ECE 630: Statistical Communication Theory

Dr. B.-P. Paris

Dept. Electrical and Comp. Engineering

George Mason University

Last updated: February 26, 2019

Part I

Introduction

Elements of a Digital Communications System

Source: produces a sequence of information symbols *b*.

Transmitter: maps symbol sequence to analog signal s(t).

Channel: models corruption of transmitted signal s(t).

Receiver: produces reconstructed sequence of information

symbols \hat{b} from observed signal R(t).

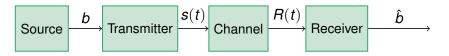


Figure: Block Diagram of a Generic Digital Communications System

The Source

- The source models the statistical properties of the digital information source.
- Three main parameters:
 - Source Alphabet: list of the possible information symbols the source produces; also called Signal Constellation
 - Example: $A = \{0, 1\}$; symbols are called bits.
 - Alphabet for a source with M (typically, a power of 2) symbols: e.g., $A = \{\pm 1, \pm 3, \dots, \pm (M-1)\}$.
 - Alphabet with positive and negative symbols is often more convenient.
 - Symbols may be complex valued; e.g., $A = \{\pm 1, \pm j\}$.

- ▶ A priori Probability: relative frequencies with which the source produces each of the symbols.
 - Example: a binary source that produces (on average) equal numbers of 0 and 1 bits has $\pi_0 = \pi_1 = \frac{1}{2}$.
 - Notation: π_n denotes the probability of observing the *n*-th symbol.
 - Typically, a-priori probabilities are all equal, i.e., $\pi_n = \frac{1}{M}$.
 - ► A source with *M* symbols is called an *M*-ary source.
 - ▶ binary (M = 2)

Bit 1	Bit 2	Symbol
0	0	
0	1	-1
1	1	+1
1	0	+3

Table: Example: Representing two bits in one quaternary symbol.

- ➤ **Symbol Rate:** The number of information symbols the source produces per second. Also called the baud rate *R*.
 - Related: information rate R_b, indicates number of bits source produces per second.
 - ▶ Relationship: $R_b = R \cdot \log_2(M)$.
 - Also, T = 1/R is the symbol period.
 - Note: for most communication systems, the bandwidth W occupied by the transmitted signal is approximately equal to the baud rate R,

 $W \approx R$

Remarks

- This view of the source is simplified.
- We have omitted important functionality normally found in the source, including
 - error correction coding and interleaving, and
 - Usually, a block that maps bits to symbols is broken out separately.
- This simplified view is sufficient for our initial discussions.
- Missing functionality will be revisited when needed.

The Transmitter

- The transmitter translates the information symbols at its input into signals that are "appropriate" for the channel, e.g.,
 - meet bandwidth requirements due to regulatory or propagation considerations,
 - provide good receiver performance in the face of channel impairments:
 - noise,
 - distortion (i.e., undesired linear filtering),
 - interference.
- A digital communication system transmits only a discrete set of information symbols.
 - Correspondingly, only a discrete set of possible signals is employed by the transmitter.
 - The transmitted signal is an analog (continuous-time, continuous amplitude) signal.

Illustrative Example

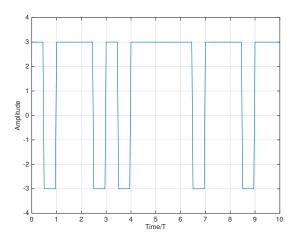
- The sources produces symbols from the alphabet $A = \{0, 1\}$.
- ➤ The transmitter uses the following rule to map symbols to signals:
 - If the *n*-th symbol is $b_n = 0$, then the transmitter sends the signal

$$s_0(t) = \left\{ egin{array}{ll} A & ext{for } (n-1)T \leq t < nT \\ 0 & ext{else}. \end{array}
ight.$$

If the *n*-th symbol is $b_n = 1$, then the transmitter sends the signal

$$s_1(t) = \left\{ \begin{array}{ll} A & \text{for } (n-1)T \leq t < (n-\frac{1}{2})T \\ -A & \text{for } (n-\frac{1}{2})T \leq t < nT \\ 0 & \text{else.} \end{array} \right.$$

Symbol Sequence $b = \{1, 0, 1, 1, 0, 0, 1, 0, 1, 0\}$



The Communications Channel

- The communications channel models the degradation the transmitted signal experiences on its way to the receiver.
- For wireless communications systems, we are concerned primarily with:
 - ▶ **Noise:** random signal added to received signal.
 - Mainly due to thermal noise from electronic components in the receiver.
 - Can also model interference from other emitters in the vicinity of the receiver.
 - Statistical model is used to describe noise.
 - Distortion: undesired filtering during propagation.
 - Mainly due to multi-path propagation.
 - Both deterministic and statistical models are appropriate depending on time-scale of interest.
 - Nature and dynamics of distortion is a key difference between wireless and wired systems.

Thermal Noise

- At temperatures above absolute zero, electrons move randomly in a conducting medium, including the electronic components in the front-end of a receiver.
- This leads to a random waveform.
 - ▶ The power of the random waveform equals $P_N = kT_0W$.
 - \blacktriangleright k: Boltzmann's constant (1.38 \times 10⁻²³ W s/K).
 - T₀: temperature in degrees Kelvin (room temperature ≈ 290 K).
 - For bandwidth W equal to 1 Hz, $P_N \approx 4 \times 10^{-21}$ W (-174 dBm).
- Noise power is small, but power of received signal decreases rapidly with distance from transmitter.
 - Noise provides a fundamental limit to the range and/or rate at which communication is possible.

Exercise: Path Loss and Signal-to-Noise Ratio

- A transmitter emits a signal with:
 - ▶ bandwidth W = 1 MHz
 - transmitted power $P_t = 1 \text{ mW}$
 - carrier frequency f_c = 1 GHz
- During propagation from transmitter to receiver, the signal's power decreases; the received power follows Friis law:

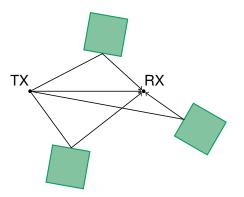
$$P_r = P_t \cdot \left(\frac{c}{4\pi f_c d}\right)^2$$

where $c = 3 \times 10^8$ m/s is the speed of light and d is the distance between transmitter and receiver (in meters).

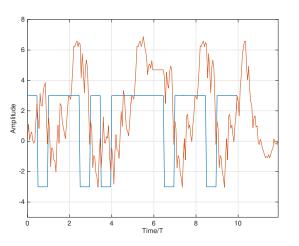
- Find:
 - the power of the received signal P_r for $d = 10 \, \text{km}$
 - the noise power P_N in the bandwidth W occupied by the transmitted signal
 - the ratio $\frac{P_r}{R}$: this is called the signal-to-noise ratio (SNR)

Multi-Path

In a multi-path environment, the receiver sees the combination of multiple scaled and delayed versions of the transmitted signal.



Distortion from Multi-Path



- Received signal "looks" very different from transmitted signal.
- Inter-symbol interference (ISI).
- Multi-path is a very serious problem for wireless systems.

The Receiver

- ► The receiver is designed to reconstruct the original information sequence *b*.
- Towards this objective, the receiver uses
 - ightharpoonup the received signal R(t),
 - knowledge about how the transmitter works,
 - Specifically, the receiver knows how symbols are mapped to signals.
 - the a-priori probability and rate of the source.
- The transmitted signal typically contains information that allows the receiver to gain information about the channel, including
 - training sequences to estimate the impulse response of the channel,
 - synchronization preambles to determine symbol locations and adjust amplifier gains.

The Receiver

- The receiver input is an analog signal and it's output is a sequence of discrete information symbols.
 - Consequently, the receiver must perform analog-to-digital conversion (sampling).
- Correspondingly, the receiver can be divided into an analog front-end followed by digital processing.
 - Many receivers have (relatively) simple front-ends and sophisticated digital processing stages.
 - Digital processing is performed on standard digital hardware (from ASICs to general purpose processors).
 - Moore's law can be relied on to boost the performance of digital communications systems.

Measures of Performance

- The receiver is expected to perform its function optimally.
- Question: optimal in what sense?
 - Measure of performance must be statistical in nature.
 - observed signal is random, and
 - transmitted symbol sequence is random.
 - Metric must reflect the reliability with which information is reconstructed at the receiver.
- Objective: Design the receiver that minimizes the probability of a symbol error.
 - Also referred to as symbol error rate.
 - Closely related to bit error rate (BER).

Learning Objectives

- 1. Understand the mathematical foundations that lead to the design of optimal receivers in AWGN channels.
 - statistical hypothesis testing
 - signal spaces
- Understand the principles of digital information transmission.
 - baseband and passband transmission
 - relationship between data rate and bandwidth
- 3. Apply receiver design principles to communication systems with additional channel impairments
 - random amplitude or phase
 - linear distortion (e.g., multi-path)

Course Outline

- Mathematical Prerequisites
 - Basics of Gaussian Random Variables and Random Processes
 - Signal space concepts
- Principles of Receiver Design
 - Optimal decision: statistical hypothesis testing
 - Receiver frontend: the matched filter
- Signal design and modulation
 - Baseband and passband
 - Linear modulation
 - Bandwidth considerations
- Advanced topics
 - Synchronization in time, frequency, phase
 - Introduction to equalization

iltering of Random Processes

.0000
.0
.00000

Part II

Mathematical Prerequisites

Gaussian Random Variables — Why we Care

- Gaussian random variables play a critical role in modeling many random phenomena.
 - By central limit theorem, Gaussian random variables arise from the superposition (sum) of many random phenomena.
 - Pertinent example: random movement of very many electrons in conducting material.
 - Result: thermal noise is well modeled as Gaussian.
 - Gaussian random variables are mathematically tractable.
 - In particular: any linear (more precisely, affine) transformation of Gaussians produces a Gaussian random variable.
- Noise added by channel is modeled as being Gaussian.
 - Channel noise is the most fundamental impairment in a communication system.

Gaussian Random Variables

► A random variable *X* is said to be Gaussian (or Normal) if its pdf is of the form

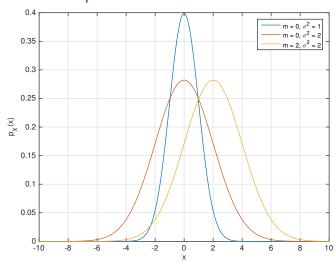
$$p_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-m)^2}{2\sigma^2}\right).$$

- All properties of a Gaussian are determined by the two parameters m and σ^2 .
- ▶ Notation: $X \sim \mathcal{N}(m, \sigma^2)$.
- Moments:

$$\mathbf{E}[X] = \int_{-\infty}^{\infty} x \cdot p_X(x) \, dx = m$$

$$\mathbf{E}[X^2] = \int_{-\infty}^{\infty} x^2 \cdot p_X(x) \, dx = m^2 + \sigma^2.$$

Plot of Gaussian pdf's



The Gaussian Error Integral — Q(x)

- ▶ We are often interested in $Pr\{X > x\}$ for Gaussian random variables X
- These probabilities cannot be computed in closed form since the integral over the Gaussian pdf does not have a closed form expression.
- Instead, these probabilities are expressed in terms of the Gaussian error integral

$$Q(x) = \int_{x}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} dz.$$

The Gaussian Error Integral — Q(x)

▶ **Example:** Suppose $X \sim \mathcal{N}(1,4)$, what is $Pr\{X > 5\}$?

$$\Pr\{X > 5\} = \int_{5}^{\infty} \frac{1}{\sqrt{2\pi \cdot 2^{2}}} e^{-\frac{(x-1)^{2}}{2 \cdot 2^{2}}} dx \quad \text{substitute } z = \frac{x-1}{2}$$
$$= \int_{2}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^{2}}{2}} dz = Q(2)$$

Exercises

000000

- ▶ Let $X \sim \mathcal{N}(-3, 4)$, find expressions in terms of $Q(\cdot)$ for the following probabilities:
 - 1. $\Pr\{X > 5\}$?

 - 2. $Pr\{X < -1\}$? 3. $Pr\{X^2 + X > 2\}$?

Bounds for the Q-function

- Since no closed form expression is available for Q(x), bounds and approximations to the Q-function are of interest.
- The following bounds are tight for large values of x:

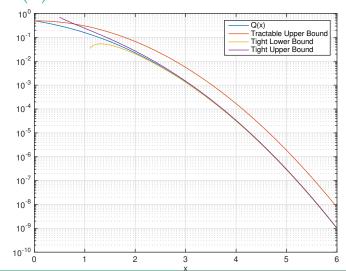
$$\left(1-\frac{1}{x^2}\right)\frac{e^{-\frac{x^2}{2}}}{x\sqrt{2\pi}} \le Q(x) \le \frac{e^{-\frac{x^2}{2}}}{x\sqrt{2\pi}}.$$

The following bound is not as quite as tight but very useful for analysis

$$Q(x) \leq \frac{1}{2}e^{-\frac{x^2}{2}}.$$

Note that all three bounds are dominated by the term $e^{-\frac{x^2}{2}}$; this term determines the asymptotic behaviour of Q(x).

Plot of Q(x) and Bounds



Exercise: Chernoff Bound

- For a random variable X, the Chernoff Bound provides a tight upper bound on the probability $Pr\{X > x\}$.
- The Chernoff bound is given by

$$\Pr\left\{X > x\right\} \leq \min_{t>0} \frac{\mathbf{E}[e^{tX}]}{e^{tx}}.$$

▶ Let $X \sim \mathcal{N}(0, 1)$; use the Chernoff bound to show that

$$\Pr\{X > x\} = Q(x) \le e^{-x^2/2}$$

ightharpoonup A length N random vector \vec{X} is said to be Gaussian if its pdf is given by

$$\rho_{\vec{X}}(\vec{x}) = \frac{1}{(2\pi)^{N/2} |K|^{1/2}} \exp\left(-\frac{1}{2} (\vec{x} - \vec{m})^T K^{-1} (\vec{x} - \vec{m})\right).$$

- ▶ Notation: $\vec{X} \sim \mathcal{N}(\vec{m}, K)$.
- Mean vector

$$\vec{m} = \mathbf{E}[\vec{X}] = \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} \vec{x} \rho_{\vec{X}}(\vec{x}) d\vec{x}.$$

Covariance matrix

$$K = \mathbf{E}[(\vec{X} - \vec{m})(\vec{X} - \vec{m})^T] = \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} (\vec{x} - \vec{m})(\vec{x} - \vec{m})^T p_{\vec{X}}(\vec{x}) dx$$

- |K| denotes the determinant of K.
- ightharpoonup K must be positive definite, i.e., $\vec{z}^T K \vec{z} > 0$ for all \vec{z} .

Gaussian Basics

0000

Exercise: Important Special Case: N=2

Consider a length-2 Gaussian random vector with

$$\vec{m} = \vec{0}$$
 and $K = \sigma^2 \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$ with $|\rho| \leq 1$.

- Find the pdf of \vec{X} .
- Answer:

$$\rho_{\vec{X}}(\vec{x}) = \frac{1}{2\pi\sigma^2\sqrt{1-\rho^2}} \exp\left(\frac{x_1^2 - 2\rho x_1 x_2 + x_2^2}{2\sigma^2(1-\rho^2)}\right)$$

Important Properties of Gaussian Random Vectors

- 1. If the N Gaussian random variables X_n comprising the random vector \vec{X} are uncorrelated (Cov[X_i, X_i] = 0, for $i \neq i$), then they are statistically independent.
- 2. Any affine transformation of a Gaussian random vector is also a Gaussian random vector.
 - ▶ Let $\vec{X} \sim \mathcal{N}(\vec{m}, K)$
 - Affine transformation: $\vec{Y} = A\vec{X} + \vec{b}$
 - ► Then, $\vec{Y} \sim \mathcal{N}(A\vec{m} + \vec{b}.AKA^T)$

Gaussian Basics

Exercise: Generating Correlated Gaussian Random **Variables**

▶ Let $\vec{X} \sim \mathcal{N}(\vec{m}, K)$, with

$$\vec{m} = \vec{0}$$
 and $K = \sigma^2 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

- ightharpoonup The elements of \vec{X} are uncorrelated.
- ► Transform $\vec{Y} = A\vec{X}$, with

$$A = \left(\begin{array}{cc} \sqrt{1 - \rho^2} & \rho \\ 0 & 1 \end{array}\right)$$

ightharpoonup Find the pdf of \vec{Y} .

Random Processes — Why we Care

- Random processes describe signals that change randomly over time.
 - Compare: deterministic signals can be described by a mathematical expression that describes the signal exactly for all time.
 - Example: $x(t) = 3\cos(2\pi f_c t + \pi/4)$ with $f_c = 1$ GHz.
- We will encounter three types of random processes in communication systems:
 - 1. (nearly) deterministic signal with a random parameter Example: sinusoid with random phase.
 - 2. signals constructed from a sequence of random variables Example: digitally modulated signals with random symbols
 - noise-like signals
- **Objective:** Develop a framework to describe and analyze random signals encountered in the receiver of a

Random Process — Formal Definition

- Random processes can be defined completely analogous to random variables over a probability triple space (Ω, \mathcal{F}, P) .
- ▶ **Definition:** A random process is a mapping from each element ω of the sample space Ω to a function of time (i.e., a signal).
- Notation: $X_t(\omega)$ we will frequently omit ω to simplify notation.
- Observations:
 - We will be interested in both real and complex valued random processes.
 - Note, for a given random outcome ω_0 , $X_t(\omega_0)$ is a deterministic signal.
 - Note, for a fixed time t_0 , $X_{t_0}(\omega)$ is a random variable.

Sample Functions and Ensemble

- ▶ For a given random outcome ω_0 , $X_t(\omega_0)$ is a deterministic signal.
 - ► Each signal that that can be produced by a our random process is called a sample function of the random process.
- The collection of all sample functions of a random process is called the ensemble of the process.
- **Example:** Let $\Theta(\omega)$ be a random variable with four equally likely, possible values $\Omega = \{0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}\}$. Define the random process $X_t(\omega) = \cos(2\pi f_0 t + \Theta(\omega))$. The ensemble of this random process consists of the four sample functions:

$$\begin{aligned} X_t(\omega_1) &= \cos(2\pi f_0 t) & X_t(\omega_2) &= -\sin(2\pi f_0 t) \\ X_t(\omega_3) &= -\cos(2\pi f_0 t) & X_t(\omega_4) &= \sin(2\pi f_0 t) \end{aligned}$$

Probability Distribution of a Random Process

- For a given time instant t, $X_t(\omega)$ is a random variable.
- Since it is a random variable, it has a pdf (or pmf in the discrete case).
 - ▶ We denote this pdf as $p_{X_t}(x)$.
- The statistical properties of a random process are specified completely if the joint pdf

$$p_{X_{t_1},\ldots,X_{t_n}}(x_1,\ldots,x_n)$$

is available for all n and t_i , i = 1, ..., n.

- ▶ This much information is often not available.
- Joint pdfs with many sampling instances can be cumbersome.
- We will shortly see a more concise summary of the statistics for a random process.

Random Process with Random Parameters

- A deterministic signal that depends on a random parameter is a random process.
 - Note, the sample functions of such random processes do not "look" random.
- Running Examples:
 - **Example (discrete phase):** Let $\Theta(\omega)$ be a random variable with four equally likely, possible values $\Omega = \{0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}\}$. Define the random process $X_t(\omega) = \cos(2\pi f_0 t + \Theta(\omega))$.
 - **Example (continuous phase):** same as above but phase $\Theta(\omega)$ is uniformly distributed between 0 and 2π , $\Theta(\omega) \sim U[0, 2\pi)$.
- For both of these processes, the complete statistical description of the random process can be found.

Example: Discrete Phase Process

- **Discrete Phase Process:** Let $\Theta(\omega)$ be a random variable with four equally likely, possible values $\Omega = \{0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}\}.$ Define the random process $X_t(\omega) = \cos(2\pi f_0 t + \Theta(\omega))$.
- Find the first-order density $p_{X_i}(x)$ for this process.
- Find the second-order density $p_{X_{t_1}, X_{t_2}}(x_1, x_2)$ for this process.
 - Note, since the phase values are discrete the above pdfs must be expressed with the help of δ -functions.
 - Alternatively, one can derive a probability mass function.

Solution: Discrete Phase Process

First-order density function:

$$\rho_{X_t}(x) = \frac{1}{4} (\delta(x - \cos(2\pi f_0 t)) + \delta(x + \sin(2\pi f_0 t)) + \delta(x + \cos(2\pi f_0 t)) + \delta(x - \sin(2\pi f_0 t)))$$

Second-order density function:

$$\begin{split} p_{X_{t_1}X_{t_2}}(x_1,x_2) &= \frac{1}{4}(\delta(x_1 - \cos(2\pi f_0 t_1)) \cdot \delta(x_2 - \cos(2\pi f_0 t_2)) + \\ & \delta(x_1 + \sin(2\pi f_0 t_1)) \cdot \delta(x_2 + \sin(2\pi f_0 t_2)) + \\ & \delta(x_1 + \cos(2\pi f_0 t_1)) \cdot \delta(x_2 + \cos(2\pi f_0 t_2)) + \\ & \delta(x_1 - \sin(2\pi f_0 t_1)) \cdot \delta(x_2 - \sin(2\pi f_0 t_2))) \end{split}$$

Example: Continuous Phase Process

- **Continuous Phase Process:** Let $\Theta(\omega)$ be a random variable that is uniformly distributed between 0 and 2π , $\Theta(\omega) \sim [0, 2\pi)$. Define the random process $X_t(\omega) = \cos(2\pi f_0 t + \Theta(\omega)).$
- Find the first-order density $p_{X_t}(x)$ for this process.
- Find the second-order density $p_{X_{t_1}, X_{t_2}}(x_1, x_2)$ for this process.

Solution: Continuous Phase Process

First-order density:

$$\rho_{X_t}(x) = \frac{1}{\pi\sqrt{1-x^2}} \quad \text{for } |x| \le 1.$$

Notice that $p_{X_t}(x)$ does **not** depend on t.

Second-order density:

$$\begin{split} \rho_{X_{t_1}X_{t_2}}(x_1,x_2) = & \frac{1}{\pi\sqrt{1-x_2^2}} \cdot [\frac{1}{2} \cdot \\ & \delta(x_1 - \cos(2\pi f_0(t_1 - t_2) + \arccos(x_2))) + \\ & \delta(x_1 - \cos(2\pi f_0(t_1 - t_2) - \arccos(x_2)))] \end{split}$$

- Model for digitally modulated signals.
- Example:
 - Let $X_k(\omega)$ denote the outcome of the *k*-th toss of a coin:

$$X_k(\omega) = \begin{cases} 1 & \text{if heads on } k\text{-th toss} \\ -1 & \text{if tails on } k\text{-th toss}. \end{cases}$$

Let p(t) denote a pulse of duration T, e.g.,

$$p(t) = \left\{ egin{array}{ll} 1 & ext{for } 0 \leq t \leq T \\ 0 & ext{else}. \end{array}
ight.$$

Define the random process X_t

$$X_t(\omega) = \sum_k X_k(\omega) p(t - nT)$$

- Assume that heads and tails are equally likely.
- Then the first-order density for the above random process is

$$p_{X_t}(x) = \frac{1}{2}(\delta(x-1) + \delta(x+1)).$$

The second-order density is:

$$p_{X_{t_1}X_{t_2}}(x_1, x_2) = \begin{cases} \delta(x_1 - x_2)p_{X_{t_1}}(x_1) & \text{if } nT \leq t_1, t_2 \leq (n+1)T \\ p_{X_{t_1}}(x_1)p_{X_{t_2}}(x_2) & \text{else.} \end{cases}$$

These expression become more complicated when p(t) is not a rectangular pulse.

