An arbitrary basis {Φn} can be converted into an
orthonormal basis {Ψn} using an algorithm known as the
Gram-Schmidt procedure:

Step 1: Ψ1 = Φ1
‖Φ1‖ (normalize Φ1)

Step 2 (a): Ψ̃2 = Φ2 − 〈Φ2,Ψ1〉 ·Ψ1 (make Ψ̃2 ⊥ Ψ1)
Step 2 (b): Ψ2 = Ψ̃2

‖Ψ̃2‖
...

Step k (a): Ψ̃k = Φk −∑k−1
n=1〈Φk ,Ψn〉 ·Ψn

Step k (b): Ψk = Ψ̃k
‖Ψ̃k‖

I Whenever Ψ̃n = 0, the basis vector is omitted.
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Gram-Schmidt Procedure

I Note:
I By construction, {Ψ} is an orthonormal set of vectors.
I If the orginal basis {Φ} is complete, then {Ψ} is also

complete.
I The Gram-Schmidt construction implies that every Φn can

be represented in terms of Ψm, with m = 1, . . . ,n.
I Because

I any basis can be normalized (using the Gram-Schmidt
procedure) and

I the benefits of orthonormal bases when computing the
representation of a vector

a basis is usually assumed to be orthonormal.
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Exercise: Gram-Schmidt Procedure

I The following three basis functions are given

Φ1(t) = I[0, T
2 ]
(t) Φ2(t) = I[0,T ](t) Φ3(t) = I[ T

2 ,T ](t)

where I[a,b](t) = 1 for a ≤ t ≤ b and zero otherwise.
1. Compute an orthonormal basis from the above basis

functions.
2. Compute the representation of Φn(t), n = 1,2,3 with

respect to this orthonormal basis.
3. Compute ‖Φ1(t)‖ and ‖Φ2(t)−Φ3(t)‖
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Answers for Exercise

1. Orthonormal bases:

Ψ1(t) =

√
2
T

I[0, T
2 ]
(t) Ψ2(t) =

√
2
T

I[ T
2 ,T ](t)

2. Representations:

φ1 =

(√
T
2

0

) 

√

T
2√
T
2




(
0√

T
2

)

3. Distances: ‖Φ1(t)‖ =
√

T
2 and ‖Φ2(t)−Φ3(t)‖ =

√
T
2 .
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A Hilbert Space for Random Processes

I A vector space for random processes Xt that is analogous
to L2(a,b) is of greatest interest to us.
I This vector space contains random processes that satisfy,

i.e., ∫ b

a
E[X 2

t ] dt < ∞.

I Inner Product: cross-correlation

E[〈Xt ,Yt 〉] = E[
∫ b

a
XtYt dt ].

I Fact: This vector space is separable; therefore, an
orthonormal basis {Φ} exists.
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A Hilbert Space for Random Processes
I (con’t)

I Representation:

Xt =
∞

∑
n=1

XnΦn(t) for a ≤ t ≤ b

with

Xn = 〈Xt ,Φn(t)〉 =
∫ b

a
Xt Φn(t) dt .

I Note that Xn is a random variable.
I For this to be a valid Hilbert space, we must interprete

equality of processes Xt and Yt in the mean squared
sense, i.e.,

Xt = Yt means E[|Xt − Yt |2] = 0.
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Karhunen-Loeve Expansion

I Goal: Choose an orthonormal basis {Φ} such that the
representation {Xn} of the random process Xt consists of
uncorrelated random variables.
I The resulting representation is called Karhunen-Loeve

expansion.
I Thus, we want

E[XnXm] = E[Xn]E[Xm] for n 6= m.
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Karhunen-Loeve Expansion

I It can be shown, that for the representation {Xn} to consist
of uncorrelated random variables, the orthonormal basis
vectors {Φ} must satisfy

∫ b

a
KX (t ,u) ·Φn(u) du = λnΦn(t)

I where λn = Var[Xn].
I {Φn} and {λn} are the eigenfunctions and eigenvalues of

the autocovariance function KX (t ,u), respectively.
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Example: Wiener Process

I For the Wiener Process, the autocovariance function is

KX (t ,u) = RX (t ,u) = σ2 min(t ,u).

I It can be shown that

Φn(t) =

√
2
T

sin((n− 1
2
)π

t
T
)

λn =

(
σT

(n− 1
2 )π

)2 for n = 1,2, . . ..
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Properties of the K-L Expansion
I The eigenfunctions of the autocovariance function form a

complete basis.
I If Xt is Gaussian, then the representation {Xn} is a vector

of independent, Gaussian random variables.
I For white noise, KX (t ,u) =

N0
2 δ(t − u). Then, the

eigenfunctions must satisfy
∫ N0

2
δ(t − u)Φ(u) du = λΦ(t).

I Any orthonormal set of bases {Φ} satisfies this condition!
I Eigenvalues λ are all equal to N0

2 .
I If Xt is white, Gaussian noise then the representation {Xn}

are independent, identically distributed random variables.
I zero mean
I variance N0

2
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Part III

Optimum Receivers in AWGN
Channels
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A Simple Communication System

Simple Communication System

Source
m ∈ {0,1} TX:

m→ s(t)

Nt

RX:
Rt → m̂

m̂ ∈ {0,1}s(t) Rt

I Objectives: For the above system
I describe the optimum receiver and
I find the probability of error for that receiver.
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Assumptions

Noise: Nt is a white Gaussian noise process with spectral
height N0

2 :

RN(τ) =
N0

2
δ(τ).

I Additive White Gaussian Noise (AWGN).
Source: characterized by the a priori probabilities

π0 = Pr{m = 0} π1 = Pr{m = 1}.

I For this example, will assume π0 = π1 = 1
2 .
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Assumptions (cont’d)

Transmitter: maps information bits m to signals:

m→ s(t) :





s0(t) =
√

Eb
T if m = 0

s1(t) = −
√

Eb
T if m = 1

for 0 ≤ t ≤ T .
I Note that we are considering the transmission

of a single bit.
I In AWGN channels, each bit can be

considered in isolation.
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Objective

I In general, the objective is to find the receiver that
minimizes the probability of error:

Pr{e} = Pr{m̂ 6= m}
= π0 Pr{m̂ = 1|m = 0}+ π1 Pr{m̂ = 0|m = 1}.

I For this example, optimal receiver will be given (next slide).
I Also, compute the probability of error for the

communication system.
I That is the focus of this example.
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Receiver
I We will see that the following receiver minimizes the

probability of error for this communication system.

Receiver

Rt

√
Eb
T

∫ T
0 · dt

R > 0 : m̂ = 0
R < 0 : m̂ = 1

m̂
R

I RX Frontend computes R =
∫ T

0 Rt

√
Eb
T dt = 〈Rt , s0(t)〉.

I RX Backend compares R to a threshold to arrive at
decision m̂.
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Plan for Finding Pr{e}
I Analysis of the receiver proceeds in the following steps:

1. Find the conditional distribution of the output R from the
receiver frontend.
I Conditioning with respect to each of the possibly transmitted

signals.
I This boils down to finding conditional mean and variance of

R.
2. Find the conditional error probabilities Pr{m̂ = 0|m = 1}

and Pr{m̂ = 1|m = 0}.
I Involves finding the probability that R exceeds a threshold.

3. Total probability of error:

Pr{e} = π0 Pr{m̂ = 0|m = 1}+ π1 Pr{m̂ = 0|m = 1}.
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Conditional Distribution of R

I There are two random effects that affect the received
signal:
I the additive white Gaussian noise Nt and
I the random information bit m.

I By conditioning on m — thus, on s(t) — randomness is
caused by the noise only.

I Conditional on m, the output R of the receiver frontend is a
Gaussian random variable:
I Nt is a Gaussian random process; for given s(t),

Rt = s(t) + Nt is a Gaussian random process.
I The frontend performs a linear transformation of Rt :

R = 〈Rt , s0(t)〉.
I We need to find the conditional means and variances
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Conditional Distribution of R
I The conditional means and variance of the frontend output

R are

E[R|m = 0] = Eb Var[R|m = 0] =
N0

2
Eb

E[R|m = 1] = −Eb Var[R|m = 1] =
N0

2
Eb

I Therefore, the conditional distributions of R are

pR|m=0(r ) ∼ N(Eb,
N0

2
Eb) pR|m=1(r ) ∼ N(−Eb,

N0

2
Eb)

I The two conditional distributions differ in the mean and
have equal variances.
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Conditional Distribution of R

-8 -6 -4 -2 0 2 4 6 8
r

0

0.05
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0.2
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p
d
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p
R|m=0

(r)

p
R|m=1

(r)

I The two conditional pdfs are shown in the plot above, with
I Eb = 3
I N0

2 = 1
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Conditional Probability of Error

Receiver

Rt

√
Eb
T

∫ T
0 · dt

R > 0 : m̂ = 0
R < 0 : m̂ = 1

m̂
R

I The receiver backend decides:

m̂ =

{
0 if R > 0
1 if R < 0

I Two conditional error probabilities:

Pr{m̂ = 0|m = 1} and Pr{m̂ = 1|m = 0}
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Error Probability Pr{m̂ = 0|m = 1}

-8 -6 -4 -2 0 2 4 6 8
r

0

0.05

0.1

0.15

0.2

0.25

p
d

f

p
R|m=0

(r)

p
R|m=1

(r)

I Conditional error
probability
Pr{m̂ = 0|m = 1}
corresponds to
shaded area.

Pr{m̂ = 0|m = 1} = Pr{R > 0|m = 1}

=
∫ ∞

0
pR|m=1(r ) dr = Q

(√
2Eb

N0

)
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Error Probability Pr{m̂ = 1|m = 0}
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p
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(r)

I Conditional error
probability
Pr{m̂ = 1|m = 0}
corresponds to
shaded area.

Pr{m̂ = 1|m = 0} = Pr{R < 0|m = 0}

=
∫ 0

−∞
pR|m=0(r ) dr = Q

(√
2Eb

N0

)
.
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Average Probability of Error
I The (average) probability of error is the average of the two

conditional probabilities of error.
I The average is weighted by the a priori probabilities π0 and

π1.
I Thus,

Pr{e} = π0 Pr{m̂ = 1|m = 0}+ π1 Pr{m̂ = 0|m = 1}.
I With the above conditional error probabilities and equal

priors π0 = π1 = 1
2

Pr{e} = 1
2

Q

(√
2Eb

N0

)
+

1
2

Q

(√
2Eb

N0

)
= Q

(√
2Eb

N0

)
.

I Note that the error probability depends on the ratio Eb
N0

,
I where Eb is the energy of signals s0(t) and s1(t).
I This ratio is referred to as the signal-to-noise ratio.
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Exercise - Compute Probability of Error
I Compute the probability of error for the example system if

the only change in the system is that signals s0(t) and
s1(t) are changed to triangular signals:

s0(t) =





2A
T · t for 0 ≤ t ≤ T

2

2A− 2A
T · t for T

2 ≤ t ≤ T
0 else

s1(t) = −s0(t)

with A =
√

3Eb
T .

I Answer:

Pr{e} = Q

(√
3Eb

2N0

)
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Structure of a Generic Receiver

Receiver

Rt
Analog

Frontend
Decision m̂

~R

I Receivers consist of:
I an analog frontend: maps observed signal Rt to decision

statistic ~R.
I decision device: determines which symbol m̂ was sent

based on observation of ~R.
I Optimum design of decision device will be considered first.
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Problem Setup
I Given:

I a random vector ~R ∈ Rn of observations and
I hypotheses, H0 and H1, providing statistical models for ~R:

H0: ~R ∼ p~R|H0
(~r |H0)

H1: ~R ∼ p~R|H1
(~r |H1)

with known a priori probabilities π0 = Pr{H0} and
π1 = Pr{H1} (π0 + π1 = 1).

