
A Simple Example Binary Hypothesis Testing Optimal Receiver Frontend M-ary Signal Sets Message Sequences

Introduction
I We have focused on the problem of deciding which of two

possible signals has been transmitted.
I Binary Signal Sets

I We will generalize the design of optimum (MPE) receivers
to signal sets with M signals.

I M-ary signal sets.
I With binary signal sets one bit can be transmitted in each

signal period T .
I With M-ary signal sets, log2(M) bits are transmitted

simultaneously per T seconds.
I Example (M = 4):

00 ! s0(t) 01 ! s1(t)
10 ! s2(t) 11 ! s3(t)
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M-ary Hypothesis Testing Problem
I We can formulate the optimum receiver design problem as

a hypothesis testing problem:

H0: Rt = s0(t) + Nt

H1: Rt = s1(t) + Nt

...
HM�1: Rt = sM�1(t) + Nt

with a priori probabilities pi = Pr{Hi}, i = 0, 1, . . . ,M � 1.
I Note:

I With more than two hypotheses, it is no longer helpful to
consider the (likelihood) ratio of pdfs.

I Instead, we focus on the hypothesis with the maximum a
posteriori (MAP) probability or the maximum likelihood
(ML).
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AWGN Channels

I Of most interest in communications are channels where Nt
is a white Gaussian noise process.

I Spectral height N0
2 .

I For these channels, the optimum receivers can be found by
arguments completely analogous to those for the binary
case.

I Note that with M-ary signal sets, the subspace containing
all signals will have up to M dimensions.

I We will determine the optimum receivers by generalizing
the optimum binary receivers for AWGN channels.
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Starting Point: Binary MPE Decision Rule
I We have shown, that the binary MPE decision rule can be

expressed equivalently as
I either

hRt , (s1(t)� s0(t))i
H1
?
H0

N0
2

ln

✓
p0
p1

◆
+

ks1(t)k2
� ks0(t)k2

2

I or

kRt � s0(t)k2
� N0 ln(p0)

H1
?
H0

kRt � s1(t)k2
� N0 ln(p1)

I The first expression is most useful for deriving the structure
of the optimum receiver.

I The second form is helpful for interpreting the decision rule
in signal space.
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M-ary MPE Receiver
I The decision rule

hRt , (s1(t)� s0(t))i
H1
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ks1(t)k2
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2

can be rewritten as

Z1 = hRt , s1(t)i+

g1z }| {
N0
2

ln(p1)�
ks1(t)k2

2

H1
?
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hRt , s0(t)i+
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© 2018, B.-P. Paris ECE 630: Statistical Communication Theory 195



A Simple Example Binary Hypothesis Testing Optimal Receiver Frontend M-ary Signal Sets Message Sequences

M-ary MPE Receiver

I The decision rule is easily generalized to M signals:

m̂ = arg max
n=0,...,M�1

Znz }| {

hRt , sn(t)i+
N0
2

ln(pn)�
ksn(t)k2

2| {z }
gn

I The optimum detector selects the hypothesis with the
largest decision statistic Zn.
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M-ary MPE Receiver
I The bias terms gn account for unequal priors and for

differences in signal energy En = ksn(t)k2.
I Common terms can be omitted

I For equally likely signals,

gn = �
ksn(t)k2

2
.

I For equal energy signals,

gn =
N0
2

ln(pn)

I For equally likely, equal energy signal,

gn = 0
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M-ary MPE Receiver

M-ary Correlator Receiver

Rt
...

s0(t)

sM�1(t)

R T
0 dt

R T
0 dt

g0

...

gM�1

argmax m̂

Z0

ZM�1
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Decision Statistics
I The optimum receiver computes the decision statistics

Zn = hRt , sn(t)i+
N0
2

ln(pn)�
ksn(t)k2

2
.