Probability Density of Random Processs Defined Directly

- Sometimes the n-th order probability distribution of the random process is given.
 - Most important example: Gaussian Random Process
 - Statistical model for noise.
 - **Definition:** The random process X_t is Gaussian if the vector \vec{X} of samples taken at times t_1, \ldots, t_n

$$ec{X} = \left(egin{array}{c} X_{t_1} \ dots \ X_{t_n} \end{array}
ight)$$

is a Gaussian random vector for all t_1, \ldots, t_n .

- Characterization of random processes in terms of *n*-th order densities is
 - frequently not available
 - mathematically cumbersome
- A more tractable, practical alternative description is provided by the second order description for a random process.
- ▶ Definition: The second order description of a random process consists of the
 - mean function and the
 - autocorrelation function
 - of the process.
- Note, the second order description can be computed from the (second-order) joint density.
 - ► The converse is not true at a minimum the distribution must be specified (e.g., Gaussian).

Mean Function

- The second order description of a process relies on the mean and autocorrelation functions — these are defined as follows
- Definition: The mean of a random process is defined as:

$$\mathbf{E}[X_t] = m_X(t) = \int_{-\infty}^{\infty} x \cdot \rho_{X_t}(x) \, dx$$

- Note, that the mean of a random process is a deterministic signal.
- The mean is computed from the first oder density function.

Autocorrelation Function

▶ **Definition:** The autocorrelation function of a random process is defined as:

$$R_X(t,u) = \mathbf{E}[X_t X_u] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy \cdot p_{X_t,X_u}(x,y) \, dx \, dy$$

Autocorrelation is computed from second order density

Autocovariance Function

Closely related: autocovariance function:

$$C_X(t, u) = \mathbf{E}[(X_t - m_X(t))(X_u - m_X(u))]$$

= $R_X(t, u) - m_X(t)m_X(u)$

Exercise: Discrete Phase Example

- ► Find the second-order description for the discrete phase random process.
 - ▶ **Discrete Phase Process:** Let $\Theta(\omega)$ be a random variable with four equally likely, possible values $\Omega = \{0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}\}$. Define the random process $X_t(\omega) = \cos(2\pi f_0 t + \Theta(\omega))$.
- Answer:
 - Mean: $m_X(t) = 0$.
 - Autocorrelation function:

$$R_X(t, u) = \frac{1}{2}\cos(2\pi t_0(t - u)).$$

- ► Find the second-order description for the continuous phase random process.
 - ▶ Continuous Phase Process: Let $\Theta(\omega)$ be a random variable that is uniformly distributed between 0 and 2π , $\Theta(\omega) \sim [0, 2\pi)$. Define the random process $X_t(\omega) = \cos(2\pi f_0 t + \Theta(\omega))$.
- Answer:
 - Mean: $m_X(t) = 0$.
 - Autocorrelation function:

$$R_X(t, u) = \frac{1}{2}\cos(2\pi f_0(t-u)).$$

Properties of the Autocorrelation Function

- ➤ The autocorrelation function of a (real-valued) random process satisfies the following properties:
 - 1. $R_X(t,t) \ge 0$
 - 2. $R_X(t, u) = R_X(u, t)$ (symmetry)
 - 3. $|R_X(t,u)| \leq \frac{1}{2}(R_X(t,t) + R_X(u,u))$
 - 4. $|R_X(t,u)|^2 \le R_X(t,t) \cdot R_X(u,u)$

- ► The concept of stationarity is analogous to the idea of time-invariance in linear systems.
- ► Interpretation: For a stationary random process, the statistical properties of the process do not change with time.
- Definition: A random process X_t is strict-sense stationary (sss) to the n-th order if:

$$p_{X_{t_1},...,X_{t_n}}(x_1,...,x_n) = p_{X_{t_1+T},...,X_{t_n+T}}(x_1,...,x_n)$$

for all T.

The statistics of X_t do not depend on absolute time but only on the time differences between the sample times.

- A simpler and more tractable notion of stationarity is based on the second-order description of a process.
- Definition: A random process X_t is wide-sense stationary (wss) if
 - 1. the mean function $m_X(t)$ is constant **and**
 - 2. the autocorrelation function $R_X(t, u)$ depends on t and u only through t u, i.e., $R_X(t, u) = R_X(t u)$
- Notation: for a wss random process, we write the autocorrelation function in terms of the single time-parameter $\tau = t u$:

$$R_X(t, u) = R_X(t - u) = R_X(\tau).$$

- ► True or False: Every random process that is strict-sense stationarity to the second order is also wide-sense stationary.
 - **Answer:** True
- True or False: Every random process that is wide-sense stationary must be strict-sense stationarity to the second order.
 - Answer: False
- ▶ True or False: The discrete phase process is strict-sense stationary.
 - ▶ Answer: False; first order density depends on t, therefore, not even first-order sss.
- ► True or False: The discrete phase process is wide-sense stationary.
 - Answer: True

White Gaussian Noise

- ▶ **Definition:** A (real-valued) random process *X_t* is called white Gaussian Noise if
 - \triangleright X_t is Gaussian for each time instance t
 - Mean: $m_X(t) = 0$ for all t
 - Autocorrelation function: $R_X(\tau) = \frac{N_0}{2}\delta(\tau)$
 - White Gaussian noise is a good model for noise in communication systems.
 - Note, that the variance of X_t is infinite:

$$Var(X_t) = \mathbf{E}[X_t^2] = R_X(0) = \frac{N_0}{2}\delta(0) = \infty.$$

▶ Also, for $t \neq u$: **E**[$X_t X_u$] = $R_X(t, u) = R_X(t - u) = 0$.

Integrals of Random Processes

- We will see, that receivers always include a linear, time-invariant system, i.e., a filter.
- Linear, time-invariant systems convolve the input random process with the impulse response of the filter.
 - Convolution is fundamentally an integration.
- We will establish conditions that ensure that an expression like

$$Z(\omega) = \int_a^b X_t(\omega) h(t) dt$$

is "well-behaved".

- ► The result of the (definite) integral is a random variable.
- Concern: Does the above integral converge?

Mean Square Convergence

- ► There are different senses in which a sequence of random variables may converge: almost surely, in probability, mean square, and in distribution.
- We will focus exclusively on mean square convergence.
- ► For our integral, mean square convergence means that the Rieman sum and the random variable Z satisfy:
 - Given $\epsilon > 0$, there exists a $\delta > 0$ so that

$$\mathbf{E}\left[\left(\sum_{k=1}^{n} X_{\tau_k} h(\tau_k) (t_k - t_{k-1}) - Z\right)^2\right] \leq \epsilon.$$

with:

$$ightharpoonup a = t_0 < t_1 < \cdots < t_n = b$$

$$t_{k-1} \le \tau_k \le t_k$$

$$\delta = \max_{k} (t_k - t_{k-1})$$

Mean Square Convergence — Why We Care

It can be shown that the integral converges if

$$\int_a^b \int_a^b R_X(t,u)h(t)h(u)\,dt\,du < \infty$$

- ▶ We will see shortly that this implies $\mathbf{E}[|Z|^2] < \infty$.
- ► Important: When the integral converges, then the order of integration and expectation can be interchanged, e.g.,

$$\mathbf{E}[Z] = \mathbf{E}[\int_a^b X_t h(t) dt] = \int_a^b \mathbf{E}[X_t] h(t) dt = \int_a^b m_X(t) h(t) dt$$

▶ Throughout this class, we will focus exclusively on cases where $R_X(t, u)$ and h(t) are such that our integrals converge.

Exercise: Brownian Motion

▶ **Definition:** Let N_t be white Gaussian noise with $\frac{N_0}{2} = \sigma^2$. The random process

$$W_t = \int_0^t N_s ds$$
 for $t \ge 0$

is called Brownian Motion or Wiener Process.

- \triangleright Compute the mean and autocorrelation functions of W_t .
- ► Answer: $m_W(t) = 0$ and $R_W(t, u) = \sigma^2 \min(t, u)$

Integrals of Gaussian Random Processes

- Let X_t denote a Gaussian random process with second order description $m_X(t)$ and $R_X(t,s)$.
- Then, the integral

$$Z = \int_{a}^{b} X(t)h(t) dt$$

is a Gaussian random variable.

Moreover mean and variance are given by

$$\mu = \mathbf{E}[Z] = \int_a^b m_X(t) h(t) dt$$

$$Var[Z] = \mathbf{E}[(Z - \mathbf{E}[Z])^{2}] = \mathbf{E}[(\int_{a}^{b} (X_{t} - m_{x}(t))h(t) dt)^{2}]$$
$$= \int_{a}^{b} \int_{a}^{b} C_{X}(t, u)h(t)h(u) dt du$$

Jointly Defined Random Processes

- \triangleright Let X_t and Y_t be jointly defined random processes.
 - E.g., input and output of a filter.
- ▶ Then, joint densities of the form $p_{X_tY_u}(x, y)$ can be defined.

•0

Additionally, second order descriptions that describe the correlation between samples of X_t and Y_t can be defined.

Crosscorrelation and Crosscovariance

Definition: The crosscorrelation function $R_{XY}(t, u)$ is defined as:

$$R_{XY}(t,u) = \mathbf{E}[X_tY_u] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xyp_{X_tY_u}(x,y) dx dy.$$

Definition: The crosscovariance function $C_{XY}(t, u)$ is defined as:

$$C_{XY}(t, u) = R_{XY}(t, u) - m_X(t)m_Y(u).$$

- ▶ Definition: The processes X_t and Y_t are called jointly wide-sense stationary if:
 - 1. $R_{XY}(t, u) = R_{XY}(t u)$ and
 - 2. $m_X(t)$ and $m_Y(t)$ are constants.

Random Processes

Filtering of Random Processes

Signal Space Concepts

o

ooo

oooooooooooo

Filtering of Random Processes

Filtered Random Process $X_t \circ \longrightarrow h(t) \longrightarrow \Upsilon_t$

000000

Filtering of Random Processes

ightharpoonup Clearly, X_t and Y_t are jointly defined random processes.

000000

Standard LTI system — convolution:

$$Y_t = \int h(t-\sigma)X_\sigma d\sigma = h(t) * X_t$$

Recall: this convolution is "well-behaved" if

$$\iint R_X(\sigma,\nu)h(t-\sigma)h(t-\nu)\,d\sigma\,d\nu<\infty$$

► E.g.: $\iint R_X(\sigma, \nu) d\sigma d\nu < \infty$ and h(t) stable.

Second Order Description of Output: Mean

ightharpoonup The expected value of the filter's output Y_t is:

$$\mathbf{E}[Y_t] = \mathbf{E}[\int h(t-\sigma)X_{\sigma} d\sigma]$$

$$= \int h(t-\sigma)\mathbf{E}[X_{\sigma}] d\sigma$$

$$= \int h(t-\sigma)m_X(\sigma) d\sigma$$

For a wss process X_t , $m_X(t)$ is constant. Therefore,

$$\mathbf{E}[Y_t] = m_Y(t) = m_X \int h(\sigma) \, d\sigma$$

is also constant.

► The crosscorrelation between input and ouput signals is:

$$R_{XY}(t, u) = \mathbf{E}[X_t Y_u] = \mathbf{E}[X_t \int h(u - \sigma) X_\sigma \, d\sigma$$

$$= \int h(u - \sigma) \mathbf{E}[X_t X_\sigma] \, d\sigma$$

$$= \int h(u - \sigma) R_X(t, \sigma) \, d\sigma$$

For a wss input process

$$R_{XY}(t, u) = \int h(u - \sigma) R_X(t, \sigma) d\sigma = \int h(v) R_X(t, u - v) dv$$
$$= \int h(v) R_X(t - u + v) dv = R_{XY}(t - u)$$

Input and output are jointly stationary.

 \triangleright The autocorrelation of Y_t is given by

$$R_{Y}(t, u) = \mathbf{E}[Y_{t}Y_{u}] = \mathbf{E}[\int h(t - \sigma)X_{\sigma} d\sigma \int h(u - \nu)X_{\nu} d\nu]$$
$$= \iint h(t - \sigma)h(u - \nu)R_{X}(\sigma, \nu) d\sigma d\nu$$

For a wss input process:

$$R_{Y}(t, u) = \iint h(t - \sigma)h(u - \nu)R_{X}(\sigma, \nu) d\sigma d\nu$$

$$= \iint h(\lambda)h(\lambda - \gamma)R_{X}(t - \lambda, u - \lambda + \gamma) d\lambda d\gamma$$

$$= \iint h(\lambda)h(\lambda - \gamma)R_{X}(t - u - \gamma) d\lambda d\gamma = R_{Y}(t - u)$$

▶ Define $R_h(\gamma) = \int h(\lambda)h(\lambda - \gamma) d\lambda = h(\lambda) * h(-\lambda)$.

► Then, $R_Y(\tau) = \int R_h(\gamma) R_X(\tau - \gamma) d\gamma = R_h(\tau) * R_X(\tau)$

Exercise: Filtered White Noise Process

Let the white Gaussian noise process X_t be input to a filter with impulse response

$$h(t) = e^{-at}u(t) = \begin{cases} e^{-at} & \text{for } t \ge 0\\ 0 & \text{for } t < 0 \end{cases}$$

- Compute the second order description of the output process Y_t.
- Answers:
 - Mean: m_Y = 0
 - Autocorrelation:

$$R_{Y}(\tau) = \frac{N_0}{2} \frac{e^{-a|\tau|}}{2a}$$

Power Spectral Density (PSD) measures how the power of a random process is distributed over frequency.

0000

- ▶ Notation: $S_X(f)$
- Units: Watts per Hertz (W/Hz)
- ► Thought experiment:
 - ightharpoonup Pass random process X_t through a narrow bandpass filter:
 - center frequency f
 - ightharpoonup bandwidth Δf
 - ightharpoonup denote filter output as Y_t
 - Measure the power P at the output of bandpass filter:

$$P = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} |Y_t|^2 dt$$

Relationship between power and (PSD)

$$P \approx S_X(f) \cdot \Delta f$$
.

Relation to Autocorrelation Function

For a wss random process, the power spectral density is closely related to the autocorrelation function $R_X(\tau)$.

00000

▶ **Definition:** For a random process X_t with autocorrelation function $R_X(\tau)$, the power spectral density $S_X(f)$ is defined as the Fourier transform of the autocorrelation function,

$$S_X(f) = \int_{-\infty}^{\infty} R_X(\tau) e^{j2\pi f \tau} d\tau.$$

- For non-stationary processes, it is possible to define a spectral representation of the process.
- ► However, the spectral contents of a non-stationary process will be time-varying.
- **Example:** If N_t is white noise, i.e., $R_N(\tau) = \frac{N_0}{2} \delta(\tau)$, then

$$S_X(f) = \frac{N_0}{2}$$
 for all f

Properties of the PSD

Inverse Transform:

$$R_X(\tau) = \int_{-\infty}^{\infty} S_X(f) e^{-j2\pi f \tau} df.$$

The total power of the process is

$$\mathbf{E}[|X_t|^2] = R_X(0) = \int_{-\infty}^{\infty} S_X(f) \, df.$$

- $ightharpoonup S_X(f)$ is even and non-negative.
 - ▶ Evenness of $S_X(f)$ follows from evenness of $R_X(\tau)$.
 - Non-negativeness is a consequence of the autocorrelation function being positive definite

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(t) f^*(u) R_X(t, u) dt du \ge 0$$

for all choices of $f(\cdot)$, including $f(t) = e^{-j2\pi ft}$.

Filtering of Random Processes

▶ Random process X_t with autocorrelation $R_X(\tau)$ and PSD $S_X(f)$ is input to LTI filter with impuse response h(t) and frequency response H(f).

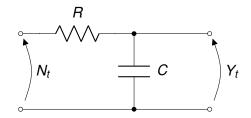
00000

▶ The PSD of the output process Y_t is

$$S_Y(f) = |H(f)|^2 S_X(f).$$

- ▶ Recall that $R_Y(\tau) = R_X(\tau) * C_h(\tau)$,
- where $C_h(\tau) = h(\tau) * h(-\tau)$.
- ▶ In frequency domain: $S_Y(f) = S_X(f) \cdot \mathcal{F}\{C_h(\tau)\}$
- With

$$\begin{split} \mathcal{F}\{C_h(\tau)\} &= \mathcal{F}\{h(\tau) * h(-\tau)\} \\ &= \mathcal{F}\{h(\tau)\} \cdot \mathcal{F}\{h(-\tau)\} \\ &= H(f) \cdot H^*(f) = |H(f)|^2. \end{split}$$



0000

- ▶ Let N_t be a white noise process that is input to the above circuit. Find the power spectral density of the output process.
- Answer:

$$S_Y(f) = \left| \frac{1}{1 + j2\pi fRC} \right|^2 \frac{N_0}{2} = \frac{1}{1 + (2\pi fRC)^2} \frac{N_0}{2}.$$

Signal Space Concepts — Why we Care

- Signal Space Concepts are a powerful tool for the analysis of communication systems and for the design of optimum receivers.
- Key Concepts:
 - Orthonormal basis functions tailored to signals of interest — span the signal space.
 - Representation theorem: allows any signal to be represented as a (usually finite dimensional) vector
 Signals are interpreted as points in signal space.
 - ► For random processes, representation theorem leads to random signals being described by random vectors with uncorrelated components.
 - Theorem of Irrelavance allows us to disregrad nearly all components of noise in the receiver.
- We will briefly review key ideas that provide underpinning for signal spaces.

Linear Vector Spaces

- ► The basic structure needed by our signal spaces is the idea of linear vector space.
- ▶ Definition: A linear vector space S is a collection of elements ("vectors") with the following properties:
 - Addition of vectors is defined and satisfies the following conditions for any $x, y, z \in S$:
 - 1. $x + y \in S$ (closed under addition)
 - 2. x + y = y + x (commutative)
 - 3. (x + y) + z = x + (y + z) (associative)
 - 4. The zero vector $\vec{0}$ exists and $\vec{0} \in S$. $x + \vec{0} = x$ for all $x \in S$.
 - 5. For each $x \in \mathcal{S}$, a unique vector (-x) is also in \mathcal{S} and $x + (-x) = \vec{0}$.

Linear Vector Spaces — continued

Definition — continued:

- Associated with the set of vectors in S is a set of scalars. If a, b are scalars, then for any $x, y \in S$ the following properties hold:
 - 1. $a \cdot x$ is defined and $a \cdot x \in S$.
 - 2. $a \cdot (b \cdot x) = (a \cdot b) \cdot x$
 - 3. Let 1 and 0 denote the multiplicative and additive identies of the field of scalars, then $1 \cdot x = x$ and $0 \cdot x = \vec{0}$ for all $x \in \mathcal{S}$.
 - 4. Associative properties:

$$a \cdot (x + y) = a \cdot x + a \cdot y$$

 $(a + b) \cdot x = a \cdot x + b \cdot x$

Running Examples

▶ The space of length-N vectors \mathbb{R}^N

$$\begin{pmatrix} x_1 \\ \vdots \\ x_N \end{pmatrix} + \begin{pmatrix} y_1 \\ \vdots \\ y_N \end{pmatrix} = \begin{pmatrix} x_1 + y_1 \\ \vdots \\ x_N + y_N \end{pmatrix} \text{ and } a \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_N \end{pmatrix} = \begin{pmatrix} a \cdot x_1 \\ \vdots \\ a \cdot x_N \end{pmatrix}$$

The collection of all square-integrable signals over $[T_a, T_b]$, i.e., all signals x(t) satisfying

$$\int_{T_a}^{T_b} |x(t)|^2 dt < \infty.$$

- Verifying that this is a linear vector space is easy.
- ▶ This space is called $L^2(T_a, T_b)$ (pronounced: ell-two).

0000000000000

- To be truly useful, we need linear vector spaces to provide
 - means to measure the length of vectors and
 - to measure the distance between vectors.
- Both of these can be achieved with the help of inner products.
- **Definition:** The inner product of two vectors $x, y \in S$ is denoted by $\langle x, y \rangle$. The inner product is a *scalar* assigned to x and y so that the following conditions are satisfied:
 - 1. $\langle x, y \rangle = \langle y, x \rangle$ (for complex vectors $\langle x, y \rangle = \langle y, x \rangle^*$)
 - 2. $\langle a \cdot x, y \rangle = a \cdot \langle x, y \rangle$, with scalar a
 - 3. $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$, with vector z
 - 4. $\langle x, x \rangle > 0$, except when $x = \vec{0}$; then, $\langle x, x \rangle = 0$.

Exercise: Valid Inner Products?

 \triangleright $x, y \in \mathbb{R}^N$ with

$$\langle x,y\rangle=\sum_{n=1}^N x_ny_n$$

- Answer: Yes; this is the standard dot product.
- \triangleright $x, y \in \mathbb{R}^N$ with

$$\langle x,y\rangle = \sum_{n=1}^N x_n \cdot \sum_{n=1}^N y_n$$

Answer: No; last condition does not hold, which makes this inner product useless for measuring distances.

000000000000

 \triangleright $x(t), y(t) \in L^2(a, b)$ with

$$\langle x(t), y(t) \rangle = \int_{a}^{b} x(t)y(t) dt$$

- **Answer:** Yes; continuous-time equivalent of the dot-product.
- \triangleright $x, y \in \mathbb{C}^N$ with

$$\langle x,y\rangle=\sum_{n=1}^N x_ny_n^*$$

- **Answer:** Yes; the conjugate complex is critical to meet the last condition (e.g., $\langle j, j \rangle = -1 < 0$).
- \triangleright x, $y \in \mathbb{R}^N$ with

$$\langle x, y \rangle = x^T K y = \sum_{n=1}^{N} \sum_{m=1}^{N} x_n K_{n,m} y_m$$

Exercise: Valid Inner Products?

 \triangleright $x, y \in \mathbb{R}^N$ with

$$\langle x, y \rangle = x^T K y = \sum_{n=1}^{N} \sum_{m=1}^{N} x_n K_{n,m} y_m$$

with K an $N \times N$ -matrix

Answer: Only if K is positive definite (i.e., $x^T K x > 0$ for all $x \neq \vec{0}$).