I Problem: Decide which of the two hypotheses is best
supported by the observation ~R.
I Specific objective: minimize the probability of error

Pr{e} = Pr{decide H0 when H1 is true}
+ Pr{decide H1 when H0 is true}
= Pr{decide H0|H1}Pr{H1}+ Pr{decide H1|H0}Pr{H0}
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Generic Decision Rule

I The decision device performs a mapping that assigns a
decision, H0 or H1, to each possible observation ~R ∈ Rn.

I A generic way to realize such a mapping is:
I partition the space of all possible observations, Rn, into two

disjoint, complementary decision regions Γ0 and Γ1:

Γ0 ∪ Γ1 = Rn and Γ0 ∩ Γ1 = ∅.

I Decision Rule:

If ~R ∈ Γ0: decide H0

If ~R ∈ Γ1: decide H1
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Probability of Error

I The probability of error can now be expressed in terms of
the decision regions Γ0 and Γ1:

Pr{e} = Pr{decide H0|H1}Pr{H1}+ Pr{decide H1|H0}Pr{H0}
= π1

∫

Γ0

p~R|H1
(~r |H1) d~r + π0

∫

Γ1

p~R|H0
(~r |H0) d~r

I Our objective becomes to find the decision regions Γ0 and
Γ1 that minimize the probability of error.
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Probability of Error

I Since Γ0 ∪ Γ1 = Rn it follows that Γ1 = Rn \ Γ0

Pr{e} = π1

∫

Γ0

p~R|H1
(~r |H1) d~r + π0

∫

Rn\Γ0

p~R|H0
(~r |H0) d~r

= π0

∫

Rn
p~R|H0

(~r |H0) d~r

+
∫

Γ0

(π1p~R|H1
(~r |H1)− π0p~R|H0

(~r |H0)) d~r

= π0 −
∫

Γ0

(π0p~R|H0
(~r |H0)− π1p~R|H1

(~r |H1)) d~r .

I Pr{e} is minimized by chosing Γ0 to contain all~r for which
the integrand (π0p~R|H0

(~r |H0)− π1p~R|H1
(~r |H1)) < 0.
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Minimum Pr{e} (MPE) Decision Rule
I Thus, the decision region Γ0 that minimizes the probability

of error is given by:

Γ0 =
{
~r : (π0p~R|H0

(~r |H0)− π1p~R|H1
(~r |H1)) > 0

}

=
{
~r : π0p~R|H0

(~r |H0) > π1p~R|H1
(~r |H1))

}

=

{
~r :

p~R|H1
(~r |H1)

p~R|H0
(~r |H0)

<
π0

π1

}

I The decision region Γ1 follows

Γ1 = ΓC
0 =

{
~r :

p~R|H1
(~r |H1)

p~R|H0
(~r |H0)

>
π0

π1

}
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Likelihood Ratio
I The MPE decision rule can be written as

If
p~R|H1

(~R|H1)

p~R|H0
(~R|H0)

{
> π0

π1
decide H1

< π0
π1

decide H0

I Notation:
p~R|H1

(~R|H1)

p~R|H0
(~R|H0)

H1
≷
H0

π0
π1

I The ratio of conditional density functions

Λ(~R) =
p~R|H1

(~R|H1)

p~R|H0
(~R|H0)

is called the likelihood ratio.
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Log-Likelihood Ratio

I Many of the densities of interest are exponential functions
(e.g., Gaussian).

I For these densities, it is advantageous to take the log of
both sides of the decision rule.
I Important: This does not change the decision rule

because the logarithm is monotonically increasing!
I The MPE decision rule can be written as:

L(~R) = ln


p~R|H1

(~R|H1)

p~R|H0
(~R|H0)


 H1
≷
H0

ln

(
π0

π1

)

I L(~R) = ln(Λ(~R)) is called the log-likelihood ratio.
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Example: Gaussian Hypothesis Testing
I The most important hypothesis testing problem for

communications over AWGN channels is
H0:~R ∼ N( ~m0, σ2I)

H1:~R ∼ N( ~m1, σ2I)
I This problem arises when

I one of two known signals is transmitted over an AWGN
channel, and

I a linear analog frontend is used.
I Note that

I the conditional means are different — reflecting different
signals

I covariance matrices are the same — since they depend on
noise only.

I components of ~R are independent — indicating that the
frontend projects Rt onto orthogonal bases.
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Resulting Log-Likelihood Ratio
I For this problem, the log-likelihood ratio simplifies to

L(~R) =
1

2σ2

n

∑
k=1

(Rk −m0k )
2 − (Rk −m1k )

2

=
1

2σ2 (‖~R − ~m0‖2 − ‖~R − ~m1‖2)

=
1

2σ2

(
2〈~R, ~m1 − ~m0〉 − (‖ ~m1‖2 − ‖ ~m0‖2)

)

I The second expressions shows that the Euclidean distance
between observations ~R and means ~mi plays a central role
in Gaussian hypothesis testing.

I The last expression highlights the projection of the
observation ~R onto the difference between the means ~mi .
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MPE Decision Rule

I With the above log-liklihood ratio, the MPE decision rule
becomes equivalently
I either

〈~R, ~m1 − ~m0〉
H1
≷
H0

σ2 ln

(
π0
π1

)
+
‖ ~m1‖2 − ‖ ~m0‖2

2

I or

‖~R − ~m0‖2 − 2σ2 ln(π0)
H1
≷
H0

‖~R − ~m1‖2 − 2σ2 ln(π1)
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Decision Regions

I The MPE decision rule divides Rn into two half planes that
are the decision regions Γ0 and Γ1.

I The dividing line (decision boundary) between the regions
is perpendicular to ~m1 − ~m0.
I This is a consequence of the inner product in the first form

of the decision rule.
I If the priors π0 and π1 are equal, then the decision

boundary passes through the midpoint ~m0+ ~m1
2 .

I For unequal priors, the decision boundary is shifted towards
the mean of the less likely hypothesis.

I The distance of this shift equals δ = 2σ2| ln(π0/π1)|
‖ ~m1− ~m0‖ .

I This follows from the (squared) distances in the second
form of the decision rule.
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Decision Regions
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Probability of Error
I Question: What is the probability of error with the MPE

decision rule?
I Using MPE decision rule

〈~R, ~m1 − ~m0〉
H1
≷
H0

σ2 ln

(
π0
π1

)
+
‖ ~m1‖2 − ‖ ~m0‖2

2

I Plan:
I Find conditional densities of 〈~R, ~m1− ~m0〉 under H0 and H1.
I Find conditional error probabilities

∫

Γi

p~R|Hj
(~r |Hj ) d~r for i 6= j .

I Find average probability of error.
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Conditional Distributions

I Since 〈~R, ~m1 − ~m0〉 is a linear transformation and ~R is
Gaussian, the conditional distributions are Gaussian.

H0: N(〈 ~m0, ~m1〉 − ‖ ~m0‖2
︸ ︷︷ ︸

µ0

, σ2‖ ~m0 − ~m1‖2
︸ ︷︷ ︸

σ2
m

)

H1: N(‖ ~m1‖2 − 〈 ~m0, ~m1〉︸ ︷︷ ︸
µ1

, σ2‖ ~m0 − ~m1‖2
︸ ︷︷ ︸

σ2
m

)
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Conditional Error Probabilities

I The MPE decision rule compares

〈~R, ~m1 − ~m0〉
H1
≷
H0

σ2 ln

(
π0

π1

)
+
‖ ~m1‖2 − ‖ ~m0‖2

2︸ ︷︷ ︸
γ

I Resulting conditional probabilities of error

Pr{e|H0} = Q
(

γ− µ0

σm

)
= Q

(‖ ~m0 − ~m1‖
2σ

+
σ ln(π0/π1)

‖ ~m0 − ~m1‖

)

Pr{e|H1} = Q
(

µ1 − γ

σm

)
= Q

(‖ ~m0 − ~m1‖
2σ

− σ ln(π0/π1)

‖ ~m0 − ~m1‖

)
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Average Probability of Error
I The average error probability equals

Pr{e} =Pr{decide H0|H1}Pr{H1}+ Pr{decide H1|H0}Pr{H0}

=π0Q
(‖ ~m0 − ~m1‖

2σ
+

σ ln(π0/π1)

‖ ~m0 − ~m1‖

)
+

π1Q
(‖ ~m0 − ~m1‖

2σ
− σ ln(π0/π1)

‖ ~m0 − ~m1‖

)

I Important special case: π0 = π1 = 1
2

Pr{e} = Q
(‖ ~m0 − ~m1‖

2σ

)

I The error probability depends on the ratio of
I distance between means ‖ ~m0 − ~m1‖
I and noise standard deviation
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Maximum-Likelihood (ML) Decision Rule
I The maximum-likelihood decision rule disregards priors

and decides for the hypothesis with higher likelihood.
I ML Decision rule:

Λ(~R) =
p~R|H1

(~R|H1)

p~R|H0
(~R|H0)

H1
≷
H0

1

or equivalently, in terms of the log-likelihood,

L(~R) = ln


p~R|H1

(~R|H1)

p~R|H0
(~R|H0)


 H1
≷
H0

0

I Obviously, the ML decision is equivalent to the MPE rule
when the priors are equal.

I In the Gaussian case, the ML rule does not require
knowledge of the noise variance.
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A-Posteriori Probability
I By Bayes rule, the probability of hypothesis Hi after

observing ~R is

Pr{Hi |~R =~r} =
πip~R|Hi

(~r |Hi)

p~R(~r )
,

where p~R(~r ) is the unconditional pdf of ~R

p~R(~r ) = ∑
i

πip~R|Hi
(~r |Hi).

I Maximum A-Posteriori (MAP) decision rule:

Pr{H1|~R =~r}
H1
≷
H0

Pr{H0|~R =~r}

I Interpretation: Decide in favor of the hypothesis that is
more likely given the observed signal ~R.
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The MAP and MPE Rules are Equivalent
I The MAP and MPE rules are equivalent: the MAP decision

rule achieves the minimum probability of error.
I The MAP rule can be written as

Pr{H1|~R =~r}
Pr{H0|~R =~r}

H1
≷
H0

1.

I Inserting Pr{Hi |~R =~r} = πi p~R|Hi
(~r |Hi )

p~R(~r )
yields

π1p~R|H1
(~r |H1)

π0p~R|H0
(~r |H0)

H1
≷
H0

1

I This is obviously equal to the MPE rule

p~R|H1
(~r |H1)

p~R|H0
(~r |H0)

H1
≷
H0

π0
π1

.
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More than Two Hypotheses

I Frequently, more than two hypotheses must be considered:

H0: ~R ∼ p~R|H0
(~r |H0)

H1: ~R ∼ p~R|H1
(~r |H1)

...

HM : ~R ∼ p~R|HM
(~r |HM)

I In these cases, it is no longer possible to reduce the
decision rules to
I the computation of the likelihood ratio
I followed by comparison to a threshold
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More than Two Hypotheses

I Instead the decision rules take the following forms
I MPE rule:

m̂ = arg max
i∈{0,...,M−1}

πip~R|Hi
(~r |Hi )

I ML rule:
m̂ = arg max

i∈{0,...,M−1}
p~R|Hi

(~r |Hi )

I MAP rule:

m̂ = arg max
i∈{0,...,M−1}

Pr{Hi |~R =~r}
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More than Two Hypotheses: The Gaussian Case
I When the hypotheses are of the form Hi : ~R ∼ N(~mi , σ2I),

then the decision rules become:
I MPE and MAP decision rules:

m̂ = arg min
i∈{0,...,M−1}

‖~r − ~mi‖2 − 2σ2 ln(πi )

= arg max
i∈{0,...,M−1}

〈~r , ~mi 〉+ σ2 ln(πi )−
‖~mi‖2

2

I ML decision rule:

m̂ = arg min
i∈{0,...,M−1}

‖~r − ~mi‖2

= arg max
i∈{0,...,M−1}

〈~r , ~mi 〉 −
‖~mi‖2

2

I This is also the MPE rule when the priors are all equal.

