M-ary Signal Sets
[ Yo

Introduction

» We have focused on the problem of deciding which of two
possible signals has been transmitted.

» Binary Signal Sets

» We will generalize the design of optimum (MPE) receivers
to signal sets with M signals.

» M-ary signal sets.
» With binary signal sets one bit can be transmitted in each
signal period T.

» With M-ary signal sets, log, (M) bits are transmitted
simultaneously per T seconds.

» Example (M = 4):

00 — So(t) 01 — s (t)
10 — Sz(t) 11 — SS(t) Dﬁesonse
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M-ary Hypothesis Testing Problem

» We can formulate the optimum receiver design problem as
a hypothesis testing problem:

Ho: Rt — So(t) -+ Nt
Hi: Ry = S1<t)—|—Nt

Hy—1: Rt = spy—1(t) + N

with a priori probabilities r; = Pr{H;}, i = 0,1, ..., M—1.
» Note:
» With more than two hypotheses, it is no longer helpful to
consider the (likelihood) ratio of pdfs.
» Instead, we focus on the hypothesis with the maximum a
posteriori (MAP) probability or the maximum likelihood

(ML). MASSR
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AWGN Channels

» Of most interest in communications are channels where N;
is a white Gaussian noise process.
» Spectral height %

» For these channels, the optimum receivers can be found by
arguments completely analogous to those for the binary
case.

» Note that with M-ary signal sets, the subspace containing
all signals will have up to M dimensions.
» We will determine the optimum receivers by generalizing
the optimum binary receivers for AWGN channels.
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Starting Point: Binary MPE Decision Rule

» We have shown, that the binary MPE decision rule can be

expressed equivalently as

» either
Hi N, T s1(D)12 = ||so(1)]|2
(R, (51(1) — sp(1))) = 70|n (_0> n [s1(t)]] — [|So(1)]]
Ho TTA 2
> or
H;
IR — so(1)[|* — No In(7ro) 5 IR — s1()[|* — No In(7r1)
0

» The first expression is most useful for deriving the structure
of the optimum receiver.

» The second form is helpful for interpreting the decision rule
In signal space.

z,
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M-ary MPE Receiver

» The decision rule

(Be, (s1(1) — so(8))) = N0, (@> L Isi (@17~ liso(t)]3

2

can be rewritten as

Zy = <Rt,31(t)>+%|n(”1) - I OF %
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M-ary MPE Receiver

» The decision rule is easily generalized to M signals:

Zn

A
Ve N\

=arg_max (Ruso(D)) + S In(my) — 1501

A\ J/
-~

Yn

» The optimum detector selects the hypothesis with the
largest decision statistic Z,.
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M-ary MPE Receiver

» The bias terms -+, account for unequal priors and for
differences in signal energy E, = ||sp(t)]|?.

» Common terms can be omitted

» For equally likely signals,

sn(t)||°
LG
» For equal energy signals,
N,
Yn = ?O In(7tp)

» For equally likely, equal energy signal,

'Yn — O MtXESORGE
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Message Sequences
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M-ary MPE Receiver

M-ary Correlator Receiver
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Decision Statistics

» The optimum receiver computes the decision statistics

Isn(0)?

Z, = (Ri. sn(1)) + % in(71y) —

2

» Conditioned on the m-th signal having been transmitted,

» All Z, are Gaussian random variables.
» Expected value:

2
E(Zo| Hon] = (sm(£), 5n(1)) + 22 In(rmy) — Lt
» (Co)Variance:
E[ZZ«|Hm] — E[Zj|Hm|E[Zk|Hm] = <sj(t),sk(t)>% Vs
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Exercise: QPSK Receiver

» Find the optimum receiver for the following signal set with
M = 4 signals:

2E
Sn(t) =1/ Tcos(2m‘/T—|— nt/2) for0<t<Tandn=0,...,
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Decision Regions

» The decision regions I, and error probabilities are best
understood by generalizing the binary decision rule:
H,
IRt — so(t)[| — NoIn(7m0) = [|Re — s1(8)[|* — No In(7rq)

Ho

» For M-ary signal sets, the decision rule generalizes to

m = arg n:Omir)w_1 1R — sn(1)]| — No In(7tp).

» This simplifies to

A

m=arg min |[R;— sp(t)

for equally likely signals.
> The optimum receiver decides in favor of the signal sp(t)  ~
that is closest to the received signal. MAS
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Decision Regions (equally likely signals)

» For discussing decision regions, it is best to express the
decision rule in terms of the representation obtained with
the orthonormal basis { @y}, where

» basis signals @, span the space that contains all signals
sn(t), withn=10,..., M—1.
» Recall that we can obtain these basis signals via the

Gram-Schmidt procedure from the signal set.
» There are at most M orthonormal bases.

» Because of Parseval’s relationship, an equivalent decision
rule is

m = arg n:Omirl1w_1 IR — 3|2,

where R has elements R, = (R:, @« (t)) and &, has
element Sn,k — <Sn(t), qbk(t)> Dﬁssonse
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Decision Regions

» The decision region I, where the detector decides that the
n-th signal was sent is

In=Ar:||F—3n|| < ||[F— sml/forall m # n}.

» The decision region I, is the set of all points 7 that are
closer to S, than to any other signal point.

» The decision regions are formed by linear segments that
are perpendicular bisectors between pairs of signal points.