Norm of a Vector

▶ **Definition:** The norm of vector $x \in S$ is denoted by ||x|| and is defined via the inner product as

$$||x|| = \sqrt{\langle x, x \rangle}.$$

- Notice that ||x|| > 0 unless $x = \vec{0}$, then ||x|| = 0.
- ▶ The norm of a vector measures the length of a vector.
- For signals $||x(t)||^2$ measures the *energy* of the signal.
- **Example:** For $x \in \mathbb{R}^N$, Cartesian length of a vector

$$||x|| = \sqrt{\sum_{n=1}^{N} |x_n|^2}$$

Norm of a Vector — continued

► Illustration:

$$||a \cdot x|| = \sqrt{\langle a \cdot x, a \cdot x \rangle} = |a||x||$$

Scaling the vector by a, scales its length by a.

Inner Product Space

- ► We call a linear vector space with an associated, valid inner product an inner product space.
 - **Definition:** An inner product space is a linear vector space in which a inner product is defined for all elements of the space and the norm is given by $||x|| = \langle x, x \rangle$.
- Standard Examples:
 - 1. \mathbb{R}^N with $\langle x, y \rangle = \sum_{n=1}^N x_n y_n$.
 - 2. $L^2(a, b)$ with $\langle x(t), y(t) \rangle = \int_a^b x(t)y(t) dt$.

Schwartz Inequality

- The following relationship between norms and inner products holds for all inner product spaces.
- ▶ Schwartz Inequality: For any $x, y \in S$, where S is an inner product space,

$$|\langle x,y\rangle| \leq ||x|| \cdot ||y||$$

with equality if and only if $x = c \cdot y$ with scalar c

Proof follows from $||x + a \cdot y||^2 \ge 0$ with $a = -\frac{\langle x, y \rangle}{||y||^2}$.

Orthogonality

▶ **Definition:** Two vectors are orthogonal if the inner product of the vectors is zero, i.e.,

$$\langle x, y \rangle = 0.$$

Example: The standard basis vectors e_m in \mathbb{R}^N are orthogonal; recall

$$\mathbf{e}_m = egin{pmatrix} 0 \ dots \ 1 \ dots \end{pmatrix}$$

the 1 occurs on the m-th row

Example: The basis functions for the Fourier Series expansion $w_m(t) \in L^2(0, T)$ are orthogonal; recall

$$w_m(t) = \frac{1}{\sqrt{T}}e^{j2\pi mt/T}.$$

Distance between Vectors

▶ **Definition:** The distance *d* between two vectors is defined as the norm of their difference, i.e.,

$$d(x,y) = \|x - y\|$$

Example: The Cartesian (or Euclidean) distance between vectors in \mathbb{R}^N :

$$d(x, y) = ||x - y|| = \sqrt{\sum_{n=1}^{N} |x_n - y_n|^2}.$$

Example: The root-mean-squared error (RMSE) between two signals in $L^2(a, b)$ is

$$d(x(t), y(t)) = ||x(t) - y(t)|| = \sqrt{\int_a^b |x(t) - y(t)|^2 dt}$$

Properties of Distances

- ▶ Distance measures defined by the norm of the difference between vectors x, y have the following properties:
 - 1. d(x, y) = d(y, x)
 - 2. d(x, y) = 0 if and only if x = y
 - 3. $d(x, y) \le d(x, z) + d(y, z)$ for all vectors z (Triangle inequality)

Exercise: Prove the Triangle Inequality

▶ Begin like this:

$$d^{2}(x, y) = ||x - y||^{2}$$

$$= ||(x - z) + (z - y)||^{2}$$

$$= \langle (x - z) + (z - y), (x - z) + (z - y) \rangle$$

$$d^{2}(x,y) = \langle x - z, x - z \rangle + 2\langle x - z, z - y \rangle + \langle z - y, z - y \rangle$$

$$\leq \langle x - z, x - z \rangle + 2|\langle x - z, z - y \rangle| + \langle z - y, z - y \rangle$$

$$(Schwartz) : \leq \langle x - z, x - z \rangle + 2||x - z|| \cdot ||z - y|| + \langle z - y, z - y \rangle$$

$$= d(x,z)^{2} + 2d(x,z) \cdot d(y,z) + d(y,z)^{2}$$

$$= (d(x,z) + d(y,z))^{2}$$

Hilbert Spaces — Why we Care

- We would like our vector spaces to have one more property.
 - We say the sequence of vectors {x_n} converges to vector x, if

$$\lim_{n\to\infty}\|x_n-x\|=0.$$

- We would like the limit point x of any sequence $\{x_n\}$ to be in our vector space.
- Integrals and derivatives are fundamentally limits; we want derivatives and integrals to stay in the vector space.
- A vector space is said to be closed if it contains all of its limit points.
- Definition: A closed, inner product space is A Hilbert Space.

Hilbert Spaces — Examples

- **Examples:** Both \mathbb{R}^N and $L^2(a,b)$ are Hilbert Spaces.
- ➤ Counter Example: The space of rational number ℚ is not closed (i.e., not a Hilbert space)
 - ► E.g.,

$$\sum_{n=0}^{\infty}\frac{1}{n!}=e\notin\mathbb{Q},$$

even though all $\frac{1}{n!} \in \mathbb{Q}$.

Subspaces

- ▶ **Definition:** Let S be a linear vector space. The space L is a subspace of S if
 - 1. \mathcal{L} is a *subset* of \mathcal{S} and
 - 2. L is closed.
 - ▶ If $x, y \in \mathcal{L}$ then also $x, y, \in \mathcal{S}$.
 - ▶ And, $a \cdot x + b \cdot y \in \mathcal{L}$ for all scalars a, b.
- **Example:** Let S be $L^2(T_a, T_b)$. Define \mathcal{L} as the set of all sinusoids of frequency f_0 , i.e., signals of the form $x(t) = A\cos(2\pi f_0 t + \phi)$, with $0 \le A < \infty$ and $0 \le \phi < 2\pi$
 - 1. All such sinusoids are square integrable.
 - 2. Linear combination of two sinusoids of frequency f_0 is a sinusoid of the same frequency.

Projection Theorem

- ▶ **Definition:** Let \mathcal{L} be a subspace of the Hilbert Space \mathcal{H} . The vector $x \in \mathcal{H}$ (and $x \notin \mathcal{L}$) is orthogonal to the subspace \mathcal{L} if $\langle x, y \rangle = 0$ for every $y \in \mathcal{L}$.
- ▶ **Projection Theorem:** Let \mathcal{H} be a Hilbert Space and \mathcal{L} is a subspace of \mathcal{H} .

Every vector $x \in \mathcal{H}$ has a unique decomposition

$$x = y + z$$

with $y \in \mathcal{L}$ and z orthogonal to \mathcal{L} . Furthermore,

$$||z|| = ||x - y|| = \min_{\nu \in \mathcal{L}} ||x - \nu||.$$

- \triangleright y is called the projection of x onto \mathcal{L} .
- ▶ Distance from x to all elements of \mathcal{L} is minimized by y.

Exercise: Fourier Series

- Let x(t) be a signal in the Hilbert space $L^2(0, T)$.
- ▶ Define the subspace \mathcal{L} of signals $\nu_n(t) = A_n \cos(2\pi nt/T)$ for a fixed n and T.
- ▶ Find the signal $y(t) \in \mathcal{L}$ that minimizes

$$\min_{y(t)\in\mathcal{L}}\|x(t)-y(t)\|^2.$$

Answer: y(t) is the sinusoid with amplitude

$$A_n = \frac{2}{T} \int_0^T x(t) \cos(2\pi nt/T) dt = \frac{2}{T} \langle x(t), \cos(2\pi nt/T) \rangle.$$

- Note that this is (part of the trigonometric form of) the Fourier Series expansion.
- Note that the inner product involves the projection of x(t) onto an element of \mathcal{L} .

Projection Theorem

- ► The Projection Theorem is most useful when the subspace £ has certain structural properties.
- In particular, we will be interested in the case when \mathcal{L} is spanned by a set of orthonormal vectors.
 - Let's define what that means.

Separable Vector Spaces

▶ **Definition:** A Hilbert space \mathcal{H} is said to be separable if there exists a set of vectors $\{\Phi_n\}$, $n=1,2,\ldots$ that are elements of \mathcal{H} and such that every element $x \in \mathcal{H}$ can be expressed as

$$x=\sum_{n=1}^{\infty}X_n\Phi_n.$$

- ▶ The coefficients X_n are scalars associated with vectors Φ_n .
- Equality is taken to mean

$$\lim_{n\to\infty}\left\|x-\sum_{n=1}^{\infty}X_n\Phi_n\right\|^2=0.$$

Representation of a Vector

- ► The set of vectors $\{\Phi_n\}$ is said to be complete if the above is valid for every $x \in \mathcal{H}$.
- A complete set of vectors $\{\Phi_n\}$ is said to form a basis for \mathcal{H} .
- ▶ **Definition:** The representation of the vector x (with respect to the basis $\{\Phi_n\}$) is the sequence of coefficients $\{X_n\}$.
- **Definition:** The number of vectors Φ_n that is required to express every element x of a separable vector space is called the dimension of the space.

Example: Length-N column Vectors

- ▶ The space \mathbb{R}^N is separable and has dimension N.
 - ▶ Basis vectors (m = 1, ..., N):

$$\Phi_m = e_m = egin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix}$$
 the 1 occurs on the m -th row

There are N basis vectors; dimension is N.

Example: Length-N column Vectors — continued

- ► (con't)
 - For any vector $x \in \mathbb{R}^N$:

$$x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_N \end{pmatrix} = \sum_{m=1}^N x_m e_m$$

Examples: L²

▶ Fourier Bases: The following is a complete basis for $L^2(0, T)$

$$\Phi_{2n}(t) = \sqrt{\frac{2}{T}} \cos(2\pi n t/T) \\ \Phi_{2n+1}(t) = \sqrt{\frac{2}{T}} \sin(2\pi n t/T)$$
 $n = 0, 1, 2, ...$

- ▶ This implies that $L^2(0, T)$ is a separable vector space.
- $ightharpoonup L^2(0, T)$ is infinite-dimensional.

Examples: L²

▶ Piecewise Linear Signals: The set of vectors (signals)

$$\Phi_n(t) =
\begin{cases}
\frac{1}{\sqrt{T}} & (n-1)T \le t < nT \\
0 & \text{else}
\end{cases}$$

is **not** a basis for $L^2(0, \infty)$.

- Only piecewise constant signals can be represented.
- ▶ But, this is a basis for the subspace of *L*² consisting of piecewise constant signals.

Orthonormal Bases

- Definition: A basis for a separable vector space is an orthonormal basis if the elements of the vectors that constitute the basis satisfy
 - 1. $\langle \Phi_n, \Phi_m \rangle = 0$ for all $n \neq m$. (orthogonal)
 - 2. $\|\Phi_n\| = 1$, for all n = 1, 2, ... (*normal*ized)
- Note:
 - Not every basis is orthonormal.
 - We will see shortly, every basis can be turned into an orthonormal basis.
 - Not every set of orthonornal vectors constitutes a basis.
 - Example: Piecewise Linear Signals.

Representation with Orthonormal Basis

- ▶ An orthonormal basis is much preferred over an arbitrary basis because the representation of vector *x* is very easy to compute.
- ▶ The representation $\{X_n\}$ of a vector x

$$x=\sum_{n=1}^{\infty}X_n\Phi_n$$

with respect to an orthonormal basis $\{\Phi_n\}$ is computed using

$$X_n = \langle x, \Phi_n \rangle$$
.

The representation X_n is obtained by projecting x onto the basis vector Φ_n !

In contrast, when bases are not orthonormal, finding the representation of x requires solving a system of linear equations.

Parsevals Relationship

▶ Parsevals Theorem: If vectors x and y are represented with respect to an orthonormal basis $\{\Phi_n\}$ by $\{X_n\}$ and $\{Y_n\}$, respectively, then

$$\langle x,y\rangle=\sum_{n=1}^{\infty}X_n\cdot Y_n$$

Parsevals theorem implies

$$||x||^2 = \sum_{n=1}^{\infty} X_n^2$$

and

$$||x - y||^2 = \sum_{n=1}^{\infty} |X_n - Y_n|^2$$

Inner products, norms, and distances can be computed using vectors or their representations; the results are the same.

- ▶ We claimed earlier that the projection theorem is particularly useful when the subspace \mathcal{L} is structured.
- ▶ Specifically, let \mathcal{L} be a subspace of \mathcal{S} spanned by a (usually finite) orthonormal basis $\{\Phi_n\}_{n=0}^{N-1}$.
 - Note that $\{\Phi_n\}_{n=0}^{N-1}$ is **not** a complete basis for S.
 - ▶ There are $x \in S$ that cannot be represented by this basis.
- ▶ Then, the projection $y \in \mathcal{L}$ of a vector $x \in \mathcal{S}$ is simply

$$y = \sum_{n=0}^{N-1} Y_n \Phi_n$$
 with $Y_n = \langle x, \Phi_n \rangle$.

- Examples:
 - ► Band-limited Fourier series expansion
 - Polynomial regression with Legendre polynomials

Exercise: Orthonormal Basis

Show that for orthonormal basis $\{\Phi_n\}$, the representation X_n of x is obtained by projection

$$\langle x, \Phi_n \rangle = X_n$$

Hint: You need to find

$$\hat{X}_n = \arg\min_{X_n} \|x - X_n \Phi_n - \sum_{m \neq n} X_m \Phi_m\|^2$$

Show that Parsevals theorem is true.

The Gram-Schmidt Procedure

An arbitrary basis $\{\Phi_n\}$ can be converted into an orthonormal basis $\{\Psi_n\}$ using an algorithm known as the Gram-Schmidt procedure:

Step 1:
$$\Psi_1 = \frac{\Phi_1}{\|\Phi_1\|}$$
 (normalize Φ_1)
Step 2 (a): $\tilde{\Psi}_2 = \Phi_2 - \langle \Phi_2, \Psi_1 \rangle \cdot \Psi_1$ (make $\tilde{\Psi}_2 \perp \Psi_1$)
Step 2 (b): $\Psi_2 = \frac{\tilde{\Psi}_2}{\|\tilde{\Psi}_2\|}$

Step k (a):
$$\tilde{\Psi}_k = \Phi_k - \sum_{n=1}^{k-1} \langle \Phi_k, \Psi_n \rangle \cdot \Psi_n$$

Step k (b): $\Psi_k = \frac{\tilde{\Psi}_k}{\|\tilde{\Psi}_k\|}$

▶ Whenever $\tilde{\Psi_n} = 0$, the basis vector is omitted.

Gram-Schmidt Procedure

Note:

- \blacktriangleright By construction, $\{\Psi\}$ is an orthonormal set of vectors.
- If the original basis $\{\Phi\}$ is complete, then $\{\Psi\}$ is also complete.
 - ► The Gram-Schmidt construction implies that every Φ_n can be represented in terms of Ψ_m , with m = 1, ..., n.

Because

- any basis can be normalized (using the Gram-Schmidt procedure) and
- the benefits of orthonormal bases when computing the representation of a vector

a basis is usually assumed to be orthonormal.

Exercise: Gram-Schmidt Procedure

► The following three basis functions are given

$$\varPhi_{1}(t) = \mathit{I}_{[0,\frac{T}{2}]}(t) \quad \varPhi_{2}(t) = \mathit{I}_{[0,T]}(t) \quad \varPhi_{3}(t) = \mathit{I}_{[\frac{T}{2},T]}(t)$$

where $I_{[a,b]}(t) = 1$ for $a \le t \le b$ and zero otherwise.

- Compute an *orthonormal* basis from the above basis functions.
- 2. Compute the representation of $\Phi_n(t)$, n = 1, 2, 3 with respect to this orthonormal basis.
- 3. Compute $\|\Phi_1(t)\|$ and $\|\Phi_2(t) \Phi_3(t)\|$

Answers for Exercise

1. Orthonormal bases:

$$\Psi_1(t) = \sqrt{\frac{2}{T}} I_{[0,\frac{T}{2}]}(t) \quad \Psi_2(t) = \sqrt{\frac{2}{T}} I_{[\frac{T}{2},T]}(t)$$

2. Representations:

$$\phi_1 = \begin{pmatrix} \sqrt{\frac{7}{2}} \\ 0 \end{pmatrix} \quad \begin{pmatrix} \sqrt{\frac{7}{2}} \\ \sqrt{\frac{7}{2}} \end{pmatrix} \quad \begin{pmatrix} 0 \\ \sqrt{\frac{7}{2}} \end{pmatrix}$$

3. Distances: $\|\Phi_1(t)\| = \sqrt{\frac{7}{2}}$ and $\|\Phi_2(t) - \Phi_3(t)\| = \sqrt{\frac{7}{2}}$.

A Hilbert Space for Random Processes

- \triangleright A vector space for random processes X_t that is analogous to $L^2(a, b)$ is of greatest interest to us.
 - This vector space contains random processes that satisfy, i.e.,

$$\int_a^b \mathbf{E}[X_t^2] dt < \infty.$$

Inner Product: cross-correlation

$$\mathbf{E}[\langle X_t, Y_t \rangle] = \mathbf{E}[\int_a^b X_t Y_t \, dt].$$

Fact: This vector space is separable; therefore, an orthonormal basis $\{\Phi\}$ exists.

A Hilbert Space for Random Processes

- (con't)
 - Representation:

$$X_t = \sum_{n=1}^{\infty} X_n \Phi_n(t)$$
 for $a \le t \le b$

with

$$X_n = \langle X_t, \Phi_n(t) \rangle = \int_a^b X_t \Phi_n(t) dt.$$

- ightharpoonup Note that X_n is a random variable.
- For this to be a valid Hilbert space, we must interprete equality of processes X_t and Y_t in the mean squared sense, i.e.,

$$X_t = Y_t \text{ means } \mathbf{E}[|X_t - Y_t|^2] = 0.$$

Karhunen-Loeve Expansion

- ▶ **Goal:** Choose an orthonormal basis $\{\Phi\}$ such that the representation $\{X_n\}$ of the random process X_t consists of uncorrelated random variables.
 - The resulting representation is called Karhunen-Loeve expansion.
- Thus, we want

$$\mathbf{E}[X_nX_m] = \mathbf{E}[X_n]\mathbf{E}[X_m]$$
 for $n \neq m$.

Karhunen-Loeve Expansion

▶ It can be shown, that for the representation $\{X_n\}$ to consist of uncorrelated random variables, the orthonormal basis vectors $\{\Phi\}$ must satisfy

$$\int_{a}^{b} K_{X}(t, u) \cdot \Phi_{n}(u) du = \lambda_{n} \Phi_{n}(t)$$

- where $\lambda_n = \text{Var}[X_n]$.
- $\{\Phi_n\}$ and $\{\lambda_n\}$ are the eigenfunctions and eigenvalues of the autocovariance function $K_X(t, u)$, respectively.

Example: Wiener Process

▶ For the Wiener Process, the autocovariance function is

$$K_X(t, u) = R_X(t, u) = \sigma^2 \min(t, u).$$

It can be shown that

$$\Phi_n(t) = \sqrt{\frac{2}{T}} \sin((n - \frac{1}{2})\pi \frac{t}{T})$$

$$\lambda_n = \left(\frac{\sigma T}{(n - \frac{1}{2})\pi}\right)^2 \quad \text{for } n = 1, 2, \dots$$

Properties of the K-L Expansion

- The eigenfunctions of the autocovariance function form a complete basis.
- ▶ If X_t is Gaussian, then the representation $\{X_n\}$ is a vector of independent, Gaussian random variables.
- For white noise, $K_X(t, u) = \frac{N_0}{2} \delta(t u)$. Then, the eigenfunctions must satisfy

$$\int \frac{N_0}{2} \delta(t-u) \Phi(u) \, du = \lambda \Phi(t).$$

- ▶ Any orthonormal set of bases $\{\Phi\}$ satisfies this condition!
- ► Eigenvalues λ are all equal to $\frac{N_0}{2}$.
- If X_t is white, Gaussian noise then the representation $\{X_n\}$ are independent, identically distributed random variables.
 - zero mean
 - variance $\frac{N_0}{2}$

Binary Hypothesis Tes

00 00 000000000000000000 0000000000

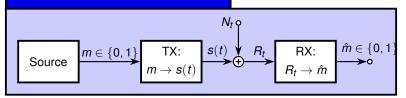
Message Sequence ooo oo oooooo

Part III

Optimum Receivers in AWGN Channels

A Simple Communication System

Simple Communication System



- Objectives: For the above system
 - describe the optimum receiver and
 - find the probability of error for that receiver.

Assumptions

Noise: N_t is a white Gaussian noise process with spectral height $\frac{N_0}{2}$:

$$R_N(\tau) = \frac{N_0}{2}\delta(\tau).$$

Additive White Gaussian Noise (AWGN).

Source: characterized by the a priori probabilities

$$\pi_0 = \Pr\{m = 0\} \quad \pi_1 = \Pr\{m = 1\}.$$

▶ For this example, will assume $\pi_0 = \pi_1 = \frac{1}{2}$.

Assumptions (cont'd)

Transmitter: maps information bits *m* to signals:

$$m o s(t) : egin{cases} s_0(t) = \sqrt{rac{E_b}{T}} & ext{if } m = 0 \ s_1(t) = -\sqrt{rac{E_b}{T}} & ext{if } m = 1 \end{cases}$$

for 0 < t < T.

- Note that we are considering the transmission of a single bit.
- In AWGN channels, each bit can be considered in isolation.

Objective

► In general, the objective is to find the receiver that minimizes the probability of error:

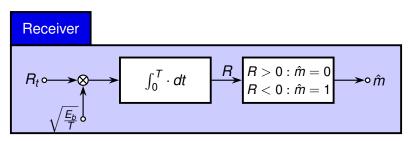
$$Pr\{e\} = Pr\{\hat{m} \neq m\}$$

= $\pi_0 Pr\{\hat{m} = 1 | m = 0\} + \pi_1 Pr\{\hat{m} = 0 | m = 1\}.$

- For this example, optimal receiver will be given (next slide).
- Also, compute the probability of error for the communication system.
 - That is the focus of this example.

Receiver

➤ We will see that the following receiver minimizes the probability of error for *this* communication system.



- **PX Frontend** computes $R = \int_0^T R_t \sqrt{\frac{E_b}{T}} dt = \langle R_t, s_0(t) \rangle$.
- ► RX Backend compares R to a threshold to arrive at decision m̂.