© 2018, B.-P. Paris ECE 630: Statistical Communication Theory 159

A Simple Example Binary Hypothesis Testing Optimal Receiver Frontend M-ary Signal Sets Message Sequences

Take-Aways

I The conditional densities p~R|Hi
(~r |Hi) play a key role.

I MPE decision rule:
I Binary hypotheses:

Λ(~R) =
p~R|H1

(~R|H1)

p~R|H0
(~R|H0)

H1
≷
H0

π0
π1

I M hypotheses:

m̂ = arg max
i∈{0,...,M−1}

πip~R|Hi
(~r |Hi ).
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Take-Aways

I For the Gaussian case (different means, equal variance),
decisions are based on the Euclidean distance between
observations ~R and conditional means ~mi :

m̂ = arg min
i∈{0,...,M−1}

‖~r − ~mi‖2 − 2σ2 ln(πi)

= arg max
i∈{0,...,M−1}

〈~r , ~mi〉+ σ2 ln(πi)−
‖~mi‖2

2
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Structure of a Generic Receiver

Receiver

Rt
Analog

Frontend
Decision m̂

~R

I Receivers consist of:
I an analog frontend: maps observed signal Rt to decision

statistic ~R.
I decision device: determines which symbol m̂ was sent

based on observation of ~R.
I Focus on designing optimum frontend.
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Problem Formulation and Assumptions

I In terms of the received signal Rt , we can formulate the
following decision problem:

H0: Rt = s0(t) + Nt for 0 ≤ t ≤ T
H1: Rt = s1(t) + Nt for 0 ≤ t ≤ T

I Assumptions:
I Nt is whithe Gaussian noise with spectral height N0

2 .
I Nt is independent of the transmitted signal.

I Objective: Determine the optimum receiver frontend.
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Starting Point: KL-Expansion
I Under the i-th hypothesis, the received signal Rt can be

represented over 0 ≤ t ≤ T via the expansion

Hi : Rt =
∞

∑
j=0

Rj Φj(t) =
∞

∑
j=0

(sij + Nj)Φj(t).

I Recall:
I If the above representation yields uncorrelated coefficients

Rj , then this is a Karhunen-Loeve expansion.
I Since Nt is white, any orthonormal basis

{
Φj (t)

}
yields a

Karhunen-Loeve expansion.
I Insight:

I We can choose a basis
{

Φj (t)
}

that produces a
low-dimensional representation for all signals si (t).
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Constructing a Good Basis

I Consider the complete, but not necessarily orthonormal,
basis

{s0(t), s1(t),Ψ0(t),Ψ1(t), . . .} .
where {Ψj(t)} is any complete basis over 0 ≤ t ≤ T (e.g.,
the Fourier basis).

I Then, the Gram-Schmidt procedure is used to convert the
above basis into an orthonormal basis

{
Φj
}

.
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Properties of Resulting Basis

I Notice: with this construction
I only the first M ≤ 2 basis functions Φj (t), j < M ≤ 2 are

dependent on the signals si (t), i ≤ 2.
I I.e., for each j < M,

〈si (t),Φj (t)〉 6= 0 for at least one i = 0,1

I Recall, M < 2 if signals are not linearly independent.
I The remaining basis functions Φj (t), j ≥ M are orthogonal

to the signals si (t), i ≤ 2
I I.e., for each j ≥ M,

〈si (t),Φj (t)〉 = 0 for all i = 0,1
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Back to the Decision Problem
I Our decision problem can now be written in terms of the

representation

H0: Rt =
M−1

∑
j=0

(s0j + Nj)Φj(t) +
∞

∑
j=M

Nj Φj(t)

H1: Rt =
M−1

∑
j=0

(s1j + Nj)Φj(t)

︸ ︷︷ ︸
signal + noise

+
∞

∑
j=M

Nj Φj(t)

︸ ︷︷ ︸
noise only

where
sij = 〈si(t),Φj(t)〉
Nj = 〈Nt ,Φj(t)〉

I Note that Nj are independent, Gaussian random variables,
Nj ∼ N(0, N0

2 )
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Vector Version of Decision Problem
I The received signal Rt and its representation ~R = {Rj} are

equivalent.
I Via the basis {Φj} one can be obtained from the other.

I Therefore, the decision problem can be written in terms of
the representations

H0: ~R =~s0 + ~N

H1: ~R =~s1 + ~N

where
I all vectors are of infinite length,
I the elements of ~N are i.i.d., zero mean Gaussian,
I all elements sij with j ≥ M are zero.
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Reducing the Number of Dimensions

I We can write the conditional pdfs for the decision problem

H0: ~R ∼
M−1

∏
j=0

pN(rj − s0j) ·
∞

∏
j=M

pN(rj)

H1: ~R ∼
M−1

∏
j=0

pN(rj − s1j) ·
∞

∏
j=M

pN(rj)

where pN(r ) denotes a Gaussian pdf with zero mean and
variance N0

2 .
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Reducing the Number of Dimensions
I The optimal decision relies on the likelihood ratio

L(~R) =
∏M−1

j=0 pN(rj − s0j) ·∏∞
j=M pN(rj)

∏M−1
j=0 pN(rj − s1j) ·∏∞

j=M pN(rj)

=
∏M−1

j=0 pN(rj − s0j)

∏M−1
j=0 pN(rj − s1j)

I The likelihood ratio depends only on the first M dimensions
of ~R!
I Dimensions greater than or equal to M are irrelevant for the

decision problem.
I Only the the first M dimension need to be computed for

optimal decisions.
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Reduced Decision Problem

I The following decision problem with M dimensions is
equivalent to our original decision problem (assumes
M = 2):

H0: ~R =

(
s00

s01

)
+

(
N0

N1

)
=~s0 + ~N ∼ N(~s0,

N0

2
I)

H1: ~R =

(
s10

s11

)
+

(
N0

N1

)
=~s1 + ~N ∼ N(~s1,

N0

2
I)

I When s0(t) and s1(t) are linearly dependent, i.e.,
s1(t) = a · s0(t), then M = 1 and the decision problem
becomes one-dimensional.
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Optimal Frontend - Version 1
I From the above discussion, we can conclude that an

optimal frontend is given by.

Frontend 1

Rt
Φ0(t)

Φ1(t)

∫ T
0 dt

∫ T
0 dt

R0

R1
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Optimum Receiver - Version 1

I Note that the optimum frontend projects the received signal
Rt into to signal subspace spanned by the signals si(t).
I Recall that the first basis functions Φj (t), j < M, are

obtained from the signals.
I We know how to solve the resulting, M-dimensional

decision problem

H0: ~R =

(
s00

s01

)
+

(
N0

N1

)
=~s0 + ~N ∼ N(~s0,

N0

2
I)

H1: ~R =

(
s10

s11

)
+

(
N0

N1

)
=~s1 + ~N ∼ N(~s1,

N0

2
I)
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Optimum Receiver - Version 1

I MPE decision rule:
1. Compute

L(~R) = 〈~R,~s1 −~s0〉.
2. Compare to threshold:

γ =
N0
2

ln(π0/π1) +
‖~s1‖2 − ‖~s0‖2

2

3. Decision

If L(~R) > γ decide s1(t) was sent.

If L(~R) < γ decide s0(t) was sent.
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Optimum Receiver - Version 1

Optimum Receiver

Rt

Φ0(t)

Φ1(t)

∫ T
0 dt

∫ T
0 dt

s10 − s00

s11 − s01

H1
≷
H0

γ
m̂

R0

R1

L(~R)
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Probability of Error
I The probability of error for this receiver is

Pr{e} = π0Q


‖~s0 −~s1‖

2
√

N0
2

+

√
N0

2
ln(π0/π1)

‖~s0 −~s1‖




+ π1Q


‖~s0 −~s1‖

2
√

N0
2

−
√

N0

2
ln(π0/π1)

‖~s0 −~s1‖




I For the important special case of equally likely signals:

Pr{e} = Q


‖~s0 −~s1‖

2
√

N0
2


 = Q

(‖~s0 −~s1‖√
2N0

.

)

I This is the minimum probability of error achievable by any
receiver.
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Optimum Receiver - Version 2

I The optimum receiver derived above, computes the inner
product

〈~R,~s1 −~s0〉.
I By Parseval’s relationship, the inner product of the

representation equals the inner product of the signals

〈~R,~s1 −~s0〉 = 〈Rt , s1(t)− s0(t)〉

=
∫ T

0
Rt (s1(t)− s0(t)) dt

=
∫ T

0
Rts1(t) dt −

∫ T

0
Rts0(t)) dt .
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Optimum Receiver - Version 2

Correlator Receiver

Rt

−s0(t)

s1(t)

∫ T
0 dt

∫ T
0 dt

H1
≷
H0

γ
m̂L(~R)

I Correlator receiver.
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Optimum Receiver - Version 2a

Correlator Receiver

Rt

s1(t)− s0(t)

∫ T
0 dt

H1
≷
H0

γ
m̂L(~R)

I The two correlators can be combined into a single
correlator for an even simpler frontend.
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Optimum Receiver - Version 3
I Yet another, important structure for the optimum receiver

frontend results from the equivalence between correlation
and convolution followed by sampling.
I Convolution:

y(t) = x(t) ∗ h(t) =
∫ T

0
x(τ)h(t − τ) dτ

I Sample at t = T :

y(T ) = x(t) ∗ h(t)|t=T =
∫ T

0
x(τ)h(T − τ) dτ

I Let g(t) = h(T − t) (and, thus, h(t) = g(T − t)):
∫ T

0
x(t)g(t) dt =

∫ T

0
x(τ)h(T − τ) dτ = x(t) ∗ h(t)|t=T .

I Correlating with g(t) is equivalent to convolving with
h(t) = g(T − t), followed by symbol-rate sampling.
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Optimum Receiver - Version 3

Matched Filter Receiver

Rt s1(T − t)−
s0(T − t)

t = T

H1
≷
H0

γ
m̂L(~R)

I The filter with impulse response
h(t) = s1(T − t)− s0(T − t) is called the matched filter for
s1(t)− s0(t).
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Exercises: Optimum Receiver

I For each of the following signal sets:
1. draw a block diagram of the MPE receiver,
2. compute the value of the threshold in the MPE receiver,
3. compute the probability of error for this receiver for

π0 = π1,
4. find basis functions for the signal set,
5. illustrate the location of the signals in the signal space

spanned by the basis functions,
6. draw the decision boundary formed by the optimum

receiver.
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On-Off Keying

I Signal set:

s0(t) = 0

s1(t) =

√
E
T





for 0 ≤ t ≤ T

I This signal set is referred to as On-Off Keying (OOK) or
Amplitude Shift Keying (ASK).
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Orthogonal Signalling
I Signal set:

s0(t) =





√
E
T for 0 ≤ t ≤ T

2

−
√

E
T for T

2 ≤ t ≤ T

s1(t) =

√
E
T

for 0 ≤ t ≤ T

I Alternatively:

s0(t) =

√
2E
T

cos(2πf0t)

s1(t) =

√
2E
T

cos(2πf1t)





for 0 ≤ t ≤ T

with f0T and f1T distinct integers.
I This signal set is called Frequency Shift Keying (FSK).