» The resulting partition is also called a Voronoi partition.
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Example: QPSK
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Sn(t) — V 2/TCOS(27'CfCt—|—n' 7T/2—|—7T/4), for n = O,...,3. DﬁESORGE
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Example: 8-PSK
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Example: 16-QAM

3

2

5,(0) 50 5,00 5,0

sn(t) = v2/T(A;-cos(2rtfet) + Aq - sin(27tfet))
///G/EORGE
with A, Ag € {-3,—1,1,3}. MASON
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Symbol Energy and Bit Energy

» We have seen that error probabilities decrease when the
signal energy increases.

» Because the distance between signals increase.

» We will see further that error rates in AWGN channels
depend only on
> the signal-to-noise ratio ,’f_,—g where E, is the average energy
per bit, and
» the geometry of the signal constellation.
» To focus on the impact of the signal geometry, we will fix
either
_ 1 M1 2
> the average energy per symbol Es = ;35 [Sn(f)||= or

» the average energy per bit Ep = Iogf%
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Example: QPSK

» QPSK signals are given by

[2E
Sn(t) = ?Scos(anCt+n-7t/2+7t/4),forn:O ..... 3.

» Each of the four signals s,(t) has energy

En = |lsn(8)]|* = Es.

» Hence,
» the average symbol energy is Eg
> the average bit energy is E;, = Iog’:;s(4) =5
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Example: 8-PSK

» 8-PSK signals are given by

sn(t) = \V2Es/ T cos(2rfet+n-m/4),forn=0,..., 7.

» Each of the eight signals s,(t) has energy

En = [Isn(8)[|* = Es.

» Hence,
> the average symbol energy is Es
> the average bit energy is Ep, = IogEZS(S) =5
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Example: 16-QAM

» 16-QAM signals can be written as

2E,
sn(t) = - 2 (a; - cos(2ntfst) + ag - sin(27tfyt))
with g, ag € {—3, —1.1, 3}.
» There are

> 4 signals with energy (12 4 1 )EO = 2E,
> 8 signals with energy (3% 4 12)Ey = 10E,
> 4 signals with energy ((32 +32)Ey = 18F,

» Hence,
» the average symbol energy is 10E,
» the average bit energy is Ep =
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Energy Efficiency

» We will see that the influence of the signal geometry is
captured by the energy efficiency

where dnin Is the smallest distance between any pair of

signals in the constellation.
» Examples:

> QPSK: dynin = v/2Es and Ep, = 58, thus 17p = 4.
» 8-PSK: din = 1/ (2— V2)Es and Ep = &, thus
17p23'(2—\/§) ~ 1.75.
> 16-QAM: dii, = /2E; and £, = 252, thus 77p = £.
» Note that energy efficiency decreases with the size of the _
constellation for 2-dimensional constellations. MASN
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Computing Probability of Symbol Error

» When decision boundaries intersect at right angles, then it
IS possible to compute the error probability exactly in
closed form.

» The result will be in terms of the Q-function.

» This happens whenever the signal points form a
rectangular grid in signal space.

» Examples: QPSK and 16-QAM

» When decision regions are not rectangular, then closed
form expressions are not available.

» Computation requires integrals over the Q-function.

» We will derive good bounds on the error rate for these
cases.

» For exact results, numerical integration is required.
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lllustration: 2-dimensional Rectangle
» Assume that the n-th signal was transmitted and that the

representation for this signal is 3, = (Spo, Sn1) -
» Assume that the decision region I, is a rectangle

- /
[h={F=(ro,r) :Spo— a1 < ry < Spo + a and
Sn1— b1 < < 8p1 —|—b2}.

» Note: we have assumed that the sides of the rectangle are

parallel to the axes in signal space.
» Since rotation and translation of signal space do not affect
distances this can be done without affecting the error

probability.
» Question: What is the conditional error probability,
assuming that s,(t) was sent. Misesase
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lllustration: 2-dimensional Rectangle

» In terms of the random variables Ry = (R;, @), with
k = 0,1, an error occurs if

error event 1

7\

Sno —ai or Ry > Sp0+ @) or
Sn1— by or Ry > sp1+b2).

7

error event 2

I/\ IN

(Ro
SR

» Note that the two error events are not mutually exclusive.

» Therefore, it is better to consider correct decisions instead,
l.e., R € Ip:

Sho—ai < Ry<spot+aands,s —by <Ry <8p1+ b
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lllustration: 2-dimensional Rectangle

» We know that Ry and R, are

> independent - because &, are orthogonal
> with means s, ¢ and s 1, respectively

» variance %

» Hence, the probability of a correct decision is

Pr{c|sn} =Pr{—a; < Ng < as}-Pr{—by < Ny < bo}
ao b2

= | Pgys,(f0) dro - PR,|s,(r1) dry

—aj —b

"ol ) (i)
(1_Q<\/%)_Q<\/%))' Iy -

© 2018, B.-P. Paris ECE 630: Statistical Communication Theory



Exercise: QPSK

» Find the error rate for the signal set
sn(t) = \/2Es/ T cos(2rtfet+n-m/24+m/4),forn=0,..., 3.

» Answer: (Recall p = df%"“ = 4 for QPSK)

-w[5)-+(/
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Exercise: 16-QAM

(Recall 7p = %o = & for 16-QAM)

» Find the error rate for the signal set
(a,, ag € {—3, —1.1, 3}

sn(t) = V/2Ey/ Ta; - cos(2rtf.t) + \/2Ey/ Taq - sin(27fst)

» Answer: (17p = m'” = 4)

Pr{e}zao( ) (|20)
_ 2Ep) 92 (. [%Ep
_30< 5N0> 4Q< 5N0>
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