Plan for Finding Pr{e}

- Analysis of the receiver proceeds in the following steps:
 - Find the conditional distribution of the output R from the receiver frontend.
 - Conditioning with respect to each of the possibly transmitted signals.
 - This boils down to finding conditional mean and variance of R.
 - 2. Find the conditional error probabilities $Pr\{\hat{m} = 0 | m = 1\}$ and $Pr\{\hat{m} = 1 | m = 0\}$.
 - Involves finding the probability that R exceeds a threshold.
 - Total probability of error:

$$\Pr\{e\} = \pi_0 \Pr\{\hat{m} = 0 | m = 1\} + \pi_1 \Pr\{\hat{m} = 0 | m = 1\}.$$

00000000

- There are two random effects that affect the received signal:
 - ightharpoonup the additive white Gaussian noise N_t and
 - the random information bit m.
- ▶ By conditioning on m thus, on s(t) randomness is caused by the noise only.
- Conditional on m, the output R of the receiver frontend is a Gaussian random variable:
 - \triangleright N_t is a Gaussian random process; for given s(t), $R_t = s(t) + N_t$ is a Gaussian random process.
 - The frontend performs a linear transformation of R_t: $R = \langle R_t, s_0(t) \rangle$.
- We need to find the conditional means and variances

Conditional Distribution of R

The conditional means and variance of the frontend output R are

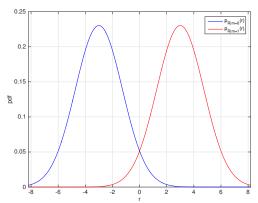
$$\mathbf{E}[R|m=0] = E_b$$
 $Var[R|m=0] = \frac{N_0}{2}E_b$ $\mathbf{E}[R|m=1] = -E_b$ $Var[R|m=1] = \frac{N_0}{2}E_b$

Therefore, the conditional distributions of R are

$$p_{R|m=0}(r) \sim N(E_b, \frac{N_0}{2}E_b) \qquad p_{R|m=1}(r) \sim N(-E_b, \frac{N_0}{2}E_b)$$

The two conditional distributions differ in the mean and have equal variances.

Conditional Distribution of R



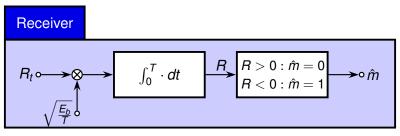
► The two conditional pdfs are shown in the plot above, with

$$E_b = 3$$

►
$$E_b = 3$$

► $\frac{N_0}{2} = 1$

Conditional Probability of Error



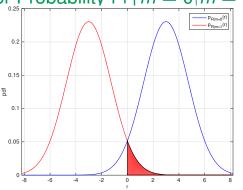
The receiver backend decides:

$$\hat{m} = \begin{cases} 0 & \text{if } R > 0 \\ 1 & \text{if } R < 0 \end{cases}$$

Two conditional error probabilities:

$$\Pr{\hat{m} = 0 | m = 1}$$
 and $\Pr{\hat{m} = 1 | m = 0}$

Error Probability $Pr\{\hat{m} = 0 | m = 1\}$

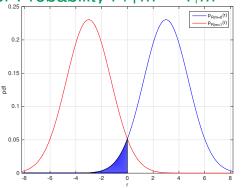


Conditional error probability $\Pr{\hat{m} = 0 | m = 1}$ corresponds to shaded area.

$$\Pr{\hat{m} = 0 | m = 1} = \Pr{R > 0 | m = 1}$$

$$= \int_0^\infty p_{R|m=1}(r) dr = Q\left(\sqrt{\frac{2E_b}{N0}}\right)$$

Error Probability $Pr\{\hat{m}=1|m=0\}$



Conditional error probability $\Pr{\hat{m} = 1 | m = 0}$ corresponds to shaded area.

$$Pr{\hat{m} = 1 | m = 0} = Pr{R < 0 | m = 0}$$
$$= \int_{-\infty}^{0} p_{R|m=0}(r) dr = Q\left(\sqrt{\frac{2E_b}{N0}}\right).$$

Average Probability of Error

- ► The (average) probability of error is the average of the two conditional probabilities of error.
 - The average is weighted by the a priori probabilities π_0 and π_1 .
- ► Thus,

$$\Pr\{e\} = \pi_0 \Pr\{\hat{m} = 1 | m = 0\} + \pi_1 \Pr\{\hat{m} = 0 | m = 1\}.$$

With the above conditional error probabilities and equal priors $\pi_0 = \pi_1 = \frac{1}{2}$

$$\Pr\{e\} = \frac{1}{2}Q\left(\sqrt{\frac{2E_b}{N0}}\right) + \frac{1}{2}Q\left(\sqrt{\frac{2E_b}{N0}}\right) = Q\left(\sqrt{\frac{2E_b}{N0}}\right).$$

- Note that the error probability depends on the ratio $\frac{E_b}{N_0}$,
 - where E_b is the energy of signals $s_0(t)$ and $s_1(t)$.
 - ► This ratio is referred to as the signal-to-noise ratio.

Exercise - Compute Probability of Error

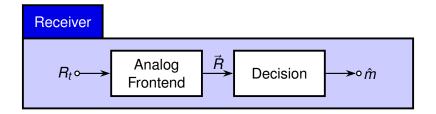
Compute the probability of error for the example system if the only change in the system is that signals $s_0(t)$ and $s_1(t)$ are changed to triangular signals:

$$s_0(t) = \begin{cases} \frac{2A}{T} \cdot t & \text{for } 0 \leq t \leq \frac{T}{2} \\ 2A - \frac{2A}{T} \cdot t & \text{for } \frac{T}{2} \leq t \leq T \\ 0 & \text{else} \end{cases} s_1(t) = -s_0(t)$$

with
$$A = \sqrt{\frac{3E_b}{T}}$$
.

$$\Pr\{e\} = Q\left(\sqrt{\frac{3E_b}{2N_0}}\right)$$

Structure of a Generic Receiver



- Receivers consist of:
 - an analog frontend: maps observed signal R_t to decision statistic R.
 - decision device: determines which symbol \hat{m} was sent based on observation of \vec{R} .
- Optimum design of decision device will be considered first.

Problem Setup

- Given:
 - ightharpoonup a random vector $\vec{R} \in \mathbb{R}^n$ of observations and
 - ▶ hypotheses, H_0 and H_1 , providing statistical models for \vec{R} :

$$H_0$$
: $\vec{R} \sim p_{\vec{R}|H_0}(\vec{r}|H_0)$
 H_1 : $\vec{R} \sim p_{\vec{R}|H_1}(\vec{r}|H_1)$

with known a priori probabilities $\pi_0 = \Pr\{H_0\}$ and $\pi_1 = \Pr\{H_1\}$ ($\pi_0 + \pi_1 = 1$).

- **Problem:** Decide which of the two hypotheses is best supported by the observation \vec{R} .
 - Specific objective: minimize the probability of error

$$Pr\{e\} = Pr\{decide H_0 \text{ when } H_1 \text{ is true}\}$$

+ $Pr\{decide H_1 \text{ when } H_0 \text{ is true}\}$
= $Pr\{decide H_0|H_1\} Pr\{H_1\} + Pr\{decide H_1|H_0\} Pr\{M_1\}$

Generic Decision Rule

- The decision device performs a mapping that assigns a decision, H_0 or H_1 , to each possible observation $\vec{R} \in \mathbb{R}^n$.
- A generic way to realize such a mapping is:
 - partition the space of all possible observations, \mathbb{R}^n , into two disjoint, complementary decision regions Γ_0 and Γ_1 :

$$\Gamma_0 \cup \Gamma_1 = \mathbb{R}^n$$
 and $\Gamma_0 \cap \Gamma_1 = \emptyset$.

Decision Rule:

If
$$\vec{R} \in \Gamma_0$$
: decide H_0
If $\vec{R} \in \Gamma_1$: decide H_1

Probability of Error

▶ The probability of error can now be expressed in terms of the decision regions Γ_0 and Γ_1 :

$$\begin{aligned} \Pr\{e\} &= \Pr\{\text{decide } H_0 | H_1\} \Pr\{H_1\} + \Pr\{\text{decide } H_1 | H_0\} \Pr\{H_0\} \\ &= \pi_1 \int_{\Gamma_0} p_{\vec{R}|H_1}(\vec{r}|H_1) \, d\vec{r} + \pi_0 \int_{\Gamma_1} p_{\vec{R}|H_0}(\vec{r}|H_0) \, d\vec{r} \end{aligned}$$

• Our objective becomes to find the decision regions Γ_0 and Γ_1 that minimize the probability of error.

Probability of Error

Since $\Gamma_0 \cup \Gamma_1 = \mathbb{R}^n$ it follows that $\Gamma_1 = \mathbb{R}^n \setminus \Gamma_0$

$$\begin{split} \Pr\{e\} &= \pi_1 \int_{\varGamma_0} \rho_{\vec{R}|H_1}(\vec{r}|H_1) \, d\vec{r} + \pi_0 \int_{\mathbb{R}^n \setminus \varGamma_0} \rho_{\vec{R}|H_0}(\vec{r}|H_0) \, d\vec{r} \\ &= \pi_0 \int_{\mathbb{R}^n} \rho_{\vec{R}|H_0}(\vec{r}|H_0) \, d\vec{r} \\ &+ \int_{\varGamma_0} (\pi_1 \rho_{\vec{R}|H_1}(\vec{r}|H_1) - \pi_0 \rho_{\vec{R}|H_0}(\vec{r}|H_0)) \, d\vec{r} \\ &= \pi_0 - \int_{\varGamma_0} (\pi_0 \rho_{\vec{R}|H_0}(\vec{r}|H_0) - \pi_1 \rho_{\vec{R}|H_1}(\vec{r}|H_1)) \, d\vec{r}. \end{split}$$

 $ightharpoonup \Pr\{e\}$ is minimized by chosing Γ_0 to contain all \vec{r} for which the integrand $(\pi_0 p_{\vec{R}|H_0}(\vec{r}|H_0) - \pi_1 p_{\vec{R}|H_1}(\vec{r}|H_1)) < 0$.

Minimum Pr{e} (MPE) Decision Rule

ightharpoonup Thus, the decision region Γ_0 that minimizes the probability of error is given by:

$$\begin{split} &\Gamma_{0} = \left\{ \vec{r} : (\pi_{0} \rho_{\vec{R}|H_{0}}(\vec{r}|H_{0}) - \pi_{1} \rho_{\vec{R}|H_{1}}(\vec{r}|H_{1})) > 0 \right\} \\ &= \left\{ \vec{r} : \pi_{0} \rho_{\vec{R}|H_{0}}(\vec{r}|H_{0}) > \pi_{1} \rho_{\vec{R}|H_{1}}(\vec{r}|H_{1})) \right\} \\ &= \left\{ \vec{r} : \frac{\rho_{\vec{R}|H_{1}}(\vec{r}|H_{1})}{\rho_{\vec{R}|H_{0}}(\vec{r}|H_{0})} < \frac{\pi_{0}}{\pi_{1}} \right\} \end{split}$$

The decision region Γ₁ follows

$$\Gamma_1 = \Gamma_0^C = \left\{ \vec{r} : \frac{\rho_{\vec{R}|H_1}(\vec{r}|H_1)}{\rho_{\vec{R}|H_0}(\vec{r}|H_0)} > \frac{\pi_0}{\pi_1} \right\}$$

Likelihood Ratio

▶ The MPE decision rule can be written as

$$\text{If } \frac{\rho_{\vec{R}|H_1}(\vec{R}|H_1)}{\rho_{\vec{R}|H_0}(\vec{R}|H_0)} \begin{cases} > \frac{\pi_0}{\pi_1} & \text{decide } H_1 \\ < \frac{\pi_0}{\pi_1} & \text{decide } H_0 \end{cases}$$

Notation:

$$\frac{\rho_{\vec{R}|H_1}(\vec{R}|H_1)}{\rho_{\vec{R}|H_0}(\vec{R}|H_0)} \underset{H_0}{\overset{H_1}{\gtrless}} \frac{\pi_0}{\pi_1}$$

The ratio of conditional density functions

$$\Lambda(\vec{R}) = \frac{\rho_{\vec{R}|H_1}(\vec{R}|H_1)}{\rho_{\vec{R}|H_0}(\vec{R}|H_0)}$$

is called the likelihood ratio.

Log-Likelihood Ratio

- Many of the densities of interest are exponential functions (e.g., Gaussian).
- For these densities, it is advantageous to take the log of both sides of the decision rule.
 - **Important:** This does not change the decision rule because the logarithm is monotonically increasing!
- The MPE decision rule can be written as:

$$L(\vec{R}) = \ln \left(\frac{\rho_{\vec{R}|H_1}(\vec{R}|H_1)}{\rho_{\vec{R}|H_0}(\vec{R}|H_0)} \right) \overset{H_1}{\underset{H_0}{\gtrless}} \ln \left(\frac{\pi_0}{\pi_1} \right)$$

 $L(\vec{R}) = \ln(\Lambda(\vec{R}))$ is called the log-likelihood ratio.

•00000000

Example: Gaussian Hypothesis Testing

The most important hypothesis testing problem for communications over AWGN channels is

$$H_0: \vec{R} \sim N(\vec{m}_0, \sigma^2 I)$$

 $H_1: \vec{R} \sim N(\vec{m}_1, \sigma^2 I)$

- This problem arises when
 - one of two known signals is transmitted over an AWGN channel, and
 - a linear analog frontend is used.
- Note that
 - the conditional means are different reflecting different signals
 - covariance matrices are the same since they depend on noise only.
 - components of \vec{R} are independent indicating that the frontend projects R_t onto orthogonal bases.

Resulting Log-Likelihood Ratio

For this problem, the log-likelihood ratio simplifies to

$$L(\vec{R}) = \frac{1}{2\sigma^2} \sum_{k=1}^{n} (R_k - m_{0k})^2 - (R_k - m_{1k})^2$$

$$= \frac{1}{2\sigma^2} (\|\vec{R} - \vec{m}_0\|^2 - \|\vec{R} - \vec{m}_1\|^2)$$

$$= \frac{1}{2\sigma^2} \left(2\langle \vec{R}, \vec{m}_1 - \vec{m}_0 \rangle - (\|\vec{m}_1\|^2 - \|\vec{m}_0\|^2) \right)$$

- The second expressions shows that the Euclidean distance between observations \vec{R} and means \vec{m}_i plays a central role in Gaussian hypothesis testing.
- The last expression highlights the projection of the observation \vec{R} onto the difference between the means \vec{m}_i .

MPE Decision Rule

- With the above log-liklihood ratio, the MPE decision rule becomes equivalently
 - either

$$\langle \vec{R}, \vec{m_1} - \vec{m_0} \rangle \overset{H_1}{\underset{H_0}{\gtrless}} \sigma^2 \ln \left(\frac{\pi_0}{\pi_1} \right) + \frac{\|\vec{m_1}\|^2 - \|\vec{m_0}\|^2}{2}$$

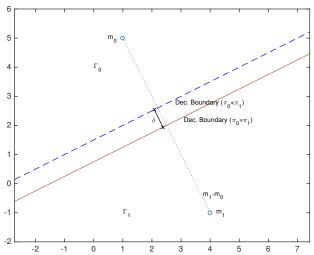
or

$$\|\vec{R} - \vec{m_0}\|^2 - 2\sigma^2 \ln(\pi_0) \underset{H_0}{\overset{H_1}{\geqslant}} \|\vec{R} - \vec{m_1}\|^2 - 2\sigma^2 \ln(\pi_1)$$

Decision Regions

- ▶ The MPE decision rule divides \mathbb{R}^n into two half planes that are the decision regions Γ_0 and Γ_1 .
- The dividing line (decision boundary) between the regions is perpendicular to $\vec{m}_1 \vec{m}_0$.
 - This is a consequence of the inner product in the first form of the decision rule.
- If the priors π_0 and π_1 are equal, then the decision boundary passes through the midpoint $\frac{\vec{m}_0 + \vec{m}_1}{2}$.
 - For unequal priors, the decision boundary is shifted towards the mean of the less likely hypothesis.
 - ► The distance of this shift equals $\delta = \frac{2\sigma^2 |\ln(\pi_0/\pi_1)|}{\|\vec{m_1} \vec{m_0}\|}$.
 - This follows from the (squared) distances in the second form of the decision rule.

Decision Regions



Probability of Error

- Question: What is the probability of error with the MPE decision rule?
 - Using MPE decision rule

$$\langle \vec{R}, \vec{m_1} - \vec{m_0} \rangle \overset{H_1}{\underset{H_0}{\gtrless}} \sigma^2 \ln \left(\frac{\pi_0}{\pi_1} \right) + \frac{\|\vec{m_1}\|^2 - \|\vec{m_0}\|^2}{2}$$

- Plan:
 - Find conditional densities of $\langle \vec{R}, \vec{m}_1 \vec{m}_0 \rangle$ under H_0 and H_1 .
 - Find conditional error probabilities

$$\int_{\Gamma_i} \rho_{\vec{R}|H_j}(\vec{r}|H_j) d\vec{r} \text{ for } i \neq j.$$

Find average probability of error.

Conditional Distributions

▶ Since $\langle \vec{R}, \vec{m}_1 - \vec{m}_0 \rangle$ is a linear transformation and \vec{R} is Gaussian, the conditional distributions are Gaussian.

$$H_{0}: N(\underbrace{\langle \vec{m}_{0}, \vec{m}_{1} \rangle - \|\vec{m}_{0}\|^{2}}_{\mu_{0}}, \underbrace{\sigma^{2} \|\vec{m}_{0} - \vec{m}_{1}\|^{2}}_{\sigma_{m}^{2}})$$

$$H_{1}: N(\underbrace{\|\vec{m}_{1}\|^{2} - \langle \vec{m}_{0}, \vec{m}_{1} \rangle}_{\mu_{1}}, \underbrace{\sigma^{2} \|\vec{m}_{0} - \vec{m}_{1}\|^{2}}_{\sigma_{n}^{2}})$$

Conditional Error Probabilities

▶ The MPE decision rule compares

$$\langle \vec{R}, \vec{m_1} - \vec{m_0} \rangle \overset{H_1}{\underset{H_0}{\gtrless}} \underbrace{\sigma^2 \ln \left(\frac{\pi_0}{\pi_1} \right) + \frac{\|\vec{m_1}\|^2 - \|\vec{m_0}\|^2}{2}}_{\gamma}$$

Resulting conditional probabilities of error

$$\begin{split} \Pr\{e|\textit{H}_{0}\} &= Q\left(\frac{\gamma - \mu_{0}}{\sigma_{m}}\right) = Q\left(\frac{\|\vec{m}_{0} - \vec{m}_{1}\|}{2\sigma} + \frac{\sigma \ln(\pi_{0}/\pi_{1})}{\|\vec{m}_{0} - \vec{m}_{1}\|}\right) \\ \Pr\{e|\textit{H}_{1}\} &= Q\left(\frac{\mu_{1} - \gamma}{\sigma_{m}}\right) = Q\left(\frac{\|\vec{m}_{0} - \vec{m}_{1}\|}{2\sigma} - \frac{\sigma \ln(\pi_{0}/\pi_{1})}{\|\vec{m}_{0} - \vec{m}_{1}\|}\right) \end{split}$$

Average Probability of Error

The average error probability equals

$$\begin{split} \Pr\{e\} &= \Pr\{\text{decide } H_0 | H_1\} \Pr\{H_1\} + \Pr\{\text{decide } H_1 | H_0\} \Pr\{H_0\} \\ &= \pi_0 Q \left(\frac{\|\vec{m}_0 - \vec{m}_1\|}{2\sigma} + \frac{\sigma \ln(\pi_0/\pi_1)}{\|\vec{m}_0 - \vec{m}_1\|} \right) + \\ &\pi_1 Q \left(\frac{\|\vec{m}_0 - \vec{m}_1\|}{2\sigma} - \frac{\sigma \ln(\pi_0/\pi_1)}{\|\vec{m}_0 - \vec{m}_1\|} \right) \end{split}$$

Important special case: $\pi_0 = \pi_1 = \frac{1}{2}$

$$\mathsf{Pr}\{e\} = \mathsf{Q}\left(\frac{\|\vec{m}_0 - \vec{m}_1\|}{2\sigma}\right)$$

- The error probability depends on the ratio of
 - distance between means $\|\vec{m}_0 \vec{m}_1\|$
 - and noise standard deviation

0000000

Maximum-Likelihood (ML) Decision Rule

- ➤ The maximum-likelihood decision rule disregards priors and decides for the hypothesis with higher likelihood.
- ► ML Decision rule:

$$\Lambda(\vec{R}) = \frac{p_{\vec{R}|H_1}(\vec{R}|H_1)}{p_{\vec{R}|H_0}(\vec{R}|H_0)} \underset{H_0}{\overset{H_1}{\geqslant}} 1$$

or equivalently, in terms of the log-likelihood,

$$L(\vec{R}) = \ln \left(\frac{\rho_{\vec{R}|H_1}(\vec{R}|H_1)}{\rho_{\vec{R}|H_0}(\vec{R}|H_0)} \right) \stackrel{H_1}{\gtrless} 0$$

- Obviously, the ML decision is equivalent to the MPE rule when the priors are equal.
- ► In the Gaussian case, the ML rule does not require knowledge of the noise variance.

A-Posteriori Probability

▶ By Bayes rule, the probability of hypothesis H_i after observing \vec{R} is

$$\Pr\{H_i|\vec{R}=\vec{r}\}=\frac{\pi_i \rho_{\vec{R}|H_i}(\vec{r}|H_i)}{\rho_{\vec{R}}(\vec{r})},$$

where $p_{\vec{R}}(\vec{r})$ is the unconditional pdf of \vec{R}

$$\rho_{\vec{R}}(\vec{r}) = \sum_{i} \pi_{i} \rho_{\vec{R}|H_{i}}(\vec{r}|H_{i}).$$

Maximum A-Posteriori (MAP) decision rule:

$$\Pr\{H_1|\vec{R} = \vec{r}\} \overset{H_1}{\underset{H_0}{\gtrless}} \Pr\{H_0|\vec{R} = \vec{r}\}$$

Interpretation: Decide in favor of the hypothesis that is more likely given the observed signal \vec{R} .