© 2018, B.-P. Paris ECE 630: Statistical Communication Theory 184



A Simple Example Binary Hypothesis Testing Optimal Receiver Frontend M-ary Signal Sets Message Sequences

Antipodal Signalling
I Signal set:

s0(t) = −
√

E
T

s1(t) =

√
E
T





for 0 ≤ t ≤ T

I This signal set is referred to as Antipodal Signalling.
I Alternatively:

s0(t) =

√
2E
T

cos(2πf0t)

s1(t) =

√
2E
T

cos(2πf0t + π)





for 0 ≤ t ≤ T

I This signal set is called Binary Phase Shift Keying (BPSK).
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Linear Receiver
I Consider a receiver with a “generic” linear frontend.

Correlator Receiver

Rt

g(t)

∫ T
0 dt

H1
≷
H0

γ̃
m̂R

I We refer to these receivers as linear receivers because
their frontend performs a linear transformation of the
received signal.
I Specifically, frontend computes R = 〈Rt ,g(t)〉.
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Linear Receiver

I Objectives:
I derive general expressions for the conditional pdfs at the

output R of the frontend,
I derive general expressions for the error probability,
I confirm that the optimum linear receiver correlates with

g(t) = s1(t)− s0(t),
I i.e., the MPE receiver is also the best linear receiver.

I These results are useful for the analysis of arbitrary linear
receivers.
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Conditional Distributions
I Hypotheses:

H0: Rt = s0(t) + Nt

H1: Rt = s1(t) + Nt

signals are observed for 0 ≤ t ≤ T .
I Priors are π0 and π1.

I Conditional distributions of R = 〈Rt ,g(t)〉 are Gaussian:

H0: R ∼ N(〈s0(t),g(t)〉︸ ︷︷ ︸
µ0

,
N0

2
‖g(t)‖2

︸ ︷︷ ︸
σ2

)

H1: R ∼ N(〈s1(t),g(t)〉︸ ︷︷ ︸
µ1

,
N0

2
‖g(t)‖2

︸ ︷︷ ︸
σ2

)
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MPE Decision Rule
I For the decision problem

H0: R ∼ N(〈s0(t),g(t)〉︸ ︷︷ ︸
µ0

,
N0

2
‖g(t)‖2

︸ ︷︷ ︸
σ2

)

H1: R ∼ N(〈s1(t),g(t)〉︸ ︷︷ ︸
µ1

,
N0

2
‖g(t)‖2

︸ ︷︷ ︸
σ2

)

the MPE decision rule is

R
H1
≷
H0

γ̃

with

γ̃ =
µ0 + µ1

2
+

σ2

µ1 − µ0
ln(

π0

π1
).

© 2018, B.-P. Paris ECE 630: Statistical Communication Theory 189

A Simple Example Binary Hypothesis Testing Optimal Receiver Frontend M-ary Signal Sets Message Sequences

Probability of Error

I The probability of error, assuming π0 = π1, for this
decision rule is

Pr{e} = Q
(

µ1 − µ0

2σ

)

= Q


 〈s1(t)− s0(t),g(t)〉

2
√

N0
2 ‖g(t)‖




I Question: Which choice of g(t) minimizes the probability
of error?
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Best Linear Receiver
I The probability of error is minimized when

〈s1(t)− s0(t),g(t)〉
2
√

N0
2 ‖g(t)‖

is maximized with respect to g(t).
I We know from the Schwartz inequality that

〈s1(t)− s0(t),g(t)〉 ≤ ‖s1(t)− s0(t)‖ · ‖g(t)‖
with equality if and only if g(t) = c · (s1(t)− s0(t)), c > 0.

I Hence, to minimize probability of error, choose
g(t) = s1(t)− s0(t). Then,

Pr{e} = Q


‖s1(t)− s0(t)‖

2
√

N0
2


 = Q

(‖s1(t)− s0(t)‖√
2N0

)
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Exercise: Suboptimum Receiver
I Find the probability of error when equally likely, triangluar

signals are used by the transmitter

s0(t) =





2A
T · t for 0 ≤ t ≤ T

2

2A− 2A
T · t for T

2 ≤ t ≤ T
0 else

s1(t) = −s0(t)

with A =
√

3E
T and

I the receiver frontend simply integrates from 0 to T , i.e.,
g(t) = 1, for 0 ≤ t ≤ T and g(t) = 0, otherwise.

I Answer:

Pr{e} = Q

(√
3E
2N0

)
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Introduction
I We have focused on the problem of deciding which of two

possible signals has been transmitted.
I Binary Signal Sets

I We will generalize the design of optimum (MPE) receivers
to signal sets with M signals.
I M-ary signal sets.

I With binary signal sets one bit can be transmitted in each
signal period T .

I With M-ary signal sets, log2(M) bits are transmitted
simultaneously per T seconds.
I Example (M = 4):

00→ s0(t) 01→ s1(t)
10→ s2(t) 11→ s3(t)
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M-ary Hypothesis Testing Problem
I We can formulate the optimum receiver design problem as

a hypothesis testing problem:

H0: Rt = s0(t) + Nt

H1: Rt = s1(t) + Nt

...
HM−1: Rt = sM−1(t) + Nt

with a priori probabilities πi = Pr{Hi}, i = 0,1, . . . ,M − 1.
I Note:

I With more than two hypotheses, it is no longer helpful to
consider the (likelihood) ratio of pdfs.

I Instead, we focus on the hypothesis with the maximum a
posteriori (MAP) probability or the maximum likelihood
(ML).
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AWGN Channels

I Of most interest in communications are channels where Nt
is a white Gaussian noise process.
I Spectral height N0

2 .
I For these channels, the optimum receivers can be found by

arguments completely analogous to those for the binary
case.
I Note that with M-ary signal sets, the subspace containing

all signals will have up to M dimensions.
I We will determine the optimum receivers by generalizing

the optimum binary receivers for AWGN channels.
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Starting Point: Binary MPE Decision Rule
I We have shown, that the binary MPE decision rule can be

expressed equivalently as
I either

〈Rt , (s1(t)− s0(t))〉
H1
≷
H0

N0
2

ln

(
π0
π1

)
+
‖s1(t)‖2 − ‖s0(t)‖2

2

I or

‖Rt − s0(t)‖2 −N0 ln(π0)
H1
≷
H0

‖Rt − s1(t)‖2 −N0 ln(π1)

I The first expression is most useful for deriving the structure
of the optimum receiver.

I The second form is helpful for interpreting the decision rule
in signal space.
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M-ary MPE Receiver
I The decision rule

〈Rt , (s1(t)− s0(t))〉
H1
≷
H0

N0

2
ln

(
π0

π1

)
+
‖s1(t)‖2 − ‖s0(t)‖2

2

can be rewritten as

Z1 = 〈Rt , s1(t)〉+

γ1︷ ︸︸ ︷
N0

2
ln(π1)−

‖s1(t)‖2

2

H1
≷
H0

〈Rt , s0(t)〉+
N0

2
ln(π0)−

‖s0(t)‖2

2︸ ︷︷ ︸
γ0

= Z0
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M-ary MPE Receiver

I The decision rule is easily generalized to M signals:

m̂ = arg max
n=0,...,M−1

Zn︷ ︸︸ ︷
〈Rt , sn(t)〉+

N0

2
ln(πn)−

‖sn(t)‖2

2︸ ︷︷ ︸
γn

I The optimum detector selects the hypothesis with the
largest decision statistic Zn.
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M-ary MPE Receiver
I The bias terms γn account for unequal priors and for

differences in signal energy En = ‖sn(t)‖2.
I Common terms can be omitted

I For equally likely signals,

γn = −‖sn(t)‖2

2
.

I For equal energy signals,

γn =
N0
2

ln(πn)

I For equally likely, equal energy signal,

γn = 0
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M-ary MPE Receiver

M-ary Correlator Receiver

Rt

...

s0(t)

sM−1(t)

∫ T
0 dt

∫ T
0 dt

γ0

...

γM−1

argmax m̂

Z0

ZM−1
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Decision Statistics
I The optimum receiver computes the decision statistics

Zn = 〈Rt , sn(t)〉+
N0

2
ln(πn)−

‖sn(t)‖2

2
.

I Conditioned on the m-th signal having been transmitted,
I All Zn are Gaussian random variables.
I Expected value:

E[Zn|Hm] = 〈sm(t), sn(t)〉+
N0
2

ln(πn)−
‖sn(t)‖2

2

I (Co)Variance:

E[ZjZk |Hm]− E[Zj |Hm]E[Zk |Hm] = 〈sj (t), sk (t)〉
N0
2

© 2018, B.-P. Paris ECE 630: Statistical Communication Theory 201

A Simple Example Binary Hypothesis Testing Optimal Receiver Frontend M-ary Signal Sets Message Sequences

Exercise: QPSK Receiver

I Find the optimum receiver for the following signal set with
M = 4 signals:

sn(t) =

√
2E
T

cos(2πt/T +nπ/2) for 0 ≤ t ≤ T and n = 0, . . . ,3.
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Decision Regions
I The decision regions Γn and error probabilities are best

understood by generalizing the binary decision rule:

‖Rt − s0(t)‖2 −N0 ln(π0)
H1
≷
H0

‖Rt − s1(t)‖2 −N0 ln(π1)

I For M-ary signal sets, the decision rule generalizes to

m̂ = arg min
n=0,...,M−1

‖Rt − sn(t)‖2 −N0 ln(πn).

I This simplifies to

m̂ = arg min
n=0,...,M−1

‖Rt − sn(t)‖2

for equally likely signals.
I The optimum receiver decides in favor of the signal sn(t)

that is closest to the received signal.
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Decision Regions (equally likely signals)
I For discussing decision regions, it is best to express the

decision rule in terms of the representation obtained with
the orthonormal basis {Φk}, where
I basis signals Φk span the space that contains all signals

sn(t), with n = 0, . . . ,M − 1.
I Recall that we can obtain these basis signals via the

Gram-Schmidt procedure from the signal set.
I There are at most M orthonormal bases.

I Because of Parseval’s relationship, an equivalent decision
rule is

m̂ = arg min
n=0,...,M−1

‖~R −~sn‖2,

where ~R has elements Rk = 〈Rt ,Φk (t)〉 and~sn has
element sn,k = 〈sn(t),Φk (t)〉.

© 2018, B.-P. Paris ECE 630: Statistical Communication Theory 204



A Simple Example Binary Hypothesis Testing Optimal Receiver Frontend M-ary Signal Sets Message Sequences

Decision Regions

I The decision region Γn where the detector decides that the
n-th signal was sent is

Γn = {~r : ‖~r −~sn‖ < ‖~r −~sm‖for all m 6= n}.

I The decision region Γn is the set of all points~r that are
closer to~sn than to any other signal point.

I The decision regions are formed by linear segments that
are perpendicular bisectors between pairs of signal points.
I The resulting partition is also called a Voronoi partition.
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Example: QPSK

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
Φ

0
(t)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Φ
1
(t

)

s
0
(t)s

1
(t)

s
2
(t) s

3
(t)

sn(t) =
√

2/T cos(2πfc t + n · π/2 + π/4), for n = 0, . . . ,3.
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Example: 8-PSK

-1 -0.5 0 0.5 1
Φ

0
(t)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Φ
1
(t

)

s
0
(t)

s
1
(t)

s
2
(t)

s
3
(t)

s
4
(t)

s
5
(t)

s
6
(t)

s
7
(t)

sn(t) =
√

2/T cos(2πfc t + n · π/4), for n = 0, . . . ,7.

