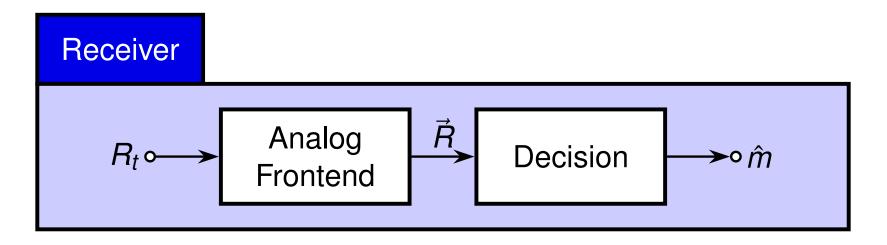
Α	Simple	Example
	0000	
	00000	000

Optimal Receiver Frontend

•**0** 0000000000000 00000000 0000000 Message Sequences

Structure of a Generic Receiver



Receivers consist of:

- an analog frontend: maps observed signal R_t to decision statistic R.
- decision device: determines which symbol m̂ was sent based on observation of R̂.
- Focus on designing optimum frontend.

◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

inary Hypothesis Test 0000000 00000000 0000000 Optimal Receiver Frontend

 Message Sequences oo oo oooooo oooooo

Problem Formulation and Assumptions

In terms of the received signal R_t, we can formulate the following decision problem:

$$H_0: R_t = s_0(t) + N_t \text{ for } 0 \le t \le T$$

$$H_1: R_t = s_1(t) + N_t \text{ for } 0 \le t \le T$$

Assumptions:

- N_t is whithe Gaussian noise with spectral height $\frac{N_0}{2}$.
- N_t is independent of the transmitted signal.
- Objective: Determine the optimum receiver frontend.

◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

nary Hypothesis Testir ວ໐໐໐໐໐ ວ໐໐໐໐໐໐ ຉ໐໐໐໐໐໐ Optimal Receiver Frontend

 Message Sequences oo oo oooooo ooooooo

Starting Point: KL-Expansion

• Under the *i*-th hypothesis, the received signal R_t can be represented over $0 \le t \le T$ via the expansion

$$H_i: R_t = \sum_{j=0}^{\infty} R_j \Phi_j(t) = \sum_{j=0}^{\infty} (s_{ij} + N_j) \Phi_j(t).$$

Recall:

- If the above representation yields *uncorrelated* coefficients R_i, then this is a Karhunen-Loeve expansion.
- Since N_t is white, any orthonormal basis $\{\Phi_j(t)\}$ yields a Karhunen-Loeve expansion.
- Insight:
 - ► We can *choose* a basis {*Φ_j(t)*} that produces a low-dimensional representation for all signals *s_i(t)*.

/┛▶ ◀ ⊑▶ ◀ ⊑▶

A Simple Example	Binary Hypothesis Testing	Optimal Receiver Frontend	<i>M</i> -ary Signal Sets	Message Sequences
		0000000	00000000 000000000000000000000000000000	000000

Constructing a Good Basis

 Consider the complete, but not necessarily orthonormal, basis

 $\{s_0(t), s_1(t), \Psi_0(t), \Psi_1(t), \ldots\}$.

where $\{\Psi_j(t)\}$ is any complete basis over $0 \le t \le T$ (e.g., the Fourier basis).

► Then, the Gram-Schmidt procedure is used to convert the above basis into an orthonormal basis {Φ_j}.

Optimal Receiver Frontend

000000000000 000000000 0000000 Message Sequences oo oo oooooo ooooooo

Properties of Resulting Basis

- Notice: with this construction
 - only the first M ≤ 2 basis functions Φ_j(t), j < M ≤ 2 are dependent on the signals s_i(t), i ≤ 2.
 - ► I.e., for each *j* < *M*,

 $\langle s_i(t), \Phi_j(t) \rangle \neq 0$ for at least one i = 0, 1

- Recall, M < 2 if signals are not linearly independent.
- ► The remaining basis functions Φ_j(t), j ≥ M are orthogonal to the signals s_i(t), i ≤ 2
 - I.e., for each $j \ge M$,

$$\langle s_i(t), \Phi_j(t) \rangle = 0$$
 for all $i = 0, 1$

<ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

hary Hypothesis Testi 0000000 00000000 0000000 Optimal Receiver Frontend

Message Sequences

Back to the Decision Problem

 Our decision problem can now be written in terms of the representation

$$\begin{aligned} H_0: R_t &= \sum_{j=0}^{M-1} (s_{0j} + N_j) \Phi_j(t) + \sum_{j=M}^{\infty} N_j \Phi_j(t) \\ H_1: R_t &= \underbrace{\sum_{j=0}^{M-1} (s_{1j} + N_j) \Phi_j(t)}_{\text{signal + noise}} + \underbrace{\sum_{j=M}^{\infty} N_j \Phi_j(t)}_{\text{noise only}} \\ \end{aligned}$$
where
$$\begin{aligned} s_{ij} &= \langle s_i(t), \Phi_j(t) \rangle \\ N_j &= \langle N_t, \Phi_j(t) \rangle \end{aligned}$$