The MAP and MPE Rules are Equivalent

- ► The MAP and MPE rules are equivalent: the MAP decision rule achieves the minimum probability of error.
- The MAP rule can be written as

$$\frac{\Pr\{H_1|\vec{R}=\vec{r}\}}{\Pr\{H_0|\vec{R}=\vec{r}\}} \underset{H_0}{\overset{H_1}{\geqslant}} 1.$$

► Inserting $\Pr\{H_i|\vec{R}=\vec{r}\}=\frac{\pi_i p_{\vec{R}|H_i}(\vec{r}|H_i)}{p_{\vec{R}}(\vec{r})}$ yields

$$\frac{\pi_{1}\rho_{\vec{R}|H_{1}}(\vec{r}|H_{1})}{\pi_{0}\rho_{\vec{R}|H_{0}}(\vec{r}|H_{0})} \underset{H_{0}}{\overset{H_{1}}{\geqslant}} 1$$

This is obviously equal to the MPE rule

$$\frac{\rho_{\vec{R}|H_1}(\vec{r}|H_1)}{\rho_{\vec{R}|H_0}(\vec{r}|H_0)} \underset{H_0}{\overset{H_1}{\geqslant}} \frac{\pi_0}{\pi_1}$$

More than Two Hypotheses

Frequently, more than two hypotheses must be considered:

$$H_0: \vec{R} \sim \rho_{\vec{R}|H_0}(\vec{r}|H_0)$$

$$H_1: \vec{R} \sim \rho_{\vec{R}|H_1}(\vec{r}|H_1)$$

$$\vdots$$

$$H_M: \vec{R} \sim \rho_{\vec{R}|H_M}(\vec{r}|H_M)$$

- In these cases, it is no longer possible to reduce the decision rules to
 - the computation of the likelihood ratio
 - followed by comparison to a threshold

More than Two Hypotheses

- Instead the decision rules take the following forms
 - MPE rule:

$$\hat{m} = \arg\max_{i \in \{0,\dots,M-1\}} \pi_i p_{\vec{R}|H_i}(\vec{r}|H_i)$$

ML rule:

$$\hat{\textit{m}} = \arg\max_{\textit{i} \in \{0,\dots,M-1\}} \textit{p}_{\vec{R}|\textit{H}_{\textit{i}}}(\vec{r}|\textit{H}_{\textit{i}})$$

MAP rule:

$$\hat{\textit{m}} = \arg\max_{i \in \{0,\dots,M-1\}} \Pr\{\textit{H}_i | \vec{\textit{R}} = \vec{\textit{r}}\}$$

More than Two Hypotheses: The Gaussian Case

- ▶ When the hypotheses are of the form H_i : $\vec{R} \sim N(\vec{m}_i, \sigma^2 I)$, then the decision rules become:
 - MPE and MAP decision rules:

$$\begin{split} \hat{m} &= \arg \min_{i \in \{0, \dots, M-1\}} \|\vec{r} - \vec{m}_i\|^2 - 2\sigma^2 \ln(\pi_i) \\ &= \arg \max_{i \in \{0, \dots, M-1\}} \langle \vec{r}, \vec{m}_i \rangle + \sigma^2 \ln(\pi_i) - \frac{\|\vec{m}_i\|^2}{2} \end{split}$$

ML decision rule:

$$\begin{split} \hat{m} &= \arg \min_{i \in \{0, \dots, M-1\}} \|\vec{r} - \vec{m}_i\|^2 \\ &= \arg \max_{i \in \{0, \dots, M-1\}} \langle \vec{r}, \vec{m}_i \rangle - \frac{\|\vec{m}_i\|^2}{2} \end{split}$$

This is also the MPE rule when the priors are all equal.

00000000

- ► The conditional densities $p_{\vec{R}|H_i}(\vec{r}|H_i)$ play a key role.
- MPE decision rule:
 - Binary hypotheses:

$$\Lambda(\vec{R}) = \frac{p_{\vec{R}|H_1}(\vec{R}|H_1)}{p_{\vec{R}|H_0}(\vec{R}|H_0)} \underset{H_0}{\overset{H_1}{\gtrsim}} \frac{\pi_0}{\pi_1}$$

M hypotheses:

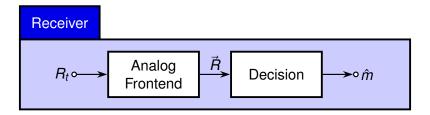
$$\hat{m} = \arg\max_{i \in \{0,\dots,M-1\}} \pi_i p_{\vec{R}|H_i}(\vec{r}|H_i).$$

Take-Aways

For the Gaussian case (different means, equal variance), decisions are based on the Euclidean distance between observations \vec{R} and conditional means \vec{m}_i :

$$\begin{split} \hat{m} &= \arg \min_{i \in \{0, \dots, M-1\}} \|\vec{r} - \vec{m}_i\|^2 - 2\sigma^2 \ln(\pi_i) \\ &= \arg \max_{i \in \{0, \dots, M-1\}} \langle \vec{r}, \vec{m}_i \rangle + \sigma^2 \ln(\pi_i) - \frac{\|\vec{m}_i\|^2}{2} \end{split}$$

Structure of a Generic Receiver



- Receivers consist of:
 - an analog frontend: maps observed signal R_t to decision statistic R.
 - decision device: determines which symbol \hat{m} was sent based on observation of \vec{R} .
- Focus on designing optimum frontend.

Problem Formulation and Assumptions

In terms of the received signal R_t , we can formulate the following decision problem:

$$H_0$$
: $R_t = s_0(t) + N_t$ for $0 \le t \le T$
 H_1 : $R_t = s_1(t) + N_t$ for $0 \le t \le T$

- Assumptions:
 - $ightharpoonup N_t$ is whithe Gaussian noise with spectral height $\frac{N_0}{2}$.
 - \triangleright N_t is independent of the transmitted signal.
- Objective: Determine the optimum receiver frontend.

000000000000

Starting Point: KL-Expansion

 \triangleright Under the *i*-th hypothesis, the received signal R_t can be represented over 0 < t < T via the expansion

$$H_i$$
: $R_t = \sum_{j=0}^{\infty} R_j \Phi_j(t) = \sum_{j=0}^{\infty} (s_{ij} + N_j) \Phi_j(t)$.

Recall:

- If the above representation yields uncorrelated coefficients R_i , then this is a Karhunen-Loeve expansion.
- Since N_t is white, any orthonormal basis $\{\Phi_i(t)\}$ yields a Karhunen-Loeve expansion.

Insight:

• We can *choose* a basis $\{\Phi_i(t)\}$ that produces a low-dimensional representation for all signals $s_i(t)$.

Constructing a Good Basis

 Consider the complete, but not necessarily orthonormal, basis

$$\{s_0(t), s_1(t), \Psi_0(t), \Psi_1(t), \ldots\}$$
.

where $\{\Psi_j(t)\}$ is any complete basis over $0 \le t \le T$ (e.g., the Fourier basis).

▶ Then, the Gram-Schmidt procedure is used to convert the above basis into an orthonormal basis $\{\Phi_i\}$.

Properties of Resulting Basis

- Notice: with this construction
 - ▶ only the first $M \le 2$ basis functions $\Phi_i(t)$, $j < M \le 2$ are dependent on the signals $s_i(t)$, $i \leq 2$.
 - l.e., for each i < M,

$$\langle s_i(t), \Phi_j(t) \rangle \neq 0$$
 for at least one $i = 0, 1$

- Recall, M < 2 if signals are not linearly independent.
- ▶ The remaining basis functions $\Phi_i(t)$, $j \ge M$ are orthogonal to the signals $s_i(t)$, i < 2
 - l.e., for each i > M,

$$\langle s_i(t), \Phi_i(t) \rangle = 0$$
 for all $i = 0, 1$

Back to the Decision Problem

Our decision problem can now be written in terms of the representation

$$H_0: R_t = \sum_{j=0}^{M-1} (s_{0j} + N_j) \Phi_j(t) + \sum_{j=M}^{\infty} N_j \Phi_j(t)$$

$$H_1: R_t = \underbrace{\sum_{j=0}^{M-1} (s_{1j} + N_j) \Phi_j(t)}_{\text{signal + noise}} + \underbrace{\sum_{j=M}^{\infty} N_j \Phi_j(t)}_{\text{noise only}}$$

$$s_{ij} = \langle s_i(t), \Phi_j(t) \rangle$$

where

$$S_{ij} = \langle S_i(t), \Psi_j(t) \rangle$$

 $N_j = \langle N_t, \Psi_j(t) \rangle$

Note that N_j are independent, Gaussian random variables, $N_j \sim N(0, \frac{N_0}{2})$

Vector Version of Decision Problem

- ▶ The received signal R_t and its representation $\vec{R} = \{R_i\}$ are equivalent.
 - ▶ Via the basis $\{\Phi_i\}$ one can be obtained from the other.
- Therefore, the decision problem can be written in terms of the representations

$$H_0$$
: $\vec{R} = \vec{s}_0 + \vec{N}$

$$H_1$$
: $\vec{R} = \vec{s}_1 + \vec{N}$

where

- all vectors are of infinite length,
- \blacktriangleright the elements of \vec{N} are i.i.d., zero mean Gaussian,
- all elements s_{ij} with $j \ge M$ are zero.

Reducing the Number of Dimensions

We can write the conditional pdfs for the decision problem

$$\begin{split} H_0 \colon \vec{R} \sim \prod_{j=0}^{M-1} p_N(r_j - s_{0j}) \cdot \prod_{j=M}^{\infty} p_N(r_j) \\ H_1 \colon \vec{R} \sim \prod_{j=0}^{M-1} p_N(r_j - s_{1j}) \cdot \prod_{j=M}^{\infty} p_N(r_j) \end{split}$$

where $p_N(r)$ denotes a Gaussian pdf with zero mean and variance $\frac{N_0}{2}$.

Reducing the Number of Dimensions

The optimal decision relies on the likelihood ratio

$$L(\vec{R}) = \frac{\prod_{j=0}^{M-1} p_{N}(r_{j} - s_{0j}) \cdot \prod_{j=M}^{\infty} p_{N}(r_{j})}{\prod_{j=0}^{M-1} p_{N}(r_{j} - s_{1j}) \cdot \prod_{j=M}^{\infty} p_{N}(r_{j})}$$
$$= \frac{\prod_{j=0}^{M-1} p_{N}(r_{j} - s_{0j})}{\prod_{j=0}^{M-1} p_{N}(r_{j} - s_{1j})}$$

- The likelihood ratio depends only on the first M dimensions of \vec{R}^{\dagger}
 - Dimensions greater than or equal to *M* are *irrelevant* for the decision problem.
 - Only the the first M dimension need to be computed for optimal decisions.

0000000000000

Reduced Decision Problem

▶ The following decision problem with *M* dimensions is equivalent to our original decision problem (assumes M = 2):

$$H_0: \vec{R} = \begin{pmatrix} s_{00} \\ s_{01} \end{pmatrix} + \begin{pmatrix} N_0 \\ N_1 \end{pmatrix} = \vec{s}_0 + \vec{N} \sim N(\vec{s}_0, \frac{N_0}{2}I)$$

$$H_1: \vec{R} = \begin{pmatrix} s_{10} \\ s_{11} \end{pmatrix} + \begin{pmatrix} N_0 \\ N_1 \end{pmatrix} = \vec{s}_1 + \vec{N} \sim N(\vec{s}_1, \frac{N_0}{2}I)$$

▶ When $s_0(t)$ and $s_1(t)$ are linearly dependent, i.e., $s_1(t) = a \cdot s_0(t)$, then M = 1 and the decision problem becomes one-dimensional.

Optimal Frontend - Version 1

From the above discussion, we can conclude that an optimal frontend is given by.

Frontend 1 $\int_0^T dt$ $\int_0^T dt$

Optimum Receiver - Version 1

- Note that the optimum frontend projects the received signal R_t into to signal subspace spanned by the signals $s_i(t)$.
 - Recall that the first basis functions $\Phi_i(t)$, j < M, are obtained from the signals.
- ▶ We know how to solve the resulting, *M*-dimensional decision problem

$$H_0: \vec{R} = \begin{pmatrix} s_{00} \\ s_{01} \end{pmatrix} + \begin{pmatrix} N_0 \\ N_1 \end{pmatrix} = \vec{s}_0 + \vec{N} \sim N(\vec{s}_0, \frac{N_0}{2}I)$$

$$H_1: \vec{R} = \begin{pmatrix} s_{10} \\ s_{11} \end{pmatrix} + \begin{pmatrix} N_0 \\ N_1 \end{pmatrix} = \vec{s}_1 + \vec{N} \sim N(\vec{s}_1, \frac{N_0}{2}I)$$

Optimum Receiver - Version 1

- MPE decision rule:
 - 1. Compute

$$L(\vec{R}) = \langle \vec{R}, \vec{s}_1 - \vec{s}_0 \rangle.$$

2. Compare to threshold:

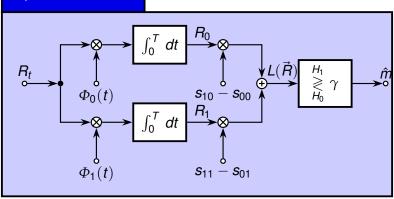
$$\gamma = \frac{\textit{N}_0}{2} \ln(\pi_0/\pi_1) + \frac{\|\vec{s}_1\|^2 - \|\vec{s}_0\|^2}{2}$$

Decision

If
$$L(\vec{R}) > \gamma$$
 decide $s_1(t)$ was sent.
If $L(\vec{R}) < \gamma$ decide $s_0(t)$ was sent.

000000000000

Optimum Receiver



Probability of Error

The probability of error for this receiver is

$$\begin{split} \Pr\{e\} &= \pi_0 Q \left(\frac{\|\vec{s}_0 - \vec{s}_1\|}{2\sqrt{\frac{N_0}{2}}} + \sqrt{\frac{N_0}{2}} \frac{\ln(\pi_0/\pi_1)}{\|\vec{s}_0 - \vec{s}_1\|} \right) \\ &+ \pi_1 Q \left(\frac{\|\vec{s}_0 - \vec{s}_1\|}{2\sqrt{\frac{N_0}{2}}} - \sqrt{\frac{N_0}{2}} \frac{\ln(\pi_0/\pi_1)}{\|\vec{s}_0 - \vec{s}_1\|} \right) \end{split}$$

For the important special case of equally likely signals:

$$\Pr\{e\} = Q\left(\frac{\|\vec{s}_0 - \vec{s}_1\|}{2\sqrt{\frac{N_0}{2}}}\right) = Q\left(\frac{\|\vec{s}_0 - \vec{s}_1\|}{\sqrt{2N_0}}\right)$$

This is the minimum probability of error achievable by any receiver.

Optimum Receiver - Version 2

The optimum receiver derived above, computes the inner product

$$\langle \vec{R}, \vec{s}_1 - \vec{s}_0 \rangle$$
.

By Parseval's relationship, the inner product of the representation equals the inner product of the signals

$$\langle \vec{R}, \vec{s}_1 - \vec{s}_0 \rangle = \langle R_t, s_1(t) - s_0(t) \rangle$$

$$= \int_0^T R_t(s_1(t) - s_0(t)) dt$$

$$= \int_0^T R_t s_1(t) dt - \int_0^T R_t s_0(t) dt.$$

00000000

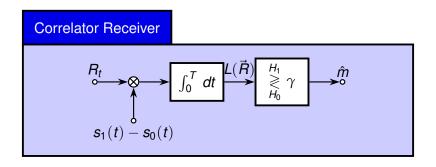
Optimum Receiver - Version 2

Correlator Receiver m $s_0(t)$ $s_1(t)$

Correlator receiver.

000000000

Optimum Receiver - Version 2a



➤ The two correlators can be combined into a single correlator for an even simpler frontend.

Optimum Receiver - Version 3

- Yet another, important structure for the optimum receiver frontend results from the equivalence between correlation and convolution followed by sampling.
 - Convolution:

$$y(t) = x(t) * h(t) = \int_0^T x(\tau)h(t - \tau) d\tau$$

Sample at t = T:

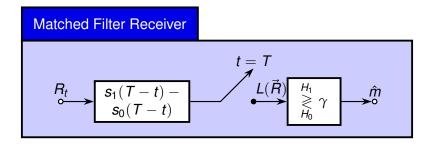
$$y(T) = x(t) * h(t)|_{t=T} = \int_0^T x(\tau)h(T-\tau) d\tau$$

Let g(t) = h(T - t) (and, thus, h(t) = g(T - t)):

$$\int_0^T x(t)g(t) dt = \int_0^T x(\tau)h(T-\tau) d\tau = x(t) * h(t)|_{t=T}.$$

Correlating with g(t) is equivalent to convolving with h(t) = g(T - t), followed by symbol-rate sampling.

Optimum Receiver - Version 3



► The filter with impulse response $h(t) = s_1(T - t) - s_0(T - t)$ is called the matched filter for $s_1(t) - s_0(t)$.

Exercises: Optimum Receiver

- For each of the following signal sets:
 - 1. draw a block diagram of the MPE receiver,
 - 2. compute the value of the threshold in the MPE receiver,
 - 3. compute the probability of error for this receiver for $\pi_0 = \pi_1$
 - 4. find basis functions for the signal set,
 - 5. illustrate the location of the signals in the signal space spanned by the basis functions,
 - 6. draw the decision boundary formed by the optimum receiver.

On-Off Keying

► Signal set:

$$\left.egin{aligned} s_0(t) &= 0 \ s_1(t) &= \sqrt{rac{E}{T}} \end{aligned}
ight.
ight. \qquad \left. egin{aligned} ext{for } 0 \leq t \leq T \end{aligned}
ight.$$

This signal set is referred to as On-Off Keying (OOK) or Amplitude Shift Keying (ASK).

Orthogonal Signalling

Signal set:

$$s_0(t) = \begin{cases} \sqrt{\frac{E}{T}} & \text{for } 0 \le t \le \frac{T}{2} \\ -\sqrt{\frac{E}{T}} & \text{for } \frac{T}{2} \le t \le T \end{cases}$$
$$s_1(t) = \sqrt{\frac{E}{T}} & \text{for } 0 \le t \le T$$

Alternatively:

$$\left. egin{aligned} s_0(t) &= \sqrt{rac{2E}{T}}\cos(2\pi f_0 t) \ s_1(t) &= \sqrt{rac{2E}{T}}\cos(2\pi f_1 t) \end{aligned}
ight.
ight.$$
 for $0 \leq t \leq T$

with $f_0 T$ and $f_1 T$ distinct integers.

► This signal set is called *Frequency Shift Keying (FSK)*.

Antipodal Signalling

Signal set:

$$egin{aligned} s_0(t) &= -\sqrt{rac{E}{T}} \ s_1(t) &= \sqrt{rac{E}{T}} \end{aligned}
ight. \quad ext{for } 0 \leq t \leq T$$

- This signal set is referred to as *Antipodal Signalling*.
- Alternatively:

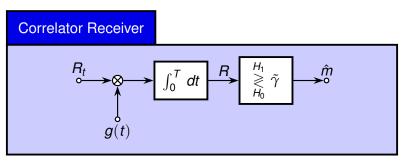
$$\left. \begin{array}{l} s_0(t) = \sqrt{\frac{2E}{T}}\cos(2\pi f_0 t) \\ s_1(t) = \sqrt{\frac{2E}{T}}\cos(2\pi f_0 t + \pi) \end{array} \right\} \quad \text{for } 0 \le t \le T \end{array}$$

This signal set is called *Binary Phase Shift Keying (BPSK)*.

Linear Receiver

Consider a receiver with a "generic" linear frontend.

•000000



- We refer to these receivers as linear receivers because their frontend performs a linear transformation of the received signal.
 - ▶ Specifically, frontend computes $R = \langle R_t, g(t) \rangle$.

Linear Receiver

Objectives:

- derive general expressions for the conditional pdfs at the output R of the frontend,
- derive general expressions for the error probability,
- confirm that the optimum linear receiver correlates with $g(t) = s_1(t) s_0(t)$,
 - i.e., the MPE receiver is also the best linear receiver.
- These results are useful for the analysis of arbitrary linear receivers.

Conditional Distributions

Hypotheses:

$$H_0$$
: $R_t = s_0(t) + N_t$
 H_1 : $R_t = s_1(t) + N_t$

signals are observed for $0 \le t \le T$.

- Priors are π_0 and π_1 .
- ▶ Conditional distributions of $R = \langle R_t, g(t) \rangle$ are Gaussian:

$$H_0: R \sim N(\underbrace{\langle s_0(t), g(t) \rangle}_{\mu_0}, \underbrace{\frac{N_0}{2} \|g(t)\|^2}_{\sigma^2})$$
 $H_1: R \sim N(\underbrace{\langle s_1(t), g(t) \rangle}_{\mu_0}, \underbrace{\frac{N_0}{2} \|g(t)\|^2}_{\sigma^2})$

MPE Decision Rule

► For the decision problem

$$H_0: R \sim \mathsf{N}(\underbrace{\langle s_0(t), g(t) \rangle}_{\mu_0}, \underbrace{\frac{N_0}{2} \|g(t)\|^2}_{\sigma^2})$$

$$H_1: R \sim N(\underbrace{\langle s_1(t), g(t) \rangle}_{\mu_1}, \underbrace{\frac{N_0}{2} \|g(t)\|^2}_{\sigma^2})$$

the MPE decision rule is

$$R \mathop{\gtrless}_{H_0}^{H_1} ilde{\gamma}$$

with

$$\tilde{\gamma} = \frac{\mu_0 + \mu_1}{2} + \frac{\sigma^2}{\mu_1 - \mu_0} \ln(\frac{\pi_0}{\pi_1}).$$

Probability of Error

▶ The probability of error, assuming $\pi_0 = \pi_1$, for this decision rule is

$$egin{aligned} \mathsf{Pr}\{oldsymbol{e}\} &= \mathsf{Q}\left(rac{\mu_1 - \mu_0}{2\sigma}
ight) \ &= \mathsf{Q}\left(rac{\langle oldsymbol{s}_1(t) - oldsymbol{s}_0(t), oldsymbol{g}(t)
angle}{2\sqrt{rac{N_0}{2}}\|oldsymbol{g}(t)\|}
ight) \end{aligned}$$

Question: Which choice of g(t) minimizes the probability of error?

Best Linear Receiver

▶ The probability of error is minimized when

$$\frac{\langle s_1(t) - s_0(t), g(t) \rangle}{2\sqrt{\frac{N_0}{2}} \|g(t)\|}$$

is maximized with respect to g(t).

We know from the Schwartz inequality that

$$\langle s_1(t) - s_0(t), g(t) \rangle \le ||s_1(t) - s_0(t)|| \cdot ||g(t)||$$

with equality if and only if $g(t) = c \cdot (s_1(t) - s_0(t))$, c > 0.

► Hence, to minimize probability of error, choose $g(t) = s_1(t) - s_0(t)$. Then,

$$\Pr\{e\} = Q\left(\frac{\|s_1(t) - s_0(t)\|}{2\sqrt{\frac{N_0}{2}}}\right) = Q\left(\frac{\|s_1(t) - s_0(t)\|}{\sqrt{2N_0}}\right) \ \text{ and } \$$

Exercise: Suboptimum Receiver

Find the probability of error when equally likely, triangluar signals are used by the transmitter

000000

$$s_0(t) = \begin{cases} \frac{2A}{T} \cdot t & \text{for } 0 \leq t \leq \frac{T}{2} \\ 2A - \frac{2A}{T} \cdot t & \text{for } \frac{T}{2} \leq t \leq T \\ 0 & \text{else} \end{cases} s_1(t) = -s_0(t)$$

with
$$A = \sqrt{\frac{3E}{T}}$$
 and

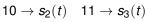
- the receiver frontend simply integrates from 0 to T, i.e., g(t) = 1, for $0 \le t \le T$ and g(t) = 0, otherwise.
- Answer:

$$\Pr\{e\} = Q\left(\sqrt{\frac{3E}{2N_0}}\right)$$

Introduction

- We have focused on the problem of deciding which of two possible signals has been transmitted.
 - Binary Signal Sets
- We will generalize the design of optimum (MPE) receivers to signal sets with M signals.
 - M-ary signal sets.
- With binary signal sets one bit can be transmitted in each signal period T.
- With M-ary signal sets, log₂(M) bits are transmitted simultaneously per T seconds.
 - ightharpoonup Example (M=4):

$$00 \to s_0(t)$$
 $01 \to s_1(t)$



M-ary Hypothesis Testing Problem

We can formulate the optimum receiver design problem as a hypothesis testing problem:

$$H_0: R_t = s_0(t) + N_t$$
 $H_1: R_t = s_1(t) + N_t$
 \vdots
 $H_{M-1}: R_t = s_{M-1}(t) + N_t$

with a priori probabilities $\pi_i = \Pr\{H_i\}, i = 0, 1, ..., M-1$.