© 2018, B.-P. Paris ECE 630: Statistical Communication Theory 207

A Simple Example Binary Hypothesis Testing Optimal Receiver Frontend M-ary Signal Sets Message Sequences

Example: 16-QAM
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sn(t) =
√

2/T (AI · cos(2πfc t) + AQ · sin(2πfc t))

with AI ,AQ ∈ {−3,−1,1,3}.
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Symbol Energy and Bit Energy

I We have seen that error probabilities decrease when the
signal energy increases.
I Because the distance between signals increase.

I We will see further that error rates in AWGN channels
depend only on
I the signal-to-noise ratio Eb

N0
, where Eb is the average energy

per bit, and
I the geometry of the signal constellation.

I To focus on the impact of the signal geometry, we will fix
either
I the average energy per symbol Es = 1

M ∑M−1
n=0 ‖sn(t)‖2 or

I the average energy per bit Eb = Es
log2(M)
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Example: QPSK

I QPSK signals are given by

sn(t) =

√
2Es

T
cos(2πfc t +n ·π/2+π/4), for n = 0, . . . ,3.

I Each of the four signals sn(t) has energy

En = ‖sn(t)‖2 = Es.

I Hence,
I the average symbol energy is Es
I the average bit energy is Eb = Es

log2(4)
= Es

2
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Example: 8-PSK

I 8-PSK signals are given by

sn(t) =
√

2Es/T cos(2πfc t + n · π/4), for n = 0, . . . ,7.

I Each of the eight signals sn(t) has energy

En = ‖sn(t)‖2 = Es.

I Hence,
I the average symbol energy is Es
I the average bit energy is Eb = Es

log2(8)
= Es

3
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Example: 16-QAM

I 16-QAM signals can be written as

sn(t) =

√
2E0

T
(aI · cos(2πfc t) + aQ · sin(2πfc t))

with aI ,aQ ∈ {−3,−1,1,3}.
I There are

I 4 signals with energy (12 + 12)E0 = 2E0
I 8 signals with energy (32 + 12)E0 = 10E0
I 4 signals with energy ((32 + 32)E0 = 18E0

I Hence,
I the average symbol energy is 10E0
I the average bit energy is Eb = Es

log2(16) =
5E0

2
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Energy Efficiency
I We will see that the influence of the signal geometry is

captured by the energy efficiency

ηP =
d2

min
Eb

where dmin is the smallest distance between any pair of
signals in the constellation.

I Examples:
I QPSK: dmin =

√
2Es and Eb = Es

2 , thus ηP = 4.

I 8-PSK: dmin =
√
(2−

√
2)Es and Eb = Es

3 , thus

ηP = 3 · (2−
√

2) ≈ 1.75.
I 16-QAM: dmin = 2

√
E0 and Eb = 5E0

2 , thus ηP = 8
5 .

I Note that energy efficiency decreases with the size of the
constellation for 2-dimensional constellations.
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Computing Probability of Symbol Error

I When decision boundaries intersect at right angles, then it
is possible to compute the error probability exactly in
closed form.
I The result will be in terms of the Q-function.
I This happens whenever the signal points form a

rectangular grid in signal space.
I Examples: QPSK and 16-QAM

I When decision regions are not rectangular, then closed
form expressions are not available.
I Computation requires integrals over the Q-function.
I We will derive good bounds on the error rate for these

cases.
I For exact results, numerical integration is required.
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Illustration: 2-dimensional Rectangle
I Assume that the n-th signal was transmitted and that the

representation for this signal is~sn = (sn,0, sn,1)
′
.

I Assume that the decision region Γn is a rectangle

Γn = {~r = (r0, r1)
′

:sn,0 − a1 < r0 < sn,0 + a2 and
sn,1 − b1 < r1 < sn,1 + b2}.

I Note: we have assumed that the sides of the rectangle are
parallel to the axes in signal space.

I Since rotation and translation of signal space do not affect
distances this can be done without affecting the error
probability.

I Question: What is the conditional error probability,
assuming that sn(t) was sent.
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Illustration: 2-dimensional Rectangle
I In terms of the random variables Rk = 〈Rt ,Φk 〉, with

k = 0,1, an error occurs if

error event 1︷ ︸︸ ︷
(R0 ≤ sn,0 − a1 or R0 ≥ sn,0 + a2) or
(R1 ≤ sn,1 − b1 or R1 ≥ sn,1 + b2)︸ ︷︷ ︸

error event 2

.

I Note that the two error events are not mutually exclusive.
I Therefore, it is better to consider correct decisions instead,

i.e., ~R ∈ Γn:

sn,0 − a1 < R0 < sn,0 + a2 and sn,1 − b1 < R1 < sn,1 + b2
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Illustration: 2-dimensional Rectangle
I We know that R0 and R1 are

I independent - because Φk are orthogonal
I with means sn,0 and sn,1, respectively
I variance N0

2 .
I Hence, the probability of a correct decision is

Pr{c|sn} =Pr{−a1 < N0 < a2} · Pr{−b1 < N1 < b2}

=
∫ a2

−a1

pR0|sn(r0) dr0 ·
∫ b2

−b1

pR1|sn(r1) dr1

=(1−Q
(

a1√
N0/2

)
−Q

(
a2√
N0/2

)
)·

(1−Q
(

b1√
N0/2

)
−Q

(
b2√
N0/2

)
).
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Exercise: QPSK
I Find the error rate for the signal set

sn(t) =
√

2Es/T cos(2πfc t +n ·π/2+π/4), for n = 0, . . . ,3.

I Answer: (Recall ηP =
d2

min
Eb

= 4 for QPSK)

Pr{e} = 2Q

(√
Es

N0

)
−Q2

(√
Es

N0

)

= 2Q

(√
2Eb

N0

)
−Q2

(√
2Eb

N0

)

= 2Q

(√
ηPEb

2N0

)
−Q2

(√
ηPEb

2N0

)
.
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Exercise: 16-QAM
(Recall ηP =

d2
min
Eb

= 8
5 for 16-QAM)

I Find the error rate for the signal set
(aI ,aQ ∈ {−3,−1,1,3})
sn(t) =

√
2E0/T aI · cos(2πfc t) +

√
2E0/T aQ · sin(2πfc t)

I Answer: (ηP =
d2

min
Eb

= 4)

Pr{e} = 3Q

(√
2E0

N0

)
− 9

4
Q2

(√
2E0

N0

)

= 3Q

(√
4Eb

5N0

)
− 9

4
Q2

(√
4Eb

5N0

)

= 3Q

(√
ηPEb

2N0

)
− 9

4
Q2

(√
ηPEb

2N0

)
.
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N-dimensional Hypercube
I Find the error rate for the signal set with 2N signals of the

form (bk ,n ∈ {−1,1}):

sn(t) =
N

∑
k=1

√
2Es

NT
bk ,n cos(2πnt/T ), for 0 ≤ t ≤ T

I Answer:

Pr{e} = 1−
(

1−Q

(√
2Es

N ·N0

))N

= 1−
(

1−Q

(√
2Eb

N0

))N

= 1−
(

1−Q

(√
ηPEb

2N0

))N

≈ N ·Q
(√

ηPEb

2N0

)
.
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Comparison
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I Better power efficiency ηP leads to better error
performance (at high SNR).
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What if Decision Regions are not Rectangular?

I Example: For 8-PSK, the probability of a correct decision
is given by the following integral over the decision region
for s0(t)

Pr{c} =
∫ ∞

0

1√
2πN0/2

exp(− (x −√Es)2

2No/2
∫ x tan(π/8)

−x tan(π/8)

1√
2πN0/2

exp(− y2

2N0/2
) dy

︸ ︷︷ ︸
=1−2Q( x tan(π/8)√

N0/2
)

dx

I This integral cannot be computed in closed form.
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Union Bound
I When decision boundaries do not intersect at right angles,

then the error probability cannot be computed in closed
form.

I An upper bound on the conditional probability of error
(assuming that sn was sent) is provided by:

Pr{e|sn} ≤ ∑
k 6=n

Pr{‖~R −~sk‖ < ‖~R −~sn‖|~sn}

= ∑
k 6=n

Q
(‖~sk −~sn‖

2
√

N0/2

)
.

I Note that this bound is computed from pairwise error
probabilities between sn and all other signals.
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Union Bound

I Then, the average probability of error can be bounded by

Pr{e} = ∑
n

πn ∑
k 6=n

Q
(‖~sk −~sn‖√

2N0

)
.

I This bound is called the union bound; it approximates the
union of all possible error events by the sum of the
pairwise error probabilities.
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Example: QPSK
I For the QPSK signal set

sn(t) =
√

2Es/T cos(2πfc t +n ·π/2+π/4), for n = 0, . . . ,3

the union bound is

Pr{e} ≤ 2Q

(√
Es

N0

)
+ Q

(√
2Es

N0

)
.

I Recall that the exact probability of error is

Pr{e} = 2Q

(√
Es

N0

)
−Q2

(√
Es

N0

)
.
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“Intelligent” Union Bound

I The union bound is easily tightened by recognizing that
only immediate neighbors of sn must be included in the
bound on the conditional error probability.

I Define the the neighbor set NML(sn) of sn as the set of
signals sk that share a decision boundary with signal sn.

I Then, the conditional error probability is bounded by

Pr{e|sn} ≤ ∑
k∈NML(sn)

Pr{‖~R −~sk‖ < ‖~R −~sn‖|~sn}

= ∑
k∈NML(sn)

Q
(‖~sk −~sn‖

2
√

N0/2

)
.
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“Intelligent” Union Bound

I Then, the average probability of error can be bounded by

Pr{e} ≤∑
n

πn ∑
k∈NML(sn)

Q
(‖~sk −~sn‖√

2N0

)
.

I We refer to this bound as the intelligent union bound.
I It still relies on pairwise error probabilities.
I It excludes many terms in the union bound; thus, it is tighter.
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Example: QPSK
I For the QPSK signal set

sn(t) =
√

2Es/T cos(2πfc t +n ·π/2+π/4), for n = 0, . . . ,3

the intelligent union bound includes only the immediate
neighbors of each signal:

Pr{e} ≤ 2Q

(√
Es

N0

)
.

I Recall that the exact probability of error is

Pr{e} = 2Q

(√
Es

N0

)
−Q2

(√
Es

N0

)
.
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Example: 16-QAM
I For the 16-QAM signal set, there are

I 4 signals si that share a decision boundary with 4
neighbors; bound on conditional error probability:

Pr{e|si} = 4Q(
√

2E0
N0

).
I 8 signals sc that share a decision boundary with 3

neighbors; bound on conditional error probability:

Pr{e|sc} = 3Q(
√

2E0
N0

).
I 4 signals so that share a decision boundary with 2

neighbors; bound on conditional error probability:

Pr{e|so} = 2Q(
√

2E0
N0

).
I The resulting intelligent union bound is

Pr{e} ≤ 3Q

(√
2E0

N0

)
= 3Q

(√
4Eb

5N0

)
.
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Example: 16-QAM

I The resulting intelligent union bound is

Pr{e} ≤ 3Q

(√
4Eb

5N0

)
.

I Recall that the exact probability of error is

Pr{e} = 3Q

(√
4Eb
5N0

)
− 9

4
Q2

(√
4Eb
5N0

)
.
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Nearest Neighbor Approximation
I At high SNR, the error probability is dominated by terms

that involve the shortest distance dmin between any pair of
nodes.
I The corresponding error probability is proportional to

Q(
√

dmin
2N0

).

I For each signal sn, we count the number Nn of neighbors
at distance dmin.