• Note that N_j are independent, Gaussian random variables, $N_j \sim N(0, \frac{N_0}{2})$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶

A Simple Example Binary Hypothesis Testing Optimal Receiver Frontend Optimal Sets Message Sequences

Vector Version of Decision Problem

- The received signal R_t and its representation $\vec{R} = \{R_j\}$ are equivalent.
 - Via the basis $\{\Phi_i\}$ one can be obtained from the other.
- Therefore, the decision problem can be written in terms of the representations

$$egin{aligned} H_0 &: ec{R} = ec{s}_0 + ec{N} \ H_1 &: ec{R} = ec{s}_1 + ec{N} \end{aligned}$$

where

- all vectors are of infinite length,
- the elements of \vec{N} are i.i.d., zero mean Gaussian,
- ▶ all elements s_{ij} with $j \ge M$ are zero.

<ロ > < 同 > < 同 > < 三 > < 三 >

00000 00000000 00 00 00000000 00000000 0000000000 000000000 00000000 00000000 00000000 000000000 000000000 000000000 00000000 00000000 00000000 000000000 00000000 0000000 00000000 00000000 0000000000 0000000000	00000000 000000000 00000000 00000000 0000000	quences
--	--	---------

Reducing the Number of Dimensions

We can write the conditional pdfs for the decision problem

$$H_{0}: \vec{R} \sim \prod_{j=0}^{M-1} p_{N}(r_{j} - s_{0j}) \cdot \prod_{j=M}^{\infty} p_{N}(r_{j})$$
$$H_{1}: \vec{R} \sim \prod_{j=0}^{M-1} p_{N}(r_{j} - s_{1j}) \cdot \prod_{j=M}^{\infty} p_{N}(r_{j})$$

where $p_N(r)$ denotes a Gaussian pdf with zero mean and variance $\frac{N_0}{2}$.

A Simple Example Binary Hypothesis Testing Optimal Receiver Frontend Optimal Receiver Frontend M-ary Signal Sets Message Sequences

Reducing the Number of Dimensions

The optimal decision relies on the likelihood ratio

$$L(\vec{R}) = \frac{\prod_{j=0}^{M-1} p_N(r_j - s_{0j}) \cdot \prod_{j=M}^{\infty} p_N(r_j)}{\prod_{j=0}^{M-1} p_N(r_j - s_{1j}) \cdot \prod_{j=M}^{\infty} p_N(r_j)}$$
$$= \frac{\prod_{j=0}^{M-1} p_N(r_j - s_{0j})}{\prod_{j=0}^{M-1} p_N(r_j - s_{1j})}$$

- The likelihood ratio depends only on the first *M* dimensions of *R*?
 - Dimensions greater than or equal to M are *irrelevant* for the decision problem.
 - Only the the first *M* dimension need to be computed for optimal decisions.

<ロト < 同ト < 巨ト < 三ト

A Simple Example ooooo oooooooooo nary Hypothesis Testir ວ໐໐໐໐໐ ວ໐໐໐໐໐໐ ຉ໐໐໐໐໐໐ Optimal Receiver Frontend

Message Sequences

Reduced Decision Problem

The following decision problem with M dimensions is equivalent to our original decision problem (assumes M = 2):

$$H_{0}: \vec{R} = \begin{pmatrix} s_{00} \\ s_{01} \end{pmatrix} + \begin{pmatrix} N_{0} \\ N_{1} \end{pmatrix} = \vec{s}_{0} + \vec{N} \sim N(\vec{s}_{0}, \frac{N_{0}}{2}I)$$
$$H_{1}: \vec{R} = \begin{pmatrix} s_{10} \\ s_{11} \end{pmatrix} + \begin{pmatrix} N_{0} \\ N_{1} \end{pmatrix} = \vec{s}_{1} + \vec{N} \sim N(\vec{s}_{1}, \frac{N_{0}}{2}I)$$