- Note:
 - With more than two hypotheses, it is no longer helpful to consider the (likelihood) ratio of pdfs.
 - Instead, we focus on the hypothesis with the maximum a posteriori (MAP) probability or the maximum likelihood (ML).

AWGN Channels

- Of most interest in communications are channels where N_t is a white Gaussian noise process.
 - Spectral height $\frac{N_0}{2}$.
- For these channels, the optimum receivers can be found by arguments completely analogous to those for the binary case.
 - Note that with *M*-ary signal sets, the subspace containing all signals will have up to *M* dimensions.
- We will determine the optimum receivers by generalizing the optimum binary receivers for AWGN channels.

Starting Point: Binary MPE Decision Rule

- We have shown, that the binary MPE decision rule can be expressed equivalently as
 - either

$$\left\langle R_t, (s_1(t) - s_0(t)) \right\rangle \mathop {\gtrless}\limits_{H_0}^{H_1} \frac{N_0}{2} \ln \left(\frac{\pi_0}{\pi_1} \right) + \frac{\|s_1(t)\|^2 - \|s_0(t)\|^2}{2}$$

or

$$\|R_t - s_0(t)\|^2 - N_0 \ln(\pi_0) \underset{H_0}{\overset{H_1}{\geqslant}} \|R_t - s_1(t)\|^2 - N_0 \ln(\pi_1)$$

- ► The first expression is most useful for deriving the structure of the optimum receiver.
- The second form is helpful for interpreting the decision rule in signal space.

The decision rule

$$\left\langle R_t, (s_1(t) - s_0(t)) \right\rangle \underset{H_0}{\gtrless} \frac{\textit{N}_0}{2} \ln \left(\frac{\pi_0}{\pi_1} \right) + \frac{\|s_1(t)\|^2 - \|s_0(t)\|^2}{2}$$

can be rewritten as

$$Z_{1} = \langle R_{t}, s_{1}(t) \rangle + \underbrace{\frac{N_{0}}{2} \ln(\pi_{1}) - \frac{\|s_{1}(t)\|^{2}}{2}}_{\gamma_{0}} \stackrel{H_{1}}{\underset{H_{0}}{\gtrless}}$$

$$\langle R_{t}, s_{0}(t) \rangle + \underbrace{\frac{N_{0}}{2} \ln(\pi_{0}) - \frac{\|s_{0}(t)\|^{2}}{2}}_{\gamma_{0}} = Z_{0}$$

▶ The decision rule is easily generalized to *M* signals:

$$\hat{m} = \arg\max_{n=0,\dots,M-1} \overline{\langle R_t, s_n(t) \rangle + \underbrace{\frac{N_0}{2} \ln(\pi_n) - \frac{\|s_n(t)\|^2}{2}}_{\gamma_n}}$$

► The optimum detector selects the hypothesis with the largest decision statistic Z_n .

- ► The bias terms γ_n account for unequal priors and for differences in signal energy $E_n = ||s_n(t)||^2$.
- Common terms can be omitted
 - For equally likely signals,

$$\gamma_n = -\frac{\|s_n(t)\|^2}{2}.$$

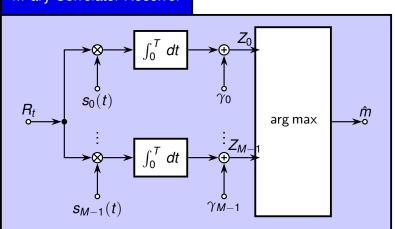
For equal energy signals,

$$\gamma_n = \frac{N_0}{2} \ln(\pi_n)$$

For equally likely, equal energy signal,

$$\gamma_n = 0$$

M-ary Correlator Receiver



Decision Statistics

► The optimum receiver computes the decision statistics

$$Z_n = \langle R_t, s_n(t) \rangle + \frac{N_0}{2} \ln(\pi_n) - \frac{\|s_n(t)\|^2}{2}.$$

- Conditioned on the m-th signal having been transmitted,
 - ightharpoonup All Z_n are Gaussian random variables.
 - Expected value:

$$\mathbf{E}[Z_n|H_m] = \langle s_m(t), s_n(t) \rangle + \frac{N_0}{2} \ln(\pi_n) - \frac{\|s_n(t)\|^2}{2}$$

(Co)Variance:

$$\mathbf{E}[Z_j Z_k | H_m] - \mathbf{E}[Z_j | H_m] \mathbf{E}[Z_k | H_m] = \langle s_j(t), s_k(t) \rangle \frac{N_0}{2}$$

Exercise: QPSK Receiver

Find the optimum receiver for the following signal set with M=4 signals:

$$s_n(t) = \sqrt{\frac{2E}{T}}\cos(2\pi t/T + n\pi/2)$$
 for $0 \le t \le T$ and $n = 0, \ldots, T$

M-ary Signal Sets

Decision Regions

▶ The decision regions Γ_n and error probabilities are best understood by generalizing the binary decision rule:

$$\|R_t - s_0(t)\|^2 - N_0 \ln(\pi_0) \underset{H_0}{\stackrel{H_1}{\geqslant}} \|R_t - s_1(t)\|^2 - N_0 \ln(\pi_1)$$

► For *M*-ary signal sets, the decision rule generalizes to

$$\hat{m} = \arg\min_{n=0,...M-1} \|R_t - s_n(t)\|^2 - N_0 \ln(\pi_n).$$

This simplifies to

$$\hat{m} = \arg\min_{n=0}^{\infty} \min_{M=1} ||R_t - s_n(t)||^2$$

for equally likely signals.

The optimum receiver decides in favor of the signal $s_n(t)$ that is *closest* to the received signal.

Decision Regions (equally likely signals)

- ▶ For discussing decision regions, it is best to express the decision rule in terms of the representation obtained with the orthonormal basis $\{\Phi_k\}$, where
 - basis signals Φ_k span the space that contains all signals $s_n(t)$, with n = 0, ..., M 1.
 - Recall that we can obtain these basis signals via the Gram-Schmidt procedure from the signal set.
 - ► There are at most M orthonormal bases.
- Because of Parseval's relationship, an equivalent decision rule is

$$\hat{m} = \arg\min_{n=0,...,M-1} \|\vec{R} - \vec{s}_n\|^2,$$

where \vec{R} has elements $R_k = \langle R_t, \Phi_k(t) \rangle$ and \vec{s}_n has element $s_{n,k} = \langle s_n(t), \Phi_k(t) \rangle$.

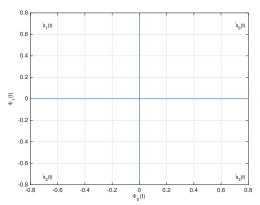
Decision Regions

The decision region Γ_n where the detector decides that the n-th signal was sent is

$$\Gamma_n = \{ \vec{r} : \|\vec{r} - \vec{s}_n\| < \|\vec{r} - \vec{s}_m\| \text{ for all } m \neq n \}.$$

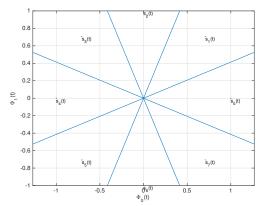
- The decision region Γ_n is the set of all points \vec{r} that are closer to \vec{s}_n than to any other signal point.
- The decision regions are formed by linear segments that are perpendicular bisectors between pairs of signal points.
 - The resulting partition is also called a Voronoi partition.

Example: QPSK



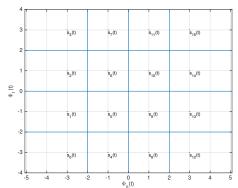
$$s_n(t) = \sqrt{2/T}\cos(2\pi f_c t + n \cdot \pi/2 + \pi/4)$$
, for $n = 0, ..., 3$.

Example: 8-PSK



$$s_n(t) = \sqrt{2/T} \cos(2\pi f_c t + n \cdot \pi/4)$$
, for $n = 0, ..., 7$.

Example: 16-QAM



$$s_n(t) = \sqrt{2/T}(A_l \cdot \cos(2\pi f_c t) + A_Q \cdot \sin(2\pi f_c t))$$

with A_l , $A_Q \in \{-3, -1, 1, 3\}$.

Symbol Energy and Bit Energy

- We have seen that error probabilities decrease when the signal energy increases.
 - Because the distance between signals increase.
- We will see further that error rates in AWGN channels. depend only on
 - ▶ the signal-to-noise ratio $\frac{E_b}{N_0}$, where E_b is the average energy per bit, and
 - the geometry of the signal constellation.
- To focus on the impact of the signal geometry, we will fix either
 - ▶ the average energy per symbol $E_s = \frac{1}{M} \sum_{n=0}^{M-1} \|s_n(t)\|^2$ or ▶ the average energy per bit $E_b = \frac{E_s}{\log_2(M)}$

Example: QPSK

QPSK signals are given by

$$s_n(t) = \sqrt{\frac{2E_s}{T}}\cos(2\pi f_c t + n \cdot \pi/2 + \pi/4), \text{ for } n = 0, ..., 3.$$

Each of the four signals $s_n(t)$ has energy

$$E_n = \|s_n(t)\|^2 = E_s.$$

- Hence,

 - ▶ the average symbol energy is E_s ▶ the average bit energy is $E_b = \frac{E_s}{\log_2(4)} = \frac{E_s}{2}$

Example: 8-PSK

8-PSK signals are given by

$$s_n(t) = \sqrt{2E_s/T}\cos(2\pi f_c t + n \cdot \pi/4)$$
, for $n = 0, \dots, 7$.

 \triangleright Each of the eight signals $s_n(t)$ has energy

$$E_n = ||s_n(t)||^2 = E_s.$$

- Hence,

 - ► the average symbol energy is E_s the average bit energy is $E_b = \frac{E_s}{\log_2(8)} = \frac{E_s}{3}$

Example: 16-QAM

► 16-QAM signals can be written as

$$s_n(t) = \sqrt{\frac{2E_0}{T}} \left(a_I \cdot \cos(2\pi f_c t) + a_Q \cdot \sin(2\pi f_c t) \right)$$

with
$$a_I$$
, $a_Q \in \{-3, -1, 1, 3\}$.

- There are
 - 4 signals with energy $(1^2 + 1^2)E_0 = 2E_0$
 - ▶ 8 signals with energy $(3^2 + 1^2)E_0 = 10E_0$
 - 4 signals with energy $((3^2 + 3^2)E_0 = 18E_0$
- Hence,
 - ▶ the average symbol energy is $10E_0$
 - the average bit energy is $E_b = \frac{\tilde{E}_s}{\log_2(16)} = \frac{5E_0}{2}$

Energy Efficiency

We will see that the influence of the signal geometry is captured by the energy efficiency

$$\eta_P = \frac{d_{\min}^2}{E_b}$$

where d_{\min} is the smallest distance between any pair of signals in the constellation.

- Examples:
 - ▶ **QPSK:** $d_{min} = \sqrt{2E_s}$ and $E_b = \frac{E_s}{2}$, thus $\eta_P = 4$.
 - ▶ 8-PSK: $d_{min} = \sqrt{(2 \sqrt{2})E_s}$ and $E_b = \frac{E_s}{3}$, thus $\eta_P = 3 \cdot (2 \sqrt{2}) \approx 1.75$.
 - ▶ **16-QAM:** $d_{min} = 2\sqrt{E_0}$ and $E_b = \frac{5E_0}{2}$, thus $\eta_P = \frac{8}{5}$.
- Note that energy efficiency decreases with the size of the constellation for 2-dimensional constellations.

Computing Probability of Symbol Error

- When decision boundaries intersect at right angles, then it is possible to compute the error probability exactly in closed form.
 - The result will be in terms of the Q-function.
 - This happens whenever the signal points form a rectangular grid in signal space.
 - Examples: QPSK and 16-QAM
- When decision regions are not rectangular, then closed form expressions are not available.
 - Computation requires integrals over the Q-function.
 - We will derive good bounds on the error rate for these cases.
 - For exact results, numerical integration is required.

M-ary Signal Sets

Illustration: 2-dimensional Rectangle

- Assume that the *n*-th signal was transmitted and that the representation for this signal is $\vec{s}_n = (s_{n,0}, s_{n,1})'$.
- Assume that the decision region Γ_n is a rectangle

$$\Gamma_n = \{ \vec{r} = (r_0, r_1)' : s_{n,0} - a_1 < r_0 < s_{n,0} + a_2 \text{ and }$$

 $s_{n,1} - b_1 < r_1 < s_{n,1} + b_2 \}.$

- Note: we have assumed that the sides of the rectangle are parallel to the axes in signal space.
- Since rotation and translation of signal space do not affect distances this can be done without affecting the error probability.
- **Question:** What is the conditional error probability, assuming that $s_n(t)$ was sent.

Illustration: 2-dimensional Rectangle

▶ In terms of the random variables $R_k = \langle R_t, \Phi_k \rangle$, with k=0,1, an error occurs if

error event 1
$$\overline{(R_0 \leq s_{n,0} - a_1 \text{ or } R_0 \geq s_{n,0} + a_2)}$$
 or $\underline{(R_1 \leq s_{n,1} - b_1 \text{ or } R_1 \geq s_{n,1} + b_2)}$.

- Note that the two error events are not mutually exclusive.
- Therefore, it is better to consider correct decisions instead. i.e., $\vec{R} \in \Gamma_n$:

$$s_{n,0} - a_1 < R_0 < s_{n,0} + a_2$$
 and $s_{n,1} - b_1 < R_1 < s_{n,1} + b_2$

Illustration: 2-dimensional Rectangle

- ▶ We know that R_0 and R_1 are
 - ▶ independent because Φ_k are orthogonal
 - with means $s_{n,0}$ and $s_{n,1}$, respectively
 - variance $\frac{N_0}{2}$.
- Hence, the probability of a correct decision is

$$\begin{aligned} \Pr\{c|s_n\} &= \Pr\{-a_1 < N_0 < a_2\} \cdot \Pr\{-b_1 < N_1 < b_2\} \\ &= \int_{-a_1}^{a_2} p_{R_0|s_n}(r_0) \, dr_0 \cdot \int_{-b_1}^{b_2} p_{R_1|s_n}(r_1) \, dr_1 \\ &= (1 - Q\left(\frac{a_1}{\sqrt{N_0/2}}\right) - Q\left(\frac{a_2}{\sqrt{N_0/2}}\right)) \cdot \\ &\qquad (1 - Q\left(\frac{b_1}{\sqrt{N_0/2}}\right) - Q\left(\frac{b_2}{\sqrt{N_0/2}}\right)). \end{aligned}$$

Exercise: QPSK

Find the error rate for the signal set

$$s_n(t) = \sqrt{2E_s/T}\cos(2\pi f_c t + n \cdot \pi/2 + \pi/4)$$
, for $n = 0, ..., 3$.

► **Answer:** (Recall $\eta_P = \frac{q_{\min}^2}{E_b} = 4$ for QPSK)

$$\begin{aligned} \Pr\{e\} &= 2Q\left(\sqrt{\frac{E_s}{N_0}}\right) - Q^2\left(\sqrt{\frac{E_s}{N_0}}\right) \\ &= 2Q\left(\sqrt{\frac{2E_b}{N_0}}\right) - Q^2\left(\sqrt{\frac{2E_b}{N_0}}\right) \\ &= 2Q\left(\sqrt{\frac{\eta_P E_b}{2N_0}}\right) - Q^2\left(\sqrt{\frac{\eta_P E_b}{2N_0}}\right). \end{aligned}$$

Exercise: 16-QAM

(Recall $\eta_P = \frac{g_{\min}^2}{E_b} = \frac{8}{5}$ for 16-QAM)

Find the error rate for the signal set

$$(a_I, a_Q \in \{-3, -1, 1, 3\})$$

$$s_n(t) = \sqrt{2E_0/T}a_I \cdot \cos(2\pi f_c t) + \sqrt{2E_0/T}a_Q \cdot \sin(2\pi f_c t)$$

• Answer: $(\eta_P = \frac{d_{\min}^2}{F_h} = 4)$

$$\begin{aligned} \Pr\{e\} &= 3Q\left(\sqrt{\frac{2E_0}{N_0}}\right) - \frac{9}{4}Q^2\left(\sqrt{\frac{2E_0}{N_0}}\right) \\ &= 3Q\left(\sqrt{\frac{4E_b}{5N_0}}\right) - \frac{9}{4}Q^2\left(\sqrt{\frac{4E_b}{5N_0}}\right) \\ &= 3Q\left(\sqrt{\frac{\eta_P E_b}{2N_0}}\right) - \frac{9}{4}Q^2\left(\sqrt{\frac{\eta_P E_b}{2N_0}}\right) \end{aligned}$$

N-dimensional Hypercube

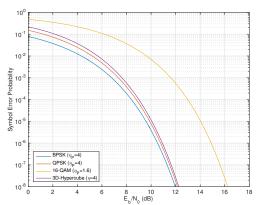
Find the error rate for the signal set with 2^N signals of the form $(b_{k,n} \in \{-1,1\})$:

$$s_n(t) = \sum_{k=1}^N \sqrt{\frac{2E_s}{NT}} b_{k,n} \cos(2\pi nt/T), \text{ for } 0 \le t \le T$$

Answer:

$$\begin{aligned} \Pr\{e\} &= 1 - \left(1 - Q\left(\sqrt{\frac{2E_s}{N \cdot N_0}}\right)\right)^N \\ &= 1 - \left(1 - Q\left(\sqrt{\frac{2E_b}{N_0}}\right)\right)^N \\ &= 1 - \left(1 - Q\left(\sqrt{\frac{\eta_P E_b}{2N_0}}\right)\right)^N \approx N \cdot Q\left(\sqrt{\frac{\eta_P E_b}{2N_0}}\right) \end{aligned}$$

Comparison



Better power efficiency η_P leads to better error performance (at high SNR).

•0000000000000000

What if Decision Regions are not Rectangular?

Example: For 8-PSK, the probability of a correct decision is given by the following integral over the decision region for $s_0(t)$

$$\Pr\{c\} = \int_{0}^{\infty} \frac{1}{\sqrt{2\pi N_{0}/2}} \exp(-\frac{(x - \sqrt{E_{s}})^{2}}{2N_{0}/2}$$

$$\underbrace{\int_{-x\tan(\pi/8)}^{x\tan(\pi/8)} \frac{1}{\sqrt{2\pi N_{0}/2}} \exp(-\frac{y^{2}}{2N_{0}/2}) \, dy}_{=1-2Q(\frac{x\tan(\pi/8)}{\sqrt{N_{0}/2}})} dx$$

This integral cannot be computed in closed form.

Union Bound

- When decision boundaries do not intersect at right angles, then the error probability cannot be computed in closed form.
- An upper bound on the conditional probability of error (assuming that s_n was sent) is provided by:

$$\begin{split} \Pr\{\boldsymbol{e}|\boldsymbol{s}_n\} &\leq \sum_{k \neq n} \Pr\{\|\vec{R} - \vec{\boldsymbol{s}}_k\| < \|\vec{R} - \vec{\boldsymbol{s}}_n\| | \vec{\boldsymbol{s}}_n \} \\ &= \sum_{k \neq n} Q\left(\frac{\|\vec{\boldsymbol{s}}_k - \vec{\boldsymbol{s}}_n\|}{2\sqrt{N_0/2}}\right). \end{split}$$

Note that this bound is computed from pairwise error probabilities between s_n and all other signals.

Union Bound

► Then, the average probability of error can be bounded by

$$\Pr\{e\} = \sum_{n} \pi_{n} \sum_{k \neq n} Q\left(\frac{\|\vec{\mathbf{s}}_{k} - \vec{\mathbf{s}}_{n}\|}{\sqrt{2N_{0}}}\right).$$

This bound is called the union bound; it approximates the union of all possible error events by the sum of the pairwise error probabilities.

Example: QPSK

For the QPSK signal set

$$s_n(t) = \sqrt{2E_s/T}\cos(2\pi f_c t + n\cdot\pi/2 + \pi/4)$$
, for $n = 0, \dots, 3$

the union bound is

$$\mathsf{Pr}\{e\} \leq 2Q\left(\sqrt{rac{E_s}{N_0}}
ight) + Q\left(\sqrt{rac{2E_s}{N_0}}
ight).$$

Recall that the exact probability of error is

$$\text{Pr}\{e\} = 2Q\left(\sqrt{\frac{E_s}{N_0}}\right) - Q^2\left(\sqrt{\frac{E_s}{N_0}}\right).$$

0000000000000000

"Intelligent" Union Bound

- The union bound is easily tightened by recognizing that only immediate neighbors of s_n must be included in the bound on the conditional error probability.
- ▶ Define the the neighbor set $N_{ML}(s_n)$ of s_n as the set of signals s_k that share a decision boundary with signal s_n .
- Then, the conditional error probability is bounded by

$$\begin{split} \Pr\{\boldsymbol{e}|\boldsymbol{s}_n\} &\leq \sum_{k \in N_{ML}(\boldsymbol{s}_n)} \Pr\{\|\vec{\boldsymbol{R}} - \vec{\boldsymbol{s}}_k\| < \|\vec{\boldsymbol{R}} - \vec{\boldsymbol{s}}_n\| |\vec{\boldsymbol{s}}_n\} \\ &= \sum_{k \in N_{ML}(\boldsymbol{s}_n)} Q\left(\frac{\|\vec{\boldsymbol{s}}_k - \vec{\boldsymbol{s}}_n\|}{2\sqrt{N_0/2}}\right). \end{split}$$

"Intelligent" Union Bound

Then, the average probability of error can be bounded by

$$\Pr\{e\} \leq \sum_{n} \pi_{n} \sum_{k \in N_{ML}(s_{n})} Q\left(\frac{\|\vec{s}_{k} - \vec{s}_{n}\|}{\sqrt{2N_{0}}}\right).$$

- We refer to this bound as the intelligent union bound.
 - It still relies on pairwise error probabilities.
 - lt excludes many terms in the union bound; thus, it is tighter.