I Then, the error probability at high SNR can be
approximated as

Pr{e} ≈ 1
M

M−1

∑
n=0

NnQ(

√
d2

min
2N0

) = N̄minQ(

√
d2

min
2N0

).
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Example: 16-QAM
I In 16-QAM, the distance between adjacent signals is

dmin = 2
√

E0; also, Eb = 5
2E0.

I There are:
I 4 signals with 4 nearest neighbors
I 8 signals with 3 nearest neighbors
I 4 signals with 2 nearest neighbors

I The average number of neighbors is N̄min = 3.
I The error probability is approximately,

Pr{e} ≈ 3Q

(√
2E0

N0

)
= 3Q

(√
4Eb

5N0

)
.

I same as the intelligent union bound.

© 2018, B.-P. Paris ECE 630: Statistical Communication Theory 232



A Simple Example Binary Hypothesis Testing Optimal Receiver Frontend M-ary Signal Sets Message Sequences

Example: 8-PSK

I For 8-PSK, each signal has 2 nearest neighbors at

distance dmin =
√
(2−

√
2)Es; also, Eb = Es

3 .
I Hence, both the intelligent union bound and the nearest

neighbor approximation yield

Pr{e} ≈ 2Q



√

(2−
√

2)Es

2N0


 = 2Q



√

3(2−
√

2)Eb

2N0




I Since, Eb = 3Es.
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Comparison
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Solid: exact Pe , dashed: approximation. For 8PSK, only approximation is shown.

I The intelligent union bound is very tight for all cases
considered here.
I It also coincides with the nearest neighbor approximation
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General Approximation for Probability of Symbol Error

I From the above examples, we can conclude that a good,
general approximation for the probability of error is given by

Pr{e} ≈ N̄minQ
(

dmin√
2N0

)
= N̄minQ

(√
ηPEb

2N0

)
.

I Probability of error depends on
I signal-to-noise ratio (SNR) Eb/N0 and
I geometry of the signal constellation via the average number

of neighbors N̄min and the power efficiency ηP .
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Bit Errors

I So far, we have focused on symbol errors; however,
ultimately we are concerned about bit errors.

I There are many ways to map groups of log2(M) bits to the
M signals in a constellation.

I Example QPSK: Which mapping is better?

QPSK Phase Mapping 1 Mapping 2
π/4 00 00

3π/4 01 01
5π/4 10 11
7π/4 11 10
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Bit Errors

I Example QPSK:

QPSK Phase Mapping 1 Mapping 2
π/4 00 00

3π/4 01 01
5π/4 10 11
7π/4 11 10

I Note, that for Mapping 2 nearest neighbors differ in exactly
one bit position.
I That implies, that the most common symbol errors will

induce only one bit error.
I That is not true for Mapping 1.
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Gray Coding
I A mapping of log2(M) bits to M signals is called Gray

Coding if
I The bit patterns that are assigned to nearest neighbors in

the constelation
I differ in exactly one bit position.

I With Gray coding, the most likely symbol errors induce
exactly one bit error.
I Note that there are log2(M) bits for each symbol.

I Hence, with Gray coding the bit error probability is well
approximated by

Pr{bit error} ≈ N̄min

log2(M)
Q

(√
ηPEb

2N0

)
. Q

(
dmin√
2N0

)
.
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Introduction

I We compare methods for transmitting a sequence of bits.
I We will see that the performance of these methods varies

significantly.
I New perspective:

I Focus on messages, i.e., sequences of bits
I Entire message must be received correctly

I Main Result: It is possible to achieve error free
communications as long as SNR is good enough and data
rate is not too high.
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Problem Statement

I Problem:
I K bits must be transmitted in T seconds.
I Available power is limited to P.

I Questions:
I What method achieves the lowest probability of error?
I Is error-free communications possible?
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Parameters
I Data Rate:

R =
K
T

(bits/s)

I entire transmission takes T seconds
I K bits are sent over T seconds
I implicit assumption: bits are equally likely.

I Power and energy: transmitted signal s(t) has power P
and energy E

P =
1
T

∫ T

0
|s(t)|2 dt =

E
T

I Entire transmitted signal s(t) is of duration T .
I Note, bit energy is given by

Eb =
E
K

=
PT
K

=
P
R
.
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Bit-by-bit Signaling
I Transmit K bit as a sequence of “one-shot” BPSK signals.
I K = RT bits to be transmitted.
I Energy per bit Eb (Eb = E

K ).
I Consider, signals of the form

s(t) =
K−1

∑
k=0

√
Ebskp(t − k/R)

I sk ∈ {±1}
I p(t) is a pulse of duration 1/R = T /K and ‖p(t)‖2 = 1.

I Question: What is the probability that any transmission
error occurs?
I In other words, the transmission is not received without

error.
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Error Probability for Bit-by-Bit Signaling

I We can consider the entire message as a single
K -dimensional signal set.
I Signals are at the vertices of a K -dimensional hypercube.

Pr{e} = 1−
(

1−Q
(

2Eb

N0

))K

= 1−
(

1−Q
(

2P
RN0

))RT

I Note, for any finite P/N0 and R, the error rate will always
tend to 1 as T � ∞.
I Error-free transmission is not possible with bit-by-bit

signaling.
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Block-Orthogonal Signaling
I Again,

I K = RT bits are transmitted in T seconds.
I Energy per bit Eb = P

R .
I Signal set (Pulse-position modulation — PPM)

sk (t) =
√

Ep(t − kT /2K ) for k = 0,1, . . . ,2K − 1.

where p(t) is of duration T /2K , E = KEb, and
‖p(t)‖2 = 1.

I Alternative signal set (Frequency Shift Keying — FSK)

sk (t) =

√
2E
T

cos(2π(fc + k/T )t) for k = 0,1, . . . ,2K − 1.

I Signal set consists of M = 2K signals
I each signal conveys K bits,
I each signal occupies one of the K dimensions.
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Union Bound
I The error probability for block-orthogonal signaling cannot

be computed in closed form.
I At high and moderate SNR, the error probability is well

approximated by the union bound.
I Each signal has M − 1 = 2K − 1 nearest neighbors.
I The distance between neighbors is dmin =

√
2E =

√
2KEb.

I Union bound

Pr{e} ≤ (2K − 1)Q

(√
KEb

N0

)

= (2RT − 1)Q

(√
PT
N0

)
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Bounding the Union Bound
I To gain further insight, we bound

Q(x) ≤ 1
2
exp(−x2/2) ≤ exp(−x2/2).

I Then,

Pr{e} ≤ (2RT − 1)Q

(√
PT
N0

)

. 2RT exp(− PT
2N0

)

= exp(−T (
P

2N0
−R ln2)).

I Hence, Pr{e} → 0 as T → ∞!
I As long as R < 1

ln2
P

2N0
.

I Error-free transmission is possible!
© 2018, B.-P. Paris ECE 630: Statistical Communication Theory 246



A Simple Example Binary Hypothesis Testing Optimal Receiver Frontend M-ary Signal Sets Message Sequences

Reality-Check: Bandwidth

I Bit-by-bit Signaling: Pulse-width: T /K = 1/R.
I Bandwidth is approximately equal to B = R.
I Also, number of dimensions K = RT .

I Block-orthogonal: Pulse width: T /2K = T /2RT .
I Bandwidth is approximately equal to B = 2RT /T .
I Number of dimensions is 2K = 2RT .

I Bandwidth for block-orthogonal signaling grows
exponentially with the number of bits K .
I Not practical for moderate to large blocks of bits.
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The Dimensionality Theorem

I The relationship between bandwidth B and the number of
dimensions is summarized by the dimensionality theorem:
I The number of dimensions D available over an interval od

duration T is limited by the bandwidth B

D ≤ B · T
I The theorem implies:

I A signal occupying D dimensions over T seconds requires
bandwidth

B ≥ D
T
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An Ideal Signal Set

I An ideal signal set combines the aspects of our two
example signal sets:
I Pr{e}-behavior like block orthogonal signaling

lim
T→∞

Pr{e} = 0.

I Bandwidth behavior like bit-by-bit signaling

B =
D
T

= constant.

I Thus, D = BT → ∞ as T → ∞.

I Question: Does such a signal set exist?
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Towards Channel Capacity

I Given:
I bandwidth B = D

T , where T is the duration of the
transmission.

I power P
I Noise power spectral density N0

2
I Question: What is the highest data rate R that allows

error-free transmission with the above constraints?
I We are transmitting RT bits
I Therefore, we need M = 2RT signals.
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Signal Set
I Our signal set consists of M = 2RT signals of the form

sn(t) =
D−1

∑
k=0

Xn,kp(t − kT /D)

where
I p(t) are pulses of duration T /D, i.e., of bandwidth

B = D/T .
I Also, ‖p(t)‖2 = 1.

I Each signal sn(t) is defined by a length-D vector
~Xn = {X}n,k .

I We are looking to find M = 2RT length-D vectors ~X that
lead to good error properties.

I Note that the signals p(t − kT /D) form an orthonormal
basis with D dimensions.
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Receiver Frontend

I The receiver frontend consists of a matched filter for p(t)
followed by a sampler at times kT /D.
I I.e., the frontend projects the received signal onto the

orthonormal basis functions p(t − kT /D).
I The vector ~R of matched filter outputs has elements

Rk = 〈Rt ,p(t − kT /D)〉 k = 0,1, . . . ,D − 1

I Conditional on sn(t) was sent, ~R ∼ N( ~Xn,
No
2 I).

I The optimum receiver selects the signal sn that’s closest to
~R.
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Conditional Error Probability

I When, the signal sn(t) was sent then ~R ∼ N( ~Xn,
No
2 I).

I As the number of dimensions D increases, the vector ~R lies
within a D-dimensional sphere with center ~Xk and radius√

D N0
2 with very high probability: 1− e−D, i.e., Pe = e−D.

I Important: We allow the radius of the decoding spheres to
grow with the number of dimensions D.

I This ensures that Pe → 0 as D = BT → ∞.

I We call the spheres of radius
√

D N0
2 around each signal

point decoding spheres.
I The decoding spheres will be part of the decision regions

for each point.
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Power Constraint

I The power for signal sn(t) must satisfy

1
T

∫ T

0
s2

n(t) dt =
1
T

D−1

∑
k=0
|Xn,k |2 =

1
T
‖~Xn‖2 ≤ P.

I Therefore, ‖~Xn‖2 ≤ PT
I Insights:

I The transmitted signals lie in a sphere of radius
√

PT .
I The observed signals must lie in a large sphere of radius√

PT + D N0
2 .

I Question: How many decoding spheres can we have and
still meet the power constraint?
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Capacity

I Each decoding sphere has volume KD(
√

D N0
2 )

D
.

I The volume of the sphere containing the observed signals

is KD(
√

PT + D N0
2 )

D

I KD is a constant that depends only on the number of
dimensions D, e.g., K3 = 4π

3 .
I The number of decoding spheres that fit into the the power

sphere is (upper) bounded by the ratio of the volumes

KD

(√
PT + D N0

2

)D

KD

(√
D N0

2

)D
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Capacity
I Since the number of signals M = 2RT equals the number

of decoding spheres, it follows that error free
communications is possible (in the limit as D = BT → ∞) if

M = 2RT <

(√
PT + D N0

2

)D

(√
D N0

2

)D

or

R <
D
2T

log2(1 +
PT

DN0/2
) =

B
2
log2(1 +

P
BN0/2

).

