Binary Hypothesis Testing
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Example: Gaussian Hypothesis Testing

» The most important hypothesis testing problem for
communications over AWGN channels is

Ho:R ~ N(rfg, o?1)
Hi:R ~ N(rf, o?1)

» This problem arises when
» one of two known signals is transmitted over an AWGN
channel, and
» a linear analog frontend is used.
» Note that
» the conditional means are different — reflecting different
signals
» covariance matrices are the same — since they depend on
noise only.
> components of R are independent — indicating that the Massie

frontend projects R; onto orthogonal bases.
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Resulting Log-Likelihood Ratio

» For this problem, the log-likelihood ratio simplifies to
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» The second expressions shows that the Euclidean distance
between observations R and means m; plays a central role
in Gaussian hypothesis testing.

> The last expression highlights the projection of the
observation R onto the difference between the means m. MAS
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MPE Decision Rule

» With the above log-liklihood ratio, the MPE decision rule
becomes equivalently

> either

0
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Decision Regions

» The MPE decision rule divides R" into two half planes that
are the decision regions Iy and I5.

» The dividing line (decision boundary) between the regions
is perpendicular to my — my.
» This is a consequence of the inner product in the first form
of the decision rule.
» |f the priors 1y and 7r1 are equal, then the decision

boundary passes through the midpoint Zoef™.

» For unequal priors, the decision boundary is shifted towards
the mean of the less likely hypothesis.

> The di o — 20 |In(rmo/ )|
The distance of this shift equals ¢ |73y — o |

» This follows from the (squared) distances in the second
form of the decision rule. l\f«s
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Decision Regions
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Probability of Error

» Question: What is the probability of error with the MPE
decision rule?

» Using MPE decision rule

S _ . H w12 — 112
<R, mq — mo> 2 0’2 In (@) + || 1|| || OH
Ho 7T4 2

» Plan:

> Find conditional densities of (R, rii; — ) under Hy and Hi.
» Find conditional error probabilities

/Fpm,j(?wj) dF for i # j.

» Find average probability of error. D‘ﬁ\s
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Conditional Distributions

» Since (R, i, — i) is a linear transformation and R is
Gaussian, the conditional distributions are Gaussian.

Ho: N({rfio, riiy) — | Tio||12, o || o — 11y %)

Ho o2,
1 _)1 o _’01 —)1 ’ _’O_ _’1
Fh: N |2 — {7, 1) 0| iy — 7 )
i o2,
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Conditional Error Probabilities

» The MPE decision rule compares

= & 7T | H2 — H’ﬁoH2
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» Resulting conditional probabilities of error

PrielHy} = Q (’Y—%) ~Q (Hl‘ﬁo—fﬁﬂ n Uln(no/n1)>

om 20 Mo — iy |
Pl’{e’H-l}:Q(;I/H_’Y) :Q<Hm0_m1” _(7'|I1(7T0/_7:[1>
om 20 [mo — my ||
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Average Probability of Error

» The average error probability equals
Pr{e} = Pr{decide Hy|H; } Pr{H;} + Pr{decide H;|Hy} Pr{Hy}
:ﬂoQ (Hmo — My || n 0'|n(7T0/7T1)> X

20 | Mo — my |
My — m |
o (1ol _ohizo/m))
20 [mo — my |
> Important special case: 7y = 71 = 3
Mo — ||
Prie} =
(e} —a (1™,

» The error probability depends on the ratio of

» distance between means ||miy — my || Z ek
» and noise standard deviation MASGN
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Maximume-Likelihood (ML) Decision Rule

» The maximum-likelihood decision rule disregards priors
and decides for the hypothesis with higher likelihood.
» ML Decision rule:

= = 1
pﬁ‘HO(R’HO) Ho
or equivalently, in terms of the log-likelihood,

S pz R|H H
L(R) = In A 1Y) >0
P,E,a|H0(R|H0) Ho

. pz
A(R) = AIF

» Obviously, the ML decision is equivalent to the MPE rule
when the priors are equal.

» In the Gaussian case, the ML rule does not require Maase
knowledge of the noise variance. v
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A-Posteriori Probability

> By Bayes rule, the probability of hypothesis H; after
observing R is

- TTiPg (?’ )
Pr{H|R =7} = ’;’ OB
R

where pg(7) is the unconditional pdf of R
p/:g Zﬂ/pm I’|H)

» Maximum A-Posteriori (MAP) decision rule:

— H —
Pr{H|R=T7) = Pr{Ho|R = 7}
Ho

> Interpretation: Decide in favor of the hypothesis that is Laronas
more likely given the observed signal R. s
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The MAP and MPE Rules are Equivalent

» The MAP and MPE rules are equivalent: the MAP decision
rule achieves the minimum probability of error.
» The MAP rule can be written as

Pr{H|R =7}
Pri{Ho|R =7} A
(7|H)

> Inserting Pr{H;|R =7} = mp’;ﬁ"m yields
R

» This is obviously equal to the MPE rule
Fﬁ?“{1(?’f{1) ?ﬁ 7To
pl-_-;,’Ho(ﬂHo) I§O 7'[1. uuuuuuuuuu
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More than Two Hypotheses

» Frequently, more than two hypotheses must be considered:

Hu: R ~ p,Eg‘HM(HHM)

» |n these cases, it is no longer possible to reduce the
decision rules to

» the computation of the likelihood ratio
» followed by comparison to a threshold
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More than Two Hypotheses

» Instead the decision rules take the following forms
» MPE rule:

m = ar max TTiD= riH
i€{0,...M—1} Py, 1)
» ML rule:
m = ar max Pz (F|H;)

» MAP rule:
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More than Two Hypotheses: The Gaussian Case

> When the hypotheses are of the form H;: R ~ N(r;, o21),
then the decision rules become:
» MPE and MAP decision rules:

A - 2 22 2
m =ar min r—m;||c —20° In(7;
6, min 7] ()
—ar max  (F, m;) + o In(m;) — 731
ie{0,...M—1} 2

» ML decision rule:

A . — — 2
m = ar min F— m
S ie(oM—1) | |
> 112
S o m;
=ar max  (F, m;) — 7]
ie{0,...M—1} 2
/GEORGE
> This is also the MPE rule when the priors are all equal. MaS

UUUUUUUUUU
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Take-Aways

» The conditional densities PRIH, (F|H;) play a key role.

» MPE decision rule:
» Binary hypotheses:
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Take-Aways

» For the Gaussian case (different means, equal variance),
decisions are based on the Euclidean distance between
observations R and conditional means m;:

A . — — 2 2
m=a r— m;llc — 20° In(7;
rgl_ {OT!R‘/I_1}|’ IH “( /)
S o > ;|2
—ar ma r, m; o In(7t;) —
ic{0,..., I\)jl—1}< i)+ 0o In(7i) 2
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