Example: QPSK

For the QPSK signal set

$$s_n(t) = \sqrt{2E_s/T}\cos(2\pi f_c t + n\cdot\pi/2 + \pi/4), \, ext{for } n=0,\ldots,3$$

the intelligent union bound includes only the immediate neighbors of each signal:

$$\Pr\{e\} \leq 2Q\left(\sqrt{rac{E_s}{N_0}}\right).$$

Recall that the exact probability of error is

$$\text{Pr}\{e\} = 2Q\left(\sqrt{\frac{E_s}{N_0}}\right) - Q^2\left(\sqrt{\frac{E_s}{N_0}}\right).$$

Example: 16-QAM

- For the 16-QAM signal set, there are
 - 4 signals s_i that share a decision boundary with 4 neighbors; bound on conditional error probability:

$$\Pr\{e|s_i\} = 4Q(\sqrt{\frac{2E_0}{N_0}}).$$

 \triangleright 8 signals s_c that share a decision boundary with 3 neighbors; bound on conditional error probability:

$$\Pr\{e|s_c\} = 3Q(\sqrt{\frac{2E_0}{N_0}}).$$

▶ 4 signals s_o that share a decision boundary with 2 neighbors; bound on conditional error probability:

$$\Pr\{e|s_o\} = 2Q(\sqrt{\frac{2E_0}{N_0}}).$$

► The resulting intelligent union bound is

$$\Pr\{\textbf{\textit{e}}\} \leq 3Q\left(\sqrt{\frac{2E_0}{N_0}}\right) = 3Q\left(\sqrt{\frac{4E_b}{5N_0}}\right).$$

Example: 16-QAM

► The resulting intelligent union bound is

$$\Pr\{e\} \leq 3Q\left(\sqrt{\frac{4E_b}{5N_0}}\right).$$

Recall that the exact probability of error is

$$\Pr\{e\} = 3Q\left(\sqrt{\frac{4E_b}{5N_0}}\right) - \frac{9}{4}Q^2\left(\sqrt{\frac{4E_b}{5N_0}}\right).$$

Nearest Neighbor Approximation

- At high SNR, the error probability is dominated by terms that involve the shortest distance d_{min} between any pair of nodes.
 - The corresponding error probability is proportional to $Q(\sqrt{\frac{d_{\min}}{2N_0}})$.
- For each signal s_n , we count the number N_n of neighbors at distance d_{\min} .
- Then, the error probability at high SNR can be approximated as

$$\Pr\{e\} \approx \frac{1}{M} \sum_{n=0}^{M-1} N_n Q(\sqrt{\frac{d_{\min}^2}{2N_0}}) = \bar{N}_{\min} Q(\sqrt{\frac{d_{\min}^2}{2N_0}}).$$

Example: 16-QAM

- In 16-QAM, the distance between adjacent signals is $d_{\min} = 2\sqrt{E_0}$; also, $E_b = \frac{5}{2}E_0$.
- There are:
 - 4 signals with 4 nearest neighbors
 - 8 signals with 3 nearest neighbors
 - 4 signals with 2 nearest neighbors
- ▶ The average number of neighbors is $\bar{N}_{min} = 3$.
- The error probability is approximately,

$$\mathsf{Pr}\{e\} pprox 3Q\left(\sqrt{rac{2E_0}{N_0}}
ight) = 3Q\left(\sqrt{rac{4E_b}{5N_0}}
ight).$$

same as the intelligent union bound.

Example: 8-PSK

- For 8-PSK, each signal has 2 nearest neighbors at distance $d_{min} = \sqrt{(2 \sqrt{2})E_s}$; also, $E_b = \frac{E_s}{3}$.
- Hence, both the intelligent union bound and the nearest neighbor approximation yield

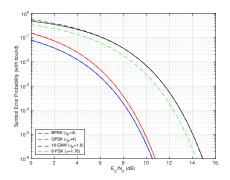
$$\Pr\{e\} \approx 2Q\left(\sqrt{\frac{(2-\sqrt{2})E_s}{2N_0}}\right) = 2Q\left(\sqrt{\frac{3(2-\sqrt{2})E_b}{2N_0}}\right)$$

Since, $E_b = 3E_s$.

M-ary Signal Sets

000000000000000000

Comparison



Solid: exact P_e , dashed: approximation. For 8PSK, only approximation is shown.

- The intelligent union bound is very tight for all cases considered here.
 - ▶ It also coincides with the nearest neighbor approximation

General Approximation for Probability of Symbol Error

From the above examples, we can conclude that a good, general approximation for the probability of error is given by

$$\Pr\{e\} pprox ar{N}_{\min}Q\left(rac{d_{\min}}{\sqrt{2N_0}}
ight) = ar{N}_{\min}Q\left(\sqrt{rac{\eta_P E_b}{2N_0}}
ight).$$

- Probability of error depends on
 - ▶ signal-to-noise ratio (SNR) E_b/N_0 and
 - **p** geometry of the signal constellation via the average number of neighbors \bar{N}_{min} and the power efficiency η_P .

M-ary Signal Sets

Bit Errors

- So far, we have focused on symbol errors; however, ultimately we are concerned about bit errors.
- ▶ There are many ways to map groups of $log_2(M)$ bits to the M signals in a constellation.
- Example QPSK: Which mapping is better?

QPSK Phase	Mapping 1	Mapping 2
$\pi/4$	00	00
$3\pi/4$	01	01
$5\pi/4$	10	11
$7\pi/4$	11	10

Bit Errors

Example QPSK:

QPSK Phase	Mapping 1	Mapping 2
$\pi/4$	00	00
$3\pi/4$	01	01
$5\pi/4$	10	11
$7\pi/4$	11	10

- Note, that for Mapping 2 nearest neighbors differ in exactly one bit position.
 - ► That implies, that the most common symbol errors will induce only one bit error.
 - That is not true for Mapping 1.

Gray Coding

- ➤ A mapping of log₂(M) bits to M signals is called Gray Coding if
 - The bit patterns that are assigned to nearest neighbors in the constelation
 - differ in exactly one bit position.
- With Gray coding, the most likely symbol errors induce exactly one bit error.
 - Note that there are $log_2(M)$ bits for each symbol.
- Hence, with Gray coding the bit error probability is well approximated by

$$\mathsf{Pr}\{\mathsf{bit}\;\mathsf{error}\}pprox rac{ar{N}_{\mathsf{min}}}{\log_2(M)}Q\left(\sqrt{rac{\eta_P E_b}{2N_0}}
ight) \lesssim Q\left(rac{d_{\mathsf{min}}}{\sqrt{2N_0}}
ight).$$

Introduction

- We compare methods for transmitting a sequence of bits.
- We will see that the performance of these methods varies significantly.
- New perspective:
 - Focus on messages, i.e., sequences of bits
 - Entire message must be received correctly
- Main Result: It is possible to achieve error free communications as long as SNR is good enough and data rate is not too high.

Problem Statement

Problem:

- K bits must be transmitted in T seconds.
- Available power is limited to P.

Questions:

- What method achieves the lowest probability of error?
- Is error-free communications possible?

Parameters

Data Rate:

$$R = \frac{K}{T}$$
 (bits/s)

- entire transmission takes T seconds
- K bits are sent over T seconds
- implicit assumption: bits are equally likely.
- Power and energy: transmitted signal s(t) has power P and energy E

$$P = \frac{1}{T} \int_0^T |s(t)|^2 dt = \frac{E}{T}$$

- ▶ Entire transmitted signal s(t) is of duration T.
- Note, bit energy is given by

$$E_b = \frac{E}{\kappa} = \frac{PT}{\kappa} = \frac{P}{R}.$$

Bit-by-bit Signaling

- ▶ Transmit K bit as a sequence of "one-shot" BPSK signals.
- ightharpoonup K = RT bits to be transmitted.
- ▶ Energy per bit E_b ($E_b = \frac{E}{K}$).
- Consider, signals of the form

$$s(t) = \sum_{k=0}^{K-1} \sqrt{E_b} s_k p(t - k/R)$$

- ▶ $s_k \in \{\pm 1\}$
- ho(t) is a pulse of duration 1/R = T/K and $||p(t)||^2 = 1$.
- Question: What is the probability that any transmission error occurs?
 - In other words, the transmission is not received without error.

Error Probability for Bit-by-Bit Signaling

- We can consider the entire message as a single K-dimensional signal set.
 - Signals are at the vertices of a K-dimensional hypercube.

$$Pr\{e\} = 1 - \left(1 - Q\left(\frac{2E_b}{N_0}\right)\right)^{R}$$
$$= 1 - \left(1 - Q\left(\frac{2P}{RN_0}\right)\right)^{RT}$$

- Note, for any finite P/N_0 and R, the error rate will always tend to 1 as $T \rightarrow \infty$.
 - Error-free transmission is not possible with bit-by-bit signaling.

Block-Orthogonal Signaling

- Again,
 - ightharpoonup K = RT bits are transmitted in T seconds.
 - Energy per bit $E_b = \frac{P}{R}$.
- Signal set (Pulse-position modulation PPM)

$$s_k(t) = \sqrt{E}p(t - kT/2^K)$$
 for $k = 0, 1, ..., 2^K - 1$.

where p(t) is of duration $T/2^K$, $E = KE_b$, and $||p(t)||^2 = 1$.

Alternative signal set (Frequency Shift Keying — FSK)

$$s_k(t) = \sqrt{\frac{2E}{T}}\cos(2\pi(f_c + k/T)t)$$
 for $k = 0, 1, ..., 2^K - 1$.

- ▶ Signal set consists of $M = 2^K$ signals
 - each signal conveys K bits,
 - each signal occupies one of the *K* dimensions.

Union Bound

- ➤ The error probability for block-orthogonal signaling cannot be computed in closed form.
- At high and moderate SNR, the error probability is well approximated by the union bound.
 - ▶ Each signal has $M 1 = 2^K 1$ nearest neighbors.
 - ► The distance between neighbors is $d_{min} = \sqrt{2E} = \sqrt{2KE_b}$.
- Union bound

$$\Pr\{e\} \le (2^K - 1)Q\left(\sqrt{\frac{KE_b}{N_0}}\right)$$
$$= (2^{RT} - 1)Q\left(\sqrt{\frac{PT}{N_0}}\right)$$

To gain further insight, we bound

$$Q(x) \le \frac{1}{2} \exp(-x^2/2) \le \exp(-x^2/2).$$

▶ Then,

$$\begin{split} \text{Pr}\{e\} &\leq (2^{RT}-1)Q\left(\sqrt{\frac{PT}{N_0}}\right) \\ &\lesssim 2^{RT} \exp(-\frac{PT}{2N_0}) \\ &= \exp(-T(\frac{P}{2N_0}-R\ln 2)). \end{split}$$

- ▶ Hence, $Pr\{e\} \rightarrow 0$ as $T \rightarrow \infty!$
 - As long as $R < \frac{1}{\ln 2} \frac{P}{2N_0}$.
- Error-free transmission is possible!

Reality-Check: Bandwidth

- ▶ Bit-by-bit Signaling: Pulse-width: T/K = 1/R.
 - ▶ Bandwidth is approximately equal to B = R.
 - ightharpoonup Also, number of dimensions K = RT.
- **Block-orthogonal:** Pulse width: $T/2^K = T/2^{RT}$.
 - ▶ Bandwidth is approximately equal to $B = 2^{RT} / T$.
 - Number of dimensions is $2^K = 2^{RT}$.
- ► Bandwidth for block-orthogonal signaling grows exponentially with the number of bits *K*.
 - Not practical for moderate to large blocks of bits.

The Dimensionality Theorem

- ► The relationship between bandwidth *B* and the number of dimensions is summarized by the *dimensionality theorem*:
 - ► The number of dimensions D available over an interval od duration T is limited by the bandwidth B

$$D \leq B \cdot T$$

- The theorem implies:
 - A signal occupying D dimensions over T seconds requires bandwidth

$$B \geq \frac{D}{T}$$

An Ideal Signal Set

- An ideal signal set combines the aspects of our two example signal sets:
 - $ightharpoonup \Pr\{e\}$ -behavior like block orthogonal signaling

$$\lim_{T\to\infty}\Pr\{e\}=0.$$

Bandwidth behavior like bit-by-bit signaling

$$B = \frac{D}{T} = \text{constant}.$$

- ▶ Thus, $D = BT \rightarrow \infty$ as $T \rightarrow \infty$.
- Question: Does such a signal set exist?

Towards Channel Capacity

▶ Given:

- **b** bandwidth $B = \frac{D}{T}$, where T is the duration of the transmission.
- power P
- Noise power spectral density $\frac{N_0}{2}$
- Question: What is the highest data rate R that allows error-free transmission with the above constraints?
 - ▶ We are transmitting RT bits
 - ► Therefore, we need $M = 2^{RT}$ signals.

Signal Set

▶ Our signal set consists of $M = 2^{RT}$ signals of the form

$$s_n(t) = \sum_{k=0}^{D-1} X_{n,k} p(t - kT/D)$$

where

- p(t) are pulses of duration T/D, i.e., of bandwidth B = D/T.
- ► Also, $||p(t)||^2 = 1$.
- Each signal $s_n(t)$ is defined by a length-D vector $\vec{X}_n = \{X\}_{n,k}$.
- We are looking to find $M = 2^{RT}$ length-D vectors \vec{X} that lead to good error properties.
- Note that the signals p(t kT/D) form an orthonormal basis with D dimensions.

Receiver Frontend

- ► The receiver frontend consists of a matched filter for p(t) followed by a sampler at times kT/D.
 - ▶ I.e., the frontend projects the received signal onto the orthonormal basis functions p(t kT/D).
- ▶ The vector \vec{R} of matched filter outputs has elements

$$R_k = \langle R_t, p(t - kT/D) \rangle$$
 $k = 0, 1, ..., D-1$

- ► Conditional on $s_n(t)$ was sent, $\vec{R} \sim N(\vec{X}_n, \frac{N_o}{2}I)$.
- The optimum receiver selects the signal s_n that's closest to \vec{R} .

Conditional Error Probability

- ▶ When, the signal $s_n(t)$ was sent then $\vec{R} \sim N(\vec{X}_n, \frac{N_o}{2}I)$.
- As the number of dimensions D increases, the vector \vec{R} lies within a D-dimensional sphere with center \vec{X}_k and radius

$$\sqrt{D\frac{N_0}{2}}$$
 with very high probability: $1 - e^{-D}$, i.e., $P_e = e^{-D}$.

- ▶ **Important:** We allow the radius of the decoding spheres to grow with the number of dimensions *D*.
- ▶ This ensures that $P_e \rightarrow 0$ as $D = BT \rightarrow \infty$.
- ▶ We call the spheres of radius $\sqrt{D^{\frac{N_0}{2}}}$ around each signal point *decoding spheres*.
 - The decoding spheres will be part of the decision regions for each point.

Power Constraint

▶ The power for signal $s_n(t)$ must satisfy

$$\frac{1}{T} \int_0^T s_n^2(t) dt = \frac{1}{T} \sum_{k=0}^{D-1} |X_{n,k}|^2 = \frac{1}{T} ||\vec{X}_n||^2 \le P.$$

- ► Therefore, $\|\vec{X}_n\|^2 \le PT$
- Insights:
 - ▶ The transmitted signals lie in a sphere of radius \sqrt{PT} .
 - The observed signals must lie in a large sphere of radius $\sqrt{PT + D\frac{N_0}{2}}$.
- ► Question: How many decoding spheres can we have and still meet the power constraint?

Capacity

- ▶ Each decoding sphere has volume $K_D(\sqrt{D\frac{N_0}{2}})^D$.
- The volume of the sphere containing the observed signals is $K_D(\sqrt{PT+D\frac{N_0}{2}})^D$
 - $ightharpoonup K_D$ is a constant that depends only on the number of dimensions D, e.g., $K_3 = \frac{4\pi}{3}$.
- The number of decoding spheres that fit into the the power sphere is (upper) bounded by the ratio of the volumes

$$\frac{K_D \left(\sqrt{PT + D\frac{N_0}{2}}\right)^D}{K_D \left(\sqrt{D\frac{N_0}{2}}\right)^D}$$

Capacity

▶ Since the number of signals $M = 2^{RT}$ equals the number of decoding spheres, it follows that error free communications is possible (in the limit as $D = BT \rightarrow \infty$) if

$$M=2^{RT}<rac{\left(\sqrt{PT+Drac{N_0}{2}}
ight)^D}{\left(\sqrt{Drac{N_0}{2}}
ight)^D}$$

or

$$R < \frac{D}{2T}\log_2(1 + \frac{PT}{DN_0/2}) = \frac{B}{2}\log_2(1 + \frac{P}{BN_0/2}).$$

Note, if we allow *complex valued* signals, then $R < B \log_2(1 + \frac{P}{BN_0})$.

Illustration: 2-bit Messages

- Consider two different ways of transmitting two bits:
 - QPSK
 - rate 2/3 block code and BPSK modulation
- Compare the probability of at least one bit error
 - ightharpoonup constant $\frac{E_b}{N_0}$.

QPSK

- We know that for QPSK
 - energy efficiency $\eta_u = 4$
 - (symbol) error rate

$$P_e \leq 2Q\left(\sqrt{\frac{2E_b}{N_0}}\right)$$

Benefit of a Simple Code

The block code maps two bits to sequence of three BPSK symbols as follows:

$$00:\{1,1,1\}$$
 $01:\{1,-1,-1\}$ $11:\{-1,-1,1\}$

- For this signal set:
 - energy efficiency $\eta_c = \frac{16}{3}$
 - (symbol) error rate

$$P_e \leq 3Q \left(\sqrt{\frac{8E_b}{3N_0}}\right)$$

Coding gain:

$$\frac{\eta_{\text{c}}}{\eta_{\text{u}}} = \frac{16/3}{4} = \frac{4}{3} \approx 1 \text{dB}$$

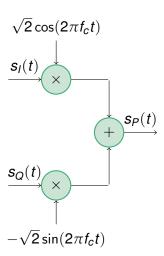
Part IV

Complex Envelope and Linear Modulation

Passband Signals

- We have seen that many signal sets include both $\sin(2\pi f_c t)$ and $\cos(2\pi f_c t)$.
 - Examples include PSK and QAM signal sets.
- Such signals are referred to as passband signals.
 - Passband signals have frequency spectra concentrated around a carrier frequency f_c .
 - This is in contrast to baseband signals with spectrum centered at zero frequency.
- Baseband signals can be converted to passband signals through up-conversion.
- Passband signals can be converted to baseband signals through down-conversion.

Up-Conversion



- The passband signal $s_P(t)$ is constructed from two (digitally modulated) baseband signals, $s_I(t)$ and $s_Q(t)$.
 - Note that two signals can be carried simultaneously!
 - $ightharpoonup s_I(t)$ and $s_Q(t)$ are the in-phase (I) and quadrature (Q) compenents of $s_P(t)$.
 - This is a consequence of $s_I(t)\cos(2\pi f_c t)$ and $s_Q(t)\sin(2\pi f_c t)$ being orthogonal
 - when the carrier frequency f_c is much greater than the bandwidth of $s_l(t)$ and $s_Q(t)$.

Exercise: Orthogonality of In-phase and Quadrature Signals

- Show that $s_I(t)\cos(2\pi f_c t)$ and $s_Q(t)\sin(2\pi f_c t)$ are orthogonal when $f_c\gg B$, where B is the bandwidth of $s_I(t)$ and $s_Q(t)$.
 - You can make your argument either in the time-domain or the frequency domain.

Baseband Equivalent Signals

▶ The passband signal $s_P(t)$ can be written as

$$s_P(t) = \sqrt{2} s_I(t) \cdot \cos(2\pi f_c t) - \sqrt{2} s_Q(t) \cdot \sin(2\pi f_c t).$$

▶ If we define $s(t) = s_I(t) + j \cdot s_Q(t)$, then $s_P(t)$ can also be expressed as

$$\begin{split} s_P(t) &= \sqrt{2} \cdot \Re\{s(t)\} \cdot \cos(2\pi f_c t) - \sqrt{2} \cdot \Im\{s(t)\} \cdot \sin(2\pi f_c t) \\ &= \sqrt{2} \cdot \Re\{s(t) \cdot \exp(j2\pi f_c t)\}. \end{split}$$

- ▶ The signal s(t):
 - is called the baseband equivalent, or the complex envelope of the passband signal $s_P(t)$.
 - lt contains the same information as $s_P(t)$.
 - ▶ Note that *s*(*t*) is *complex-valued*.

Polar Representation

Sometimes it is useful to express the complex envelope s(t) in polar coordinates:

$$s(t) = s_I(t) + j \cdot s_Q(t)$$

= $e(t) \cdot \exp(j\theta(t))$

with

$$egin{aligned} m{e}(t) &= \sqrt{m{s}_I^2(t) + m{s}_Q^2(t)} \ an heta(t) &= rac{m{s}_Q(t)}{m{s}_I(t)} \end{aligned}$$

Also,

$$s_I(t) = e(t) \cdot \cos(\theta(t))$$

 $s_Q(t) = e(t) \cdot \sin(\theta(t))$

Exercise: Complex Envelope

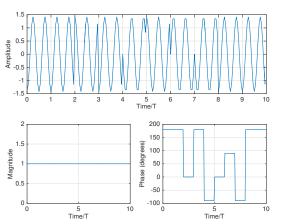
Find the complex envelope representation of the signal

$$s_p(t) = \operatorname{sinc}(t/T) \cos(2\pi f_c t + \frac{\pi}{4}).$$

Answer:

$$\begin{split} s(t) &= \frac{e^{j\pi/4}}{\sqrt{2}} \mathrm{sinc}(t/T) \\ &= \frac{1}{2} (\mathrm{sinc}(t/T) + j \mathrm{sinc}(t/T)). \end{split}$$

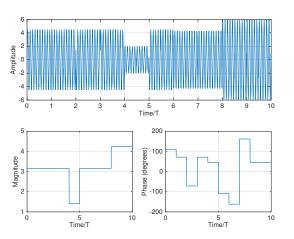
Illustration: QPSK with $f_c = 2/T$



- Passband signal (top): segments of sinusoids with different phases.
 - Phase changes occur at multiples of T.
- Baseband equivalent signal (bottom) is complex valued; magnitude and phase are plotted.
 - Magnitude is constant (rectangular pulses).

Complex baseband signal shows symbols much more

Illustration: 16-QAM with $f_c = 10/T$



- Passband signal (top): segments of sinusoids with different phases.
 - Phase and amplitude changes occur at multiples of T.
- Baseband signal (bottom) is complex valued; magnitude and phase are plotted.

Frequency Domain

- The time-domain relationships between the passband signal $s_p(t)$ and the complex envelope s(t) lead to corresponding frequency-domain expressions.
- Note that

$$\begin{split} s_{\rho}(t) &= \Re\{s(t)\cdot\sqrt{2}\exp(j2\pi f_c t)\} \\ &= \frac{\sqrt{2}}{2}\left(s(t)\cdot\exp(j2\pi f_c t) + s^*(t)\cdot\exp(-j2\pi f_c t)\right). \end{split}$$

Taking the Fourier transform of this expression:

$$S_P(f) = \frac{\sqrt{2}}{2} \left(S(f - f_c) + S^*(-f - f_c) \right).$$

Note that $S_P(f)$ has the conjugate symmetry $(S_P(f) = S_P^*(-f))$ that real-valued signals must have.