I Note, if we allow complex valued signals, then
R < B log2(1 + P

BN0
).
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Illustration: 2-bit Messages

I Consider two different ways of transmitting two bits:
I QPSK
I rate 2/3 block code and BPSK modulation

I Compare the probability of at least one bit error
I constant Eb

N0
.
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QPSK

I We know that for QPSK
I energy efficiency ηu = 4
I (symbol) error rate

Pe ≤ 2Q

(√
2Eb
N0

)
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Benefit of a Simple Code
I The block code maps two bits to sequence of three BPSK

symbols as follows:

00 :{1,1,1} 01 : {1,−1,−1}
10 :{−1,1,−1} 11 : {−1,−1,1}

I For this signal set:
I energy efficiency ηc = 16

3I (symbol) error rate

Pe ≤ 3Q

(√
8Eb

3N0

)

I Coding gain:
ηc

ηu
=

16/3
4

=
4
3
≈ 1dB

© 2018, B.-P. Paris ECE 630: Statistical Communication Theory 259

Complex Envelope Spectrum of Digitally Modulated Signals

Part IV

Complex Envelope and Linear
Modulation
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Passband Signals

I We have seen that many signal sets include both
sin(2πfc t) and cos(2πfc t).
I Examples include PSK and QAM signal sets.

I Such signals are referred to as passband signals.
I Passband signals have frequency spectra concentrated

around a carrier frequency fc .
I This is in contrast to baseband signals with spectrum

centered at zero frequency.
I Baseband signals can be converted to passband signals

through up-conversion.
I Passband signals can be converted to baseband signals

through down-conversion.
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Up-Conversion

×

+

×

√
2 cos(2πfc t)

−
√

2 sin(2πfc t)

sI(t)

sQ(t)

sP(t)

I The passband signal sP(t) is
constructed from two (digitally
modulated) baseband signals, sI(t)
and sQ(t).
I Note that two signals can be

carried simultaneously!
I sI(t) and sQ(t) are the in-phase

(I) and quadrature (Q)
compenents of sp(t).

I This is a consequence of
sI(t) cos(2πfc t) and
sQ(t) sin(2πfc t) being orthogonal
I when the carrier frequency fc is

much greater than the bandwidth
of sI(t) and sQ(t).
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Exercise: Orthogonality of In-phase and Quadrature
Signals

I Show that sI(t) cos(2πfc t) and sQ(t) sin(2πfc t) are
orthogonal when fc � B, where B is the bandwidth of sI(t)
and sQ(t).
I You can make your argument either in the time-domain or

the frequency domain.
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Baseband Equivalent Signals
I The passband signal sP(t) can be written as

sP(t) =
√

2sI(t) · cos(2πfc t)−
√

2sQ(t) · sin(2πfc t).

I If we define s(t) = sI(t) + j · sQ(t), then sP(t) can also be
expressed as

sP(t) =
√

2 · <{s(t)} · cos(2πfc t)−
√

2 · ={s(t)} · sin(2πfc t)

=
√

2 · <{s(t) · exp(j2πfc t)}.
I The signal s(t):

I is called the baseband equivalent, or the complex envelope
of the passband signal sP(t).

I It contains the same information as sP(t).
I Note that s(t) is complex-valued.
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Polar Representation
I Sometimes it is useful to express the complex envelope

s(t) in polar coordinates:

s(t) = sI(t) + j · sQ(t)
= e(t) · exp(jθ(t))

with

e(t) =
√

s2
I (t) + s2

Q(t)

tan θ(t) =
sQ(t)
sI(t)

I Also,

sI(t) = e(t) · cos(θ(t))
sQ(t) = e(t) · sin(θ(t))
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Exercise: Complex Envelope

I Find the complex envelope representation of the signal

sp(t) = sinc(t/T ) cos(2πfc t +
π

4
).

I Answer:

s(t) =
ejπ/4
√

2
sinc(t/T )

=
1
2
(sinc(t/T ) + jsinc(t/T )).
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Illustration: QPSK with fc = 2/T
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I Passband signal (top):
segments of sinusoids
with different phases.
I Phase changes occur

at multiples of T .
I Baseband equivalent

signal (bottom) is
complex valued;
magnitude and phase
are plotted.
I Magnitude is constant

(rectangular pulses).

I Complex baseband signal shows symbols much more
clearly than passband signal.
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Illustration: 16-QAM with fc = 10/T
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I Passband signal (top):
segments of sinusoids
with different phases.
I Phase and amplitude

changes occur at
multiples of T .

I Baseband signal
(bottom) is complex
valued; magnitude and
phase are plotted.
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Frequency Domain
I The time-domain relationships between the passband

signal sp(t) and the complex envelope s(t) lead to
corresponding frequency-domain expressions.

I Note that

sp(t) = <{s(t) ·
√

2 exp(j2πfc t)}

=

√
2

2
(s(t) · exp(j2πfc t) + s∗(t) · exp(−j2πfc t)) .

I Taking the Fourier transform of this expression:

SP(f ) =

√
2

2
(S(f − fc) + S∗(−f − fc)) .

I Note that SP(f ) has the conjugate symmetry
(SP(f ) = S∗P(−f )) that real-valued signals must have.
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Frequency Domain
I In the frequency domain:

SP(f ) =

√
2

2
(S(f − fc) + S∗(−f − fc)) .

and, thus,

S(f ) =

{ √
2 · SP(f + fc) for f + fc > 0

0 else.

f

SP(f )

−fc fc

A

f

S(f )

−fc fc

√
2 · A
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Down-conversion

RP (t)

×

×

√
2 cos(2πfc t)

−
√

2 sin(2πfc t)

LPF

LPF

RI (t)

RQ(t)

I The down-conversion system is the
mirror image of the up-conversion
system.

I The top-branch recovers the
in-phase signal sI(t).

I The bottom branch recovers the
quadrature signal sQ(t)
I See next slide for details.
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Down-Conversion
I Let the the passband signal sp(t) be input to

down-coverter:

sP(t) =
√

2(sI(t) cos(2πfc t)− sQ(t) sin(2πfc t))

I Multiplying sP(t) by
√

2 cos(2πfc t) on the top branch yields

sP(t)·
√

2 cos(2πfc t)

= 2sI(t) cos2(2πfc t)− 2sQ(t) sin(2πfc t) cos(2πfc t)
= sI(t) + sI(t) cos(4πfc t)− sQ(t) sin(4πfc t).

I The low-pass filter rejects the components at ±2fc and
retains sI(t).

I A similar argument shows that the bottom branch yields
sQ(t).
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Extending the Complex Envelope Perspective

I The baseband description of the transmitted signal is very
convenient:
I it is more compact than the passband signal as it does not

include the carrier component,
I while retaining all relevant information.

I However, we are also concerned what happens to the
signal as it propagates to the receiver.
I Question: Do baseband techniques extend to other parts

of a passband communications system?
I Filtering of the passband signal
I Noise added to the passband signal
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Complete Passband System

×

+

×

√
2 cos(2πfc t)

−
√

2 sin(2πfc t)

hP (t)

×

×

√
2 cos(2πfc t)

−
√

2 sin(2πfc t)

LPF

LPF

sI (t)

sQ(t)

sP (t) rP (t)

rI (t)

rQ(t)

I Question: Can the pass band filtering (hP(t)) be described
in baseband terms?
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Passband Filtering
I For the passband signals sP(t) and RP(t)

rP(t) = sP(t) ∗ hP(t) (convolution)

I Define a baseband equivalent impulse (complex) response
h(t).

I The relationship between the passband and baseband
equivalent impulse response is

hP(t) = <{h(t) ·
√

2 exp(j2πfc t)}
I Then, the baseband equivalent signals s(t) and

r (t) = rI(t) + jrQ(t) are related through

r (t) =
s(t) ∗ h(t)√

2
↔ R(f ) =

S(f )H(f )√
2

.

I Note the division by
√

2!
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Passband and Baseband Frequency Response
I In the frequency domain

H(f ) =

{ √
2HP(f + fc) for f + fc > 0

0 else.

Hp(f ) =

√
2

2
(H(f − fc) + H∗(−f − fc))

f

HP(f )

−fc fc

A

f

H(f )

−fc fc

√
2A
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Exercise: Multipath Channel

I A multi-path channel has (pass-band) impulse response

hP(t) = ∑
k

ak · δ(t − τk ).

Find the baseband equivalent impulse response h(t)
(assuming carrier frequency fc) and the response to the
input signal sp(t) = cos(2πfc t).
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Passband White Noise

NP (t)

×

×

√
2 cos(2πfc t)

−
√

2 sin(2πfc t)

LPF

LPF

NI (t)

NQ(t)

I Let (real-valued) white Gaussian
noise NP(t) of spectral height N0

2 be
input to the down-converter.

I Then, each of the two branches
produces indepent, white noise
processes NI(t) and NQ(t) with
spectral height N0

2 .
I This can be interpreted as (circular)

complex noise of spectral height N0.
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Complete Passband System

×

+

×

√
2 cos(2πfc t)

−
√

2 sin(2πfc t)

hP (t) +

NP (t) ×

×

√
2 cos(2πfc t)

−
√

2 sin(2πfc t)

LPF

LPF

sI (t)

sQ(t)

sP (t) RP (t)

RI (t)

RQ(t)

I Complete pass-band system with channel (filter) and
passband noise.
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Baseband Equivalent System

h(t)√
2

+

N(t)

s(t) R(t)

I The passband system can be interpreted as follows to yield
an equivalent system that employs only baseband signals:
I baseband equivalent transmitted signal:

s(t) = sI(t) + j · sQ(t).
I baseband equivalent channel with complex valued impulse

response: h(t).
I baseband equivalent received signal:

R(t) = RI(t) + j ·RQ(t).
I complex valued, additive Gaussian noise: N(t) with

spectral height N0.
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Generalizing The Optimum Receiver

I We have derived all relationships for the optimum receiver
for real-valued signals.

I When we use complex envelope techniques, some of our
expressions must be adjusted.
I Generalizing inner product and norm
I Generalizing the matched filter (receiver frontend)
I Adapting the signal space perspective
I Generalizing the probability of error expressions
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Inner Products and Norms

I The inner product between two complex signals x(t) and
y(t) must be defined as

〈x(t), y(t)〉 =
∫

x(t) · y∗(t) dt .

I This is needed to ensure that the resulting squared norm is
positive and real

‖x(t)‖2 = 〈x(t), x(t)〉 =
∫
|x(t)|2 dt
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Inner Products and Norms
I Norms are equal for passband and equivalent baseband

signals.
I Let

xp(t) =<{x(t)
√

2 exp(j2πfc t)}
yp(t) =<{y(t)

√
2 exp(j2πfc t)}

I Then,

〈xp(t), yp(t)〉 = <{〈x(t), y(t)}
= 〈xI(t), yI(t)〉+ 〈xQ(t), yQ(t)〉

I The first equation implies

‖xP(t)‖2 = ‖x(t)‖2

I Remark: the factor
√

2 in xp(t) = <{x(t)
√

2 exp(j2πfc t)}
ensures this equality.
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Receiver Frontend

I Let the baseband equivalent, received signal be
R(t) = RI(t) + jRQ(t).

I Then the optimum receiver frontend for the complex signal
s(t) = sI(t) + jsQ(t) will compute

R = 〈RP(t), sP(t)〉 = <{〈R(t), s(t)〉}
= 〈RI(t), sI(t)〉+ 〈RQ(t), sQ(t)〉

I The I and Q channel are first matched filtered individually
and then added together.
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Signal Space
I Assume that passband signals have the form

sP(t) = bIp(t)
√

2E cos(2πfc t)− bQp(t)
√

2E sin(2πfc t)

for 0 ≤ t ≤ T .
I where p(t) is a unit energy pulse waveform.

I Orthonormal basis functions are

Φ0 =
√

2p(t) cos(2πfc t) and Φ1 =
√

2p(t) sin(2πfc t)

I The corresponding baseband signals are

s(t) = bIp(t)
√

E + jbQp(t)
√

E

I with basis functions

Φ0 = p(t) and Φ1 = jp(t)
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Probability of Error
I Expressions for the probability of error are unchanged as

long as the above changes to inner product and norm are
incorporated.