I Conditioned on the m-th signal having been transmitted,
I All Zn are Gaussian random variables.
I Expected value:

E[Zn|Hm] = hsm(t), sn(t)i+
N0
2

ln(pn)�
ksn(t)k2

2

I (Co)Variance:

E[ZjZk |Hm]� E[Zj |Hm]E[Zk |Hm] = hsj (t), sk (t)i
N0
2
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Exercise: QPSK Receiver

I Find the optimum receiver for the following signal set with
M = 4 signals:

sn(t) =
r

2E
T

cos(2pt/T +np/2) for 0  t  T and n = 0, . . . , 3.
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Decision Regions
I The decision regions Gn and error probabilities are best

understood by generalizing the binary decision rule:

kRt � s0(t)k2
� N0 ln(p0)

H1
?
H0

kRt � s1(t)k2
� N0 ln(p1)

I For M-ary signal sets, the decision rule generalizes to

m̂ = arg min
n=0,...,M�1

kRt � sn(t)k2
� N0 ln(pn).

I This simplifies to

m̂ = arg min
n=0,...,M�1

kRt � sn(t)k2

for equally likely signals.
I The optimum receiver decides in favor of the signal sn(t)

that is closest to the received signal.
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Decision Regions (equally likely signals)
I For discussing decision regions, it is best to express the

decision rule in terms of the representation obtained with
the orthonormal basis {Fk}, where

I basis signals Fk span the space that contains all signals
sn(t), with n = 0, . . . ,M � 1.

I Recall that we can obtain these basis signals via the
Gram-Schmidt procedure from the signal set.

I There are at most M orthonormal bases.

I Because of Parseval’s relationship, an equivalent decision
rule is

m̂ = arg min
n=0,...,M�1

k~R �~snk
2,

where ~R has elements Rk = hRt ,Fk (t)i and~sn has
element sn,k = hsn(t),Fk (t)i.
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Decision Regions

I The decision region Gn where the detector decides that the
n-th signal was sent is

Gn = {~r : k~r �~snk < k~r �~smkfor all m 6= n}.

I The decision region Gn is the set of all points~r that are
closer to~sn than to any other signal point.

I The decision regions are formed by linear segments that
are perpendicular bisectors between pairs of signal points.

I The resulting partition is also called a Voronoi partition.
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Example: QPSK
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sn(t) =
p

2/T cos(2pfct + n · p/2 + p/4), for n = 0, . . . , 3.
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Example: 8-PSK
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sn(t) =
p

2/T cos(2pfct + n · p/4), for n = 0, . . . , 7.
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Example: 16-QAM
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sn(t) =
p

2/T (AI · cos(2pfct) + AQ · sin(2pfct))

with AI ,AQ 2 {�3,�1, 1, 3}.
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Symbol Energy and Bit Energy

I We have seen that error probabilities decrease when the
signal energy increases.

I Because the distance between signals increase.
I We will see further that error rates in AWGN channels

depend only on
I the signal-to-noise ratio Eb

N0
, where Eb is the average energy

per bit, and
I the geometry of the signal constellation.

I To focus on the impact of the signal geometry, we will fix
either

I the average energy per symbol Es = 1
M ÂM�1

n=0 ksn(t)k2 or
I the average energy per bit Eb = Es

log2(M)
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Example: QPSK

I QPSK signals are given by

sn(t) =
r

2Es

T
cos(2pfct + n ·p/2+p/4), for n = 0, . . . , 3.

I Each of the four signals sn(t) has energy

En = ksn(t)k2 = Es.

I Hence,
I the average symbol energy is Es
I the average bit energy is Eb = Es

log2(4)
= Es

2
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Example: 8-PSK

I 8-PSK signals are given by

sn(t) =
p

2Es/T cos(2pfct + n · p/4), for n = 0, . . . , 7.

I Each of the eight signals sn(t) has energy

En = ksn(t)k2 = Es.

I Hence,
I the average symbol energy is Es
I the average bit energy is Eb = Es

log2(8)
= Es

3
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Example: 16-QAM

I 16-QAM signals can be written as

sn(t) =
r

2E0
T

(aI · cos(2pfct) + aQ · sin(2pfct))

with aI , aQ 2 {�3,�1, 1, 3}.
I There are

I 4 signals with energy (12 + 12)E0 = 2E0
I 8 signals with energy (32 + 12)E0 = 10E0
I 4 signals with energy ((32 + 32)E0 = 18E0

I Hence,
I the average symbol energy is 10E0
I the average bit energy is Eb = Es

log2(16) =
5E0

2
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Energy Efficiency
I We will see that the influence of the signal geometry is

captured by the energy efficiency

hP =
d2

min
Eb

where dmin is the smallest distance between any pair of
signals in the constellation.