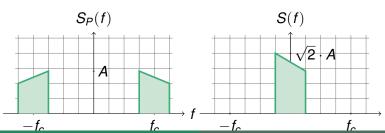
Frequency Domain

In the frequency domain:

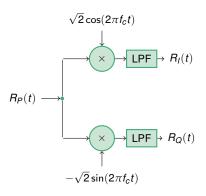
$$S_P(f) = rac{\sqrt{2}}{2} \left(S(f - f_c) + S^*(-f - f_c) \right).$$

and, thus,

$$S(f) = \left\{ egin{array}{ll} \sqrt{2} \cdot S_P(f+f_c) & ext{for } f+f_c > 0 \ 0 & ext{else}. \end{array}
ight.$$



Down-conversion



- The down-conversion system is the mirror image of the up-conversion system.
- The top-branch recovers the *in-phase* signal $s_l(t)$.
- The bottom branch recovers the quadrature signal $s_O(t)$
 - See next slide for details.

Down-Conversion

Let the the passband signal $s_p(t)$ be input to down-coverter:

$$s_P(t) = \sqrt{2}(s_I(t)\cos(2\pi f_c t) - s_Q(t)\sin(2\pi f_c t))$$

► Multiplying $s_P(t)$ by $\sqrt{2}\cos(2\pi f_c t)$ on the top branch yields

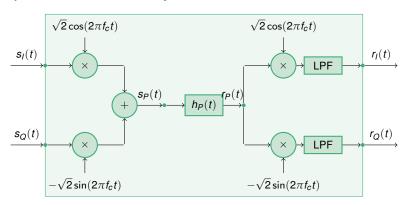
$$\begin{split} s_P(t) \cdot \sqrt{2} \cos(2\pi f_c t) \\ &= 2 s_I(t) \cos^2(2\pi f_c t) - 2 s_Q(t) \sin(2\pi f_c t) \cos(2\pi f_c t) \\ &= s_I(t) + s_I(t) \cos(4\pi f_c t) - s_Q(t) \sin(4\pi f_c t). \end{split}$$

- ► The low-pass filter rejects the components at $\pm 2f_c$ and retains $s_l(t)$.
- A similar argument shows that the bottom branch yields $s_O(t)$.

Extending the Complex Envelope Perspective

- The baseband description of the transmitted signal is very convenient:
 - it is more compact than the passband signal as it does not include the carrier component,
 - while retaining all relevant information.
- However, we are also concerned what happens to the signal as it propagates to the receiver.
 - Question: Do baseband techniques extend to other parts of a passband communications system?
 - Filtering of the passband signal
 - Noise added to the passband signal

Complete Passband System



▶ Question: Can the pass band filtering $(h_P(t))$ be described in baseband terms?

Passband Filtering

For the passband signals $s_P(t)$ and $R_P(t)$

$$r_P(t) = s_P(t) * h_P(t)$$
 (convolution)

- Define a baseband equivalent impulse (complex) response h(t).
- The relationship between the passband and baseband equivalent impulse response is

$$h_P(t) = \Re\{h(t) \cdot \sqrt{2} \exp(j2\pi f_c t)\}$$

► Then, the baseband equivalent signals s(t) and $r(t) = r_I(t) + jr_Q(t)$ are related through

$$r(t) = \frac{s(t) * h(t)}{\sqrt{2}} \leftrightarrow R(f) = \frac{S(f)H(f)}{\sqrt{2}}.$$

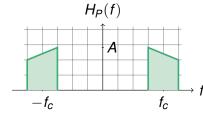
Note the division by $\sqrt{2}$!

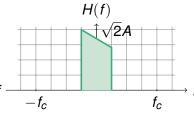
Passband and Baseband Frequency Response

► In the frequency domain

$$H(f) = \left\{ egin{array}{ll} \sqrt{2} H_P(f+f_c) & ext{for } f+f_c > 0 \ 0 & ext{else}. \end{array}
ight.$$

$$H_p(f) = \frac{\sqrt{2}}{2} \left(H(f - f_c) + H^*(-f - f_c) \right)$$





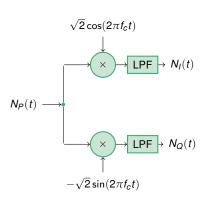
Exercise: Multipath Channel

A multi-path channel has (pass-band) impulse response

$$h_P(t) = \sum_k a_k \cdot \delta(t - \tau_k).$$

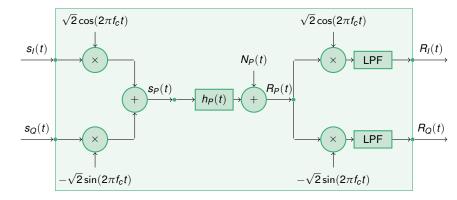
Find the baseband equivalent impulse response h(t) (assuming carrier frequency f_c) and the response to the input signal $s_p(t) = \cos(2\pi f_c t)$.

Passband White Noise



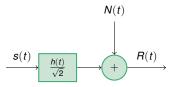
- Let (real-valued) white Gaussian noise $N_P(t)$ of spectral height $\frac{N_0}{2}$ be input to the down-converter.
- ► Then, each of the two branches produces indepent, white noise processes $N_I(t)$ and $N_Q(t)$ with spectral height $\frac{N_0}{2}$.
- This can be interpreted as (circular) complex noise of spectral height N₀.

Complete Passband System



Complete pass-band system with channel (filter) and passband noise.

Baseband Equivalent System



- ➤ The passband system can be interpreted as follows to yield an equivalent system that employs only baseband signals:
 - baseband equivalent transmitted signal:

$$s(t) = s_I(t) + j \cdot s_Q(t).$$

spectral height N_0 .

- **b** baseband equivalent channel with complex valued impulse response: h(t).
- baseband equivalent received signal:
- $R(t) = R_I(t) + j \cdot R_Q(t)$. • complex valued, additive Gaussian noise: N(t) with
 - GEORGE UNIVERSITY

Generalizing The Optimum Receiver

- We have derived all relationships for the optimum receiver for real-valued signals.
- When we use complex envelope techniques, some of our expressions must be adjusted.
 - Generalizing inner product and norm
 - Generalizing the matched filter (receiver frontend)
 - Adapting the signal space perspective
 - Generalizing the probability of error expressions

Inner Products and Norms

The inner product between two complex signals x(t) and y(t) must be defined as

$$\langle x(t), y(t) \rangle = \int x(t) \cdot y^*(t) dt.$$

This is needed to ensure that the resulting squared norm is positive and real

$$||x(t)||^2 = \langle x(t), x(t) \rangle = \int |x(t)|^2 dt$$

0000000

Inner Products and Norms

- Norms are equal for passband and equivalent baseband signals.
 - Let

$$x_p(t) = \Re\{x(t)\sqrt{2}\exp(j2\pi f_c t)\}$$
$$y_p(t) = \Re\{y(t)\sqrt{2}\exp(j2\pi f_c t)\}$$

► Then,

$$\langle x_p(t), y_p(t) \rangle = \Re\{\langle x(t), y(t) \}$$

= $\langle x_l(t), y_l(t) \rangle + \langle x_Q(t), y_Q(t) \rangle$

The first equation implies

$$||x_P(t)||^2 = ||x(t)||^2$$

► Remark: the factor $\sqrt{2}$ in $x_p(t) = \Re\{x(t)\sqrt{2}\exp(j2\pi f_c t)\}$ ensures this equality.

Receiver Frontend

- Let the baseband equivalent, received signal be $R(t) = R_I(t) + iR_O(t)$.
- Then the optimum receiver frontend for the complex signal $s(t) = s_I(t) + js_Q(t)$ will compute

$$R = \langle R_P(t), s_P(t) \rangle = \Re\{\langle R(t), s(t) \rangle\}$$

= $\langle R_I(t), s_I(t) \rangle + \langle R_Q(t), s_Q(t) \rangle$

► The I and Q channel are first matched filtered individually and then added together.

Signal Space

Assume that passband signals have the form

$$s_P(t) = b_I p(t) \sqrt{2E} \cos(2\pi f_c t) - b_Q p(t) \sqrt{2E} \sin(2\pi f_c t)$$
 for $0 < t < T$.

- ightharpoonup where p(t) is a unit energy pulse waveform.
- Orthonormal basis functions are

$$\Phi_0 = \sqrt{2}\rho(t)\cos(2\pi f_c t)$$
 and $\Phi_1 = \sqrt{2}\rho(t)\sin(2\pi f_c t)$

The corresponding baseband signals are

$$s(t) = b_I p(t) \sqrt{E} + j b_Q p(t) \sqrt{E}$$

with basis functions

$$\Phi_0 = p(t)$$
 and $\Phi_1 = jp(t)$

Probability of Error

- Expressions for the probability of error are unchanged as long as the above changes to inner product and norm are incorporated.
- Specifically, expressions involving the distance between signals are unchanged

$$Q\left(\frac{\|s_n-s_m\|}{\sqrt{2N_0}}\right).$$

ightharpoonup Expressions involving inner products with a suboptimal signal g(t) are modified to

$$Q\left(\frac{\Re\{\langle s_n-s_m,g(t)\rangle\}}{\sqrt{2N_0}\|g(t)\|}\right)$$

Summary

- The baseband equivalent channel model is much simpler than the passband model.
 - Up and down conversion are eliminated.
 - Expressions for signals do not contain carrier terms.
- ► The baseband equivalent signals are more tractable and easier to model (e.g., for simulation).
 - Since they are low-pass signals, they are easily sampled.
- No information is lost when using baseband equivalent signals, instead of passband signals.
- Standard, linear system equations hold (nearly)
- Conclusion: Use baseband equivalent signals and systems.

Introduction

- For our discussion of optimal receivers, we have focused on
 - the transmission of single symbols and
 - the signal space properties of symbol constellations.
 - We recognized the critical importance of distance between constellation points.
- The precise shape of the transmitted waveforms plays a secondary role when it comes to error rates.
- However, the spectral properties of transmitted signals depends strongly on the shape of signals.

Linear Modulation

➤ A digital communications signals is said to be *linearly* modulated if the transmitted signal has the form

$$s(t) = \sum_{n} b[n] p(t - nT)$$

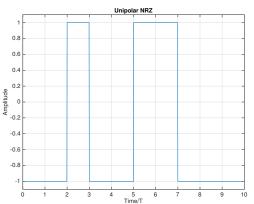
where

- ▶ b[n] are the transmitted symbols, taking values from a fixed, finite alphabet A,
- \triangleright p(t) is fixed pulse waveform.
- T is the symbol period; $\frac{1}{T}$ is the baud rate.
- This is referred to a linear modulation because the transmitted waveform s(t) depends linearly on the symbols b[n].

Illustration: Linear Modulation in MATLAB

```
function Signal = LinearModulation( Symbols, Pulse, fsT )
% LinearModulation - linear modulation of symbols with given
% initialize storage for Signal
LenSignal = length(Symbols)*fsT + (length(Pulse))-fsT;
Signal = zeros(1, LenSignal);
% loop over symbols and insert corresponding segment into Signal
for kk = 1:length(Symbols)
    ind start = (kk-1)*fsT + 1;
    ind_end = (kk-1)*fsT + length(Pulse);
    Signal(ind_start:ind_end) = Signal(ind_start:ind_end) + ...
                                Symbols(kk) * Pulse:
end
```


Example: Baseband Line Codes



 Unipolar NRZ (non-return-to-zero) and Manchester encoding are used for digital transmission over wired channels

Passband Linear Modulation

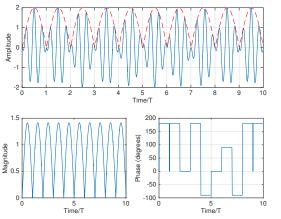
- Linearly modulated passband signals are easily described using the complex envelope techniques discussed previously.
- The baseband equivalent signals are obtained by linear modulation

$$s(t) = \sum_{n} b[n] p(t - nT)$$

where

- \triangleright p(t) is a baseband pulse and
- ightharpoonup symbols b[n] are complex valued.
 - For example, M-PSK is obtained when b[n] are drawn from the alphabet is $\mathcal{A} = \{\exp(\frac{j2\pi n}{M})\}$, with n = 0, 1, ..., M 1.

Illustration: QPSK with $f_c = 3/T$ and Half-Sine Pulses



- Passband signal (top): segments of pulse-shaped sinusoids with different phases.
 - Phase changes occur at multiples of T.
- Baseband equivalent signal (bottom) is complex valued; magnitude and phase are plotted.
 - Magnitude reflects pulse shape.

Pulse shape: $p(t) = \sqrt{2/T} sin(\pi t/T)$, for $0 \le t \le T$.

Spectral Properties of Digitally Modulated Signals

- Digitally Modulated signals are random processes even though they don't look noise-like.
- ► The randomness is introduced by the random symbols b[n].
- ▶ We know from our earlier discussion that the spectral properties of a random process are captured by its power spectral density (PSD) $S_s(f)$.
- We also know that the power spectral density is the Fourier transform of the autocorrelation function $R_s(\tau)$

$$R_s(\tau) \leftrightarrow S_s(f)$$
.

00000000

PSD for Linearly Modulated Signals

- An important special case arises when the symbol stream b[n]
 - is uncorrelated, i.e.,

$$\mathbf{E}[b[n]b^*[m]] = \begin{cases} \mathbf{E}[|b[n]|^2] & \text{when } n = m \\ 0 & \text{when } n \neq m \end{cases}$$

- has zero mean, i.e., $\mathbf{E}[b[n]] = 0$.
- Then, the power-spectral density of the transmitted signal is

$$S_s(f) = \frac{\mathbf{E}[|b[n]|^2]}{T}|P(f)|^2$$

where $p(t) \leftrightarrow P(f)$ is the Fourier transform of the shaping pulse.

Note that the shape of the spectrum does not depend on the constellation.

Exercise: PSD for Different Pulses

Assume that $\mathbf{E}[|b[n]|^2] = 1$; compute the PSD of linearly modulated signals (with uncorrelated, zero-mean symbols) when

1.
$$p(t) = \sqrt{1/T}$$
 for $0 \le t \le T$. (rectangular)

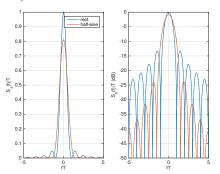
2.
$$p(t) = \sqrt{2/T} \sin(\pi t/T)$$
 for $0 \le t \le T$. (half-sine)

Answers:

1.
$$S_s(f) = \operatorname{sinc}^2(fT)$$

2.
$$S_s(f) = \frac{8}{\pi^2} \frac{\cos^2(\pi f T)}{(1 - 4(f T)^2)^2}$$

Comparison of Spectra

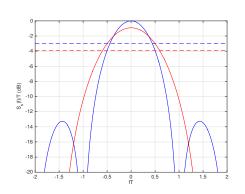


- Rectangular pulse has narrower main-lobe.
- Half-sine pulse has faster decaying sidelobes (less adjacent channel interference).
 - In general, smoother pulses have better spectra.

Measures of Bandwidth

- From the plot of a PSD, the bandwidth of the signal can be determined.
- The following three metrics are commonly used:
 - 3dB bandwidth
 - zero-to-zero bandwidth
 - 3. Fractional power containment bandwidth
- Bandwidth is measured differently for passband signals and baseband signals:
 - 1. For passband signals, the two-sided bandwidth is relevant.
 - For baseband signals, the one-sided bandwidth is of interest.

3dB Bandwidth

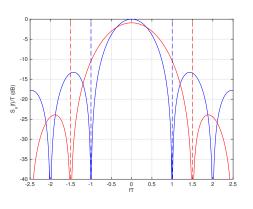


For symmetric spectra with maximum in the center of the band (f = 0), the two-sided 3dB-bandwidth B_{3dB} is defined by

$$\begin{split} S_s(\frac{\textit{B}_{\text{3dB}}}{2}) &= \frac{\textit{S}_s(0)}{2} \\ &= \textit{S}_s(-\frac{\textit{B}_{\text{3dB}}}{2}). \end{split}$$

- For rectangular pulse, $B_{3dB} \approx \frac{0.88}{T}$.
- For half-sine pulse, $B_{3dB} \approx \frac{1.18}{T}$.

Zero-to-Zero Bandwidth



- ▶ The two-sided zero-to-zero bandwidth B_{0-0} is the bandwidth between the two two zeros of the PSD that are closest to the peak at f = 0.
- In other words, for symmetric spectra

$$egin{aligned} \mathcal{S}_{s}(rac{B_{0 ext{-}0}}{2}) &= 0 \ &= \mathcal{S}_{s}(-rac{B_{0 ext{-}0}}{2}). \end{aligned}$$

- For rectangular pulse, $B_{0-0} = \frac{2}{T}$.
- For half-sine pulse, $B_{0-0} = \frac{3}{7}$.

Fractional Power-Containment Bandwidth

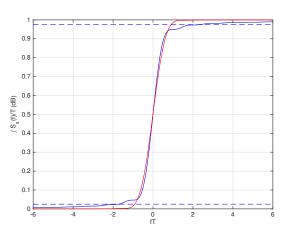
- Fractional power-containment bandwidth B_{γ} is the width of the smallest frequency interval that contains a fraction γ of the total signal power.
 - Total signal power

$$P_{s} = \frac{\mathbf{E}[|b[n]|^{2}]}{T} \int_{0}^{T} |p(t)|^{2} dt = \frac{\mathbf{E}[|b[n]|^{2}]}{T} \int_{-\infty}^{\infty} |P(f)|^{2} df.$$

For symmetric spectra, fractional power-containment bandwidth B_{γ} is defined through the relationship

$$\int_{-B_{\gamma}/2}^{B_{\gamma}/2} |P(f)|^2 df = \gamma \int_{-\infty}^{\infty} |P(f)|^2 df$$

Illustration: 95% Containment Bandwidth



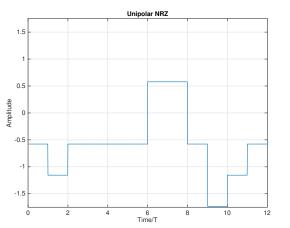
- The horizontal lines correspond to $(1 \gamma)/2$ and $1 (1 \gamma)/2$ (i.e., 2.5% and 97.5%, respectively, for $\gamma = 95\%$).
- For half-sine pulse, $B_{95\%}$ approx $\frac{1.82}{T}$.
- For rectangular pulse, $B_{95\%}$ approx $\frac{3.4}{T}$

•000000000

Full-Response and Partial Response Pulses

- So far, we have considered only pulses that span exactly one symbol period T.
 - Such pulses are called full-response pulses since the entire signal due to the n-th symbol is confined to the n-th symbol period.
 - Recall that pulses of finite duration have infinitely long Fourier transforms.
 - Hence, full-response spectra are inherently of infinite bandwidth - the best we can hope for is to concentrate power in a narrow band.
- We can consider pulses that are longer than a symbol period.
 - Such pulses are called partial-repsonse pulses.
 - They hold promise for better spectral properties.
 - But, they cause self-interference between symbols (ISI) unless properly designed.

How not do partial-response signalling



The pulse are rectangular pulses spanning 3 symbol periods.

000000000

- The transmitted information symbols are no longer obvious.
- An equalizer would be needed to "untangle" the symbol stream.

Nyquist Pulses

► To avoid interference at sampling times t = kT, pulses p(t) must meet the Nyquist criterion

$$p(mT) = \begin{cases} 1 & \text{for } m = 0 \\ 0 & \text{for } m \neq 0 \end{cases}$$

With this criterion, samples of the received signal at times t = kT satisfy

$$s(kT) = \sum_{n} b[n]p(kT - nT) = b[k].$$

- ightharpoonup At times t = kT, there is **no** interference!
- Pulses satisfying the above criterion are called Nyquist pulses.

Frequency Domain Version of the Nyquist Criterion

► In the time-domain, Nyquist pulses (for transmitting at rate 1 / T) satisfy

$$p(mT) = \begin{cases} 1 & \text{for } m = 0 \\ 0 & \text{for } m \neq 0 \end{cases}$$

An equivalent, frequency-domain criterion is

$$\sum_{k=-\infty}^{\infty} P(f + \frac{k}{T}) = T \quad \text{for all } f.$$

Example: Pulses with Trapezoidal Spectrum

The pulse

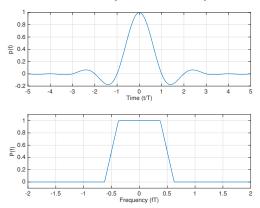
$$p(t) = \operatorname{sinc}(t/T) \cdot \operatorname{sinc}(at/T)$$

is a Nyquist pulse for rate 1/T.

- The parameter a ($0 \le a \le 1$) is called the excess bandwidth.
- ▶ The Fourier transform of p(t) is

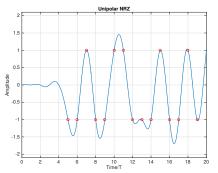
$$P(f) = \begin{cases} T & \text{for } |f| < \frac{1-a}{2T} \\ T \frac{(1+a)-2|f|T}{2a} & \text{for } \frac{1-a}{2T} \le |f| \le \frac{1+a}{2T} \\ 0 & \text{for } |f| > \frac{1+a}{2T} \end{cases}$$

Example: Pulses with Trapezoidal Spectrum



The Trapezoidal Nyquist pulse has infinite duration and ist strictly bandlimited!

Linear Modulation with Trapezoidal Nyquist Pulses



- With the Trapezoidal Nyquist pulse, at every symbol instant t = nT there is no ISI: s(nT) = b[n].
- No ISI and stricly band-limited spectrum is achieved by Nyquist pulses.

Raised Cosine Pulse

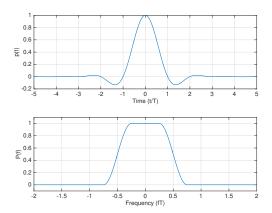
► The most widely used Nyquist pulse is the Raised Cosine Pulse:

$$\rho(t) = \operatorname{sinc}(\frac{t}{T}) \frac{\cos(\pi a t/T)}{1 - (2at/T)^2}.$$

with Fourier Transform

$$P(f) = \begin{cases} T & \text{for } |f| < \frac{1-a}{2T} \\ \frac{T}{2} \left[1 + \cos(\frac{\pi T}{a}(|f| - \frac{1-a}{2T})) \right] & \text{for } \frac{1-a}{2T} \le |f| \le \frac{1+a}{2T} \\ 0 & \text{for } |f| > \frac{1+a}{2T} \end{cases}$$

Example: Pulses with Trapezoidal Spectrum



► The raised cosine pulse is strictly bandlimited!

Root-Raised Cosine Pulse

- The receiver needs to apply a matched filter.
- For linearly modulated signals, the matched filter is the pulse p(t).
 - ho(t) = p(-t) for symmetric pulses.
- ► However, when the symbol stream is passed through the filter p(t) twice then the Nyquist condition no longer holds.
 - ightharpoonup p(t) * p(t) is *not* a Nyquist pulse.
- The root-raised cosine filter has a Fourier transform that is the square-root of the Raised Cosine pulse's Fourier transform.
- It is strictly band-limited and the series of two root-raised-cosine filters is a Nyquist pulse.