I Specifically, expressions involving the distance between
signals are unchanged

Q
(‖sn − sm‖√

2N0

)
.

I Expressions involving inner products with a suboptimal
signal g(t) are modified to

Q
(<{〈sn − sm,g(t)〉}√

2N0‖g(t)‖

)
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Summary

I The baseband equivalent channel model is much simpler
than the passband model.
I Up and down conversion are eliminated.
I Expressions for signals do not contain carrier terms.

I The baseband equivalent signals are more tractable and
easier to model (e.g., for simulation).
I Since they are low-pass signals, they are easily sampled.

I No information is lost when using baseband equivalent
signals, instead of passband signals.

I Standard, linear system equations hold (nearly)
I Conclusion: Use baseband equivalent signals and

systems.
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Introduction

I For our discussion of optimal receivers, we have focused
on
I the transmission of single symbols and
I the signal space properties of symbol constellations.
I We recognized the critical importance of distance between

constellation points.
I The precise shape of the transmitted waveforms plays a

secondary role when it comes to error rates.
I However, the spectral properties of transmitted signals

depends strongly on the shape of signals.
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Linear Modulation

I A digital communications signals is said to be linearly
modulated if the transmitted signal has the form

s(t) = ∑
n

b[n]p(t − nT )

where
I b[n] are the transmitted symbols, taking values from a fixed,

finite alphabet A,
I p(t) is fixed pulse waveform.
I T is the symbol period; 1

T is the baud rate.
I This is referred to a linear modulation because the

transmitted waveform s(t) depends linearly on the symbols
b[n].
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Illustration: Linear Modulation in MATLAB

function Signal = LinearModulation( Symbols, Pulse, fsT )
% LinearModulation - linear modulation of symbols with given

% initialize storage for Signal
LenSignal = length(Symbols)*fsT + (length(Pulse))-fsT;
Signal = zeros( 1, LenSignal );

% loop over symbols and insert corresponding segment into Signal
for kk = 1:length(Symbols)

ind_start = (kk-1)*fsT + 1;
ind_end = (kk-1)*fsT + length(Pulse);

Signal(ind_start:ind_end) = Signal(ind_start:ind_end) + ...
Symbols(kk) * Pulse;

end

© 2018, B.-P. Paris ECE 630: Statistical Communication Theory 290



Complex Envelope Spectrum of Digitally Modulated Signals

Example: Baseband Line Codes
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I Unipolar NRZ (non-return-to-zero) and Manchester
encoding are used for digital transmission over wired
channels.
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Passband Linear Modulation

I Linearly modulated passband signals are easily described
using the complex envelope techniques discussed
previously.

I The baseband equivalent signals are obtained by linear
modulation

s(t) = ∑
n

b[n]p(t − nT )

where
I p(t) is a baseband pulse and
I symbols b[n] are complex valued.

I For example, M-PSK is obtained when b[n] are drawn from
the alphabet is A = {exp( j2πn

M )}, with n = 0,1, . . . ,M − 1.
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Illustration: QPSK with fc = 3/T and Half-Sine Pulses
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I Passband signal (top):
segments of
pulse-shaped sinusoids
with different phases.
I Phase changes occur

at multiples of T .
I Baseband equivalent

signal (bottom) is
complex valued;
magnitude and phase
are plotted.
I Magnitude reflects

pulse shape.

I Pulse shape: p(t) =
√

2/Tsin(πt/T ), for 0 ≤ t ≤ T .
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Spectral Properties of Digitally Modulated Signals

I Digitally Modulated signals are random processes - even
though they don’t look noise-like.

I The randomness is introduced by the random symbols
b[n].

I We know from our earlier discussion that the spectral
properties of a random process are captured by its power
spectral density (PSD) Ss(f ).

I We also know that the power spectral density is the Fourier
transform of the autocorrelation function Rs(τ)

Rs(τ)↔ Ss(f ).
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PSD for Linearly Modulated Signals
I An important special case arises when the symbol stream

b[n]
I is uncorrelated, i.e.,

E[b[n]b∗[m]] =

{
E[|b[n]|2] when n = m
0 when n 6= m

I has zero mean, i.e., E[b[n]] = 0.
I Then, the power-spectral density of the transmitted signal

is

Ss(f ) =
E[|b[n]|2]

T
|P(f )|2

where p(t)↔ P(f ) is the Fourier transform of the shaping
pulse.
I Note that the shape of the spectrum does not depend on

the constellation.
© 2018, B.-P. Paris ECE 630: Statistical Communication Theory 295

Complex Envelope Spectrum of Digitally Modulated Signals

Exercise: PSD for Different Pulses

I Assume that E[|b[n]|2] = 1; compute the PSD of linearly
modulated signals (with uncorrelated, zero-mean symbols)
when

1. p(t) =
√

1/T for 0 ≤ t ≤ T . (rectangular)
2. p(t) =

√
2/Tsin(πt/T ) for 0 ≤ t ≤ T . (half-sine)

I Answers:
1. Ss(f ) = sinc2(fT )

2. Ss(f ) = 8
π2

cos2(πfT )
(1−4(fT )2)2
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Comparison of Spectra
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I Rectangular pulse has narrower main-lobe.
I Half-sine pulse has faster decaying sidelobes (less

adjacent channel interference).
I In general, smoother pulses have better spectra.
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Measures of Bandwidth

I From the plot of a PSD, the bandwidth of the signal can be
determined.

I The following three metrics are commonly used:
1. 3dB bandwidth
2. zero-to-zero bandwidth
3. Fractional power containment bandwidth

I Bandwidth is measured differently for passband signals
and baseband signals:

1. For passband signals, the two-sided bandwidth is relevant.
2. For baseband signals, the one-sided bandwidth is of

interest.
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3dB Bandwidth
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I For symmetric spectra
with maximum in the
center of the band
(f = 0), the two-sided
3dB-bandwidth B3dB is
defined by

Ss(
B3dB

2
) =

Ss(0)
2

= Ss(−
B3dB

2
).

I For rectangular pulse, B3dB ≈ 0.88
T .

I For half-sine pulse, B3dB ≈ 1.18
T .
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Zero-to-Zero Bandwidth
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I The two-sided zero-to-zero
bandwidth B0-0 is the
bandwidth between the two
two zeros of the PSD that are
closest to the peak at f = 0.

I In other words, for symmetric
spectra

Ss(
B0-0

2
) = 0

= Ss(−
B0-0

2
).

I For rectangular pulse, B0-0 = 2
T .

I For half-sine pulse, B0-0 = 3
T .
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Fractional Power-Containment Bandwidth

I Fractional power-containment bandwidth Bγ is the width of
the smallest frequency interval that contains a fraction γ of
the total signal power.
I Total signal power

Ps =
E[|b[n]|2]

T

∫ T

0
|p(t)|2 dt =

E[|b[n]|2]
T

∫ ∞

−∞
|P(f )|2 df .

I For symmetric spectra, fractional power-containment
bandwidth Bγ is defined through the relationship

∫ Bγ/2

−Bγ/2
|P(f )|2 df = γ

∫ ∞

−∞
|P(f )|2 df
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Illustration: 95% Containment Bandwidth
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I The horizontal lines
correspond to (1− γ)/2
and 1− (1− γ)/2 (i.e.,
2.5% and 97.5%,
respectively, for
γ =95%).

I For half-sine pulse,
B95% approx 1.82

T .
I For rectangular pulse,

B95% approx 3.4
T
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Full-Response and Partial Response Pulses
I So far, we have considered only pulses that span exactly

one symbol period T .
I Such pulses are called full-response pulses since the entire

signal due to the n-th symbol is confined to the n-th symbol
period.

I Recall that pulses of finite duration have infinitely long
Fourier transforms.

I Hence, full-response spectra are inherently of infinite
bandwidth - the best we can hope for is to concentrate
power in a narrow band.

I We can consider pulses that are longer than a symbol
period.
I Such pulses are called partial-repsonse pulses.
I They hold promise for better spectral properties.
I But, they cause self-interference between symbols (ISI)

unless properly designed.
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How not do partial-response signalling
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I The pulse are
rectangular pulses
spanning 3 symbol
periods.

I The transmitted
information symbols are
no longer obvious.

I An equalizer would be
needed to “untangle” the
symbol stream.

© 2018, B.-P. Paris ECE 630: Statistical Communication Theory 304



Complex Envelope Spectrum of Digitally Modulated Signals

Nyquist Pulses
I To avoid interference at sampling times t = kT , pulses p(t)

must meet the Nyquist criterion

p(mT ) =

{
1 for m = 0
0 for m 6= 0

I With this criterion, samples of the received signal at times
t = kT satisfy

s(kT ) = ∑
n

b[n]p(kT − nT ) = b[k ].

I At times t = kT , there is no interference!
I Pulses satisfying the above criterion are called Nyquist

pulses.
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Frequency Domain Version of the Nyquist Criterion

I In the time-domain, Nyquist pulses (for transmitting at rate
1/T ) satisfy

p(mT ) =

{
1 for m = 0
0 for m 6= 0

I An equivalent, frequency-domain criterion is

∞

∑
k=−∞

P(f +
k
T
) = T for all f .
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Example: Pulses with Trapezoidal Spectrum

I The pulse
p(t) = sinc(t/T ) · sinc(at/T )

is a Nyquist pulse for rate 1/T .
I The parameter a (0 ≤ a ≤ 1) is called the excess

bandwidth.
I The Fourier transform of p(t) is

P(f ) =





T for |f | < 1−a
2T

T (1+a)−2|f |T
2a for 1−a

2T ≤ |f | ≤ 1+a
2T

0 for |f | > 1+a
2T

© 2018, B.-P. Paris ECE 630: Statistical Communication Theory 307

Complex Envelope Spectrum of Digitally Modulated Signals

Example: Pulses with Trapezoidal Spectrum
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I The Trapezoidal Nyquist pulse has infinite duration and ist
strictly bandlimited!
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Linear Modulation with Trapezoidal Nyquist Pulses

0 2 4 6 8 10 12 14 16 18 20
Time/T

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

A
m

p
lit

u
d

e

Unipolar NRZ

I With the Trapezoidal Nyquist pulse, at every symbol instant
t = nT there is no ISI: s(nT ) = b[n].

I No ISI and stricly band-limited spectrum is achieved by
Nyquist pulses.
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Raised Cosine Pulse

I The most widely used Nyquist pulse is the Raised Cosine
Pulse:

p(t) = sinc(
t
T
)
cos(πat/T )

1− (2at/T )2 .

with Fourier Transform

P(f ) =





T for |f | < 1−a
2T

T
2

[
1 + cos(πT

a (|f | − 1−a
2T ))

]
for 1−a

2T ≤ |f | ≤ 1+a
2T

0 for |f | > 1+a
2T
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Example: Pulses with Trapezoidal Spectrum
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I The raised cosine pulse is strictly bandlimited!
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Root-Raised Cosine Pulse

I The receiver needs to apply a matched filter.
I For linearly modulated signals, the matched filter is the

pulse p(t).
I p(t) = p(−t) for symmetric pulses.

I However, when the symbol stream is passed through the
filter p(t) twice then the Nyquist condition no longer holds.
I p(t) ∗ p(t) is not a Nyquist pulse.

I The root-raised cosine filter has a Fourier transform that is
the square-root of the Raised Cosine pulse’s Fourier
transform.

I It is strictly band-limited and the series of two
root-raised-cosine filters is a Nyquist pulse.
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