I Examples:
I QPSK: dmin =

p
2Es and Eb = Es

2 , thus hP = 4.

I 8-PSK: dmin =
q
(2 �

p
2)Es and Eb = Es

3 , thus
hP = 3 · (2 �

p
2) ⇡ 1.75.

I 16-QAM: dmin =
p

2E0 and Eb = 5E0
2 , thus hP = 8

5 .
I Note that energy efficiency decreases with the size of the

constellation for 2-dimensional constellations.
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Computing Probability of Symbol Error

I When decision boundaries intersect at right angles, then it
is possible to compute the error probability exactly in
closed form.

I The result will be in terms of the Q-function.
I This happens whenever the signal points form a

rectangular grid in signal space.
I Examples: QPSK and 16-QAM

I When decision regions are not rectangular, then closed
form expressions are not available.

I Computation requires integrals over the Q-function.
I We will derive good bounds on the error rate for these

cases.
I For exact results, numerical integration is required.
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Illustration: 2-dimensional Rectangle
I Assume that the n-th signal was transmitted and that the

representation for this signal is~sn = (sn,0, sn,1)
0 .

I Assume that the decision region Gn is a rectangle

Gn = {~r = (r0, r1)
0

:sn,0 � a1 < r0 < sn,0 + a2 and
sn,1 � b1 < r1 < sn,1 + b2}.

I Note: we have assumed that the sides of the rectangle are
parallel to the axes in signal space.

I Since rotation and translation of signal space do not affect
distances this can be done without affecting the error
probability.

I Question: What is the conditional error probability,
assuming that sn(t) was sent.
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Illustration: 2-dimensional Rectangle
I In terms of the random variables Rk = hRt ,Fk i, with

k = 0, 1, an error occurs if

error event 1z }| {
(R0  sn,0 � a1 or R0 � sn,0 + a2) or
(R1  sn,1 � b1 or R1 � sn,1 + b2)| {z }

error event 2

.

I Note that the two error events are not mutually exclusive.
I Therefore, it is better to consider correct decisions instead,

i.e., ~R 2 Gn:

sn,0 � a1 < R0 < sn,0 + a2 and sn,1 � b1 < R1 < sn,1 + b2
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Illustration: 2-dimensional Rectangle
I We know that R0 and R1 are

I independent - because Fk are orthogonal
I with means sn,0 and sn,1, respectively
I variance N0

2 .
I Hence, the probability of a correct decision is

Pr{c|sn} =Pr{�a1 < N0 < a2} · Pr{�b1 < N1 < b2}

=
Z a2

�a1

pR0|sn(r0) dr0 ·

Z b2

�b1

pR1|sn(r1) dr1

=(1 � Q
✓

a1
p

N0/2

◆
� Q

✓
a2

p
N0/2

◆
)·

(1 � Q
✓

b1
p

N0/2

◆
� Q

✓
b2

p
N0/2

◆
).
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Exercise: QPSK
I Find the error rate for the signal set

sn(t) =
p

2Es/T cos(2pfct +n ·p/2+p/4), for n = 0, . . . , 3.

I Answer: (Recall hP = d2
min
Eb

= 4 for QPSK)

Pr{e} = 2Q

 s
Es

N0

!
� Q2

 s
Es

N0

!

= 2Q

 s
2Eb

N0

!
� Q2

 s
2Eb

N0

!

= 2Q

 s
hPEb

2N0

!
� Q2

 s
hPEb

2N0

!
.
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Exercise: 16-QAM
(Recall hP = d2

min
Eb

= 8
5 for 16-QAM)

I Find the error rate for the signal set
(aI , aQ 2 {�3,�1, 1, 3})

sn(t) =
p

2E0/TaI · cos(2pfct) +
p

2E0/TaQ · sin(2pfct)

I Answer: (hP = d2
min
Eb

= 4)

Pr{e} = 3Q

 s
2E0
N0

!
�

9
4

Q2

 s
2E0
N0

!

= 3Q

 s
4Eb

5N0

!
�

9
4

Q2

 s
4Eb

5N0

!

= 3Q

 s
hPEb

2N0

!
�

9
4

Q2

 s
hPEb

2N0

!
.

© 2018, B.-P. Paris ECE 630: Statistical Communication Theory 217