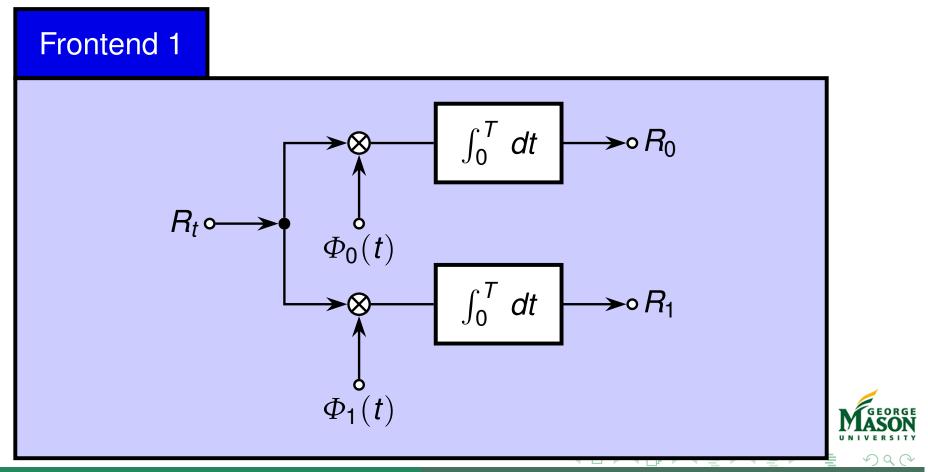
• When $s_0(t)$ and $s_1(t)$ are linearly dependent, i.e., $s_1(t) = a \cdot s_0(t)$, then M = 1 and the decision problem becomes one-dimensional.

◆□▶ ◆□▶ ◆□▶ ◆□▶

A Simple Example	Binary Hypothesis Testing	Optimal Receiver Frontend	<i>M</i> -ary Signal Sets	Message Sequenc
000000000	00000000 00000000 0000000	000000000000000000000000000000000000		000 00 000000 000000

Optimal Frontend - Version 1

From the above discussion, we can conclude that an optimal frontend is given by.



ces

	A Simple Example 00000 00000000	Binary Hypothesis Testing oooooooo ooooooooooooooooooooooooooo	Optimal Receiver Frontend		Message Sequences oo oo oooooo ooooooo
--	---------------------------------------	--	---------------------------	--	--

Optimum Receiver - Version 1

- Note that the optimum frontend projects the received signal R_t into to signal subspace spanned by the signals s_i(t).
 - ► Recall that the first basis functions Φ_j(t), j < M, are obtained from the signals.</p>
- We know how to solve the resulting, *M*-dimensional decision problem

$$H_{0}: \vec{R} = \begin{pmatrix} s_{00} \\ s_{01} \end{pmatrix} + \begin{pmatrix} N_{0} \\ N_{1} \end{pmatrix} = \vec{s}_{0} + \vec{N} \sim N(\vec{s}_{0}, \frac{N_{0}}{2}/)$$
$$H_{1}: \vec{R} = \begin{pmatrix} s_{10} \\ s_{11} \end{pmatrix} + \begin{pmatrix} N_{0} \\ N_{1} \end{pmatrix} = \vec{s}_{1} + \vec{N} \sim N(\vec{s}_{1}, \frac{N_{0}}{2}/)$$

A Simple	Example
00000	
000000	000

Optimal Receiver Frontend

Message Sequences

Optimum Receiver - Version 1

- MPE decision rule:
 - 1. Compute

$$L(\vec{R}) = \langle \vec{R}, \vec{s}_1 - \vec{s}_0 \rangle.$$

2. Compare to threshold:

$$\gamma = \frac{N_0}{2} \ln(\pi_0/\pi_1) + \frac{\|\vec{s}_1\|^2 - \|\vec{s}_0\|^2}{2}$$

3. Decision

If $L(\vec{R}) > \gamma$ decide $s_1(t)$ was sent. If $L(\vec{R}) < \gamma$ decide $s_0(t)$ was sent.

(日)

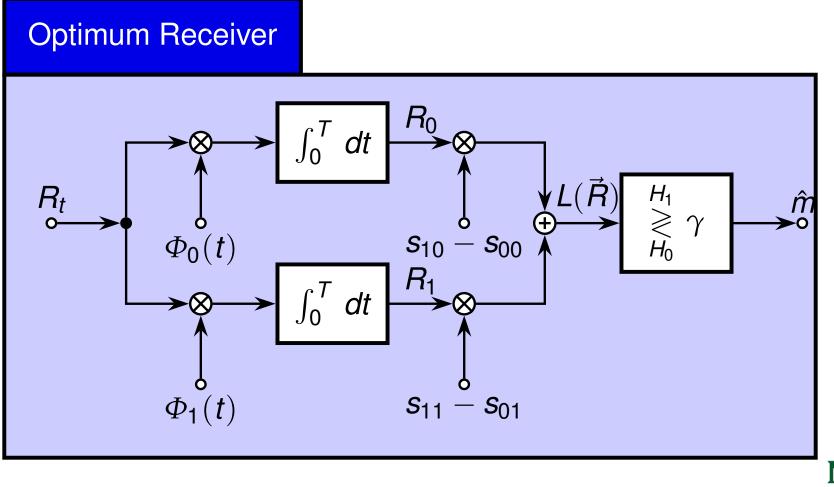
A Simple Example
00000
00000000

inary Hypothesis Testing 0000000 00000000 00000000 **Optimal Receiver Frontend**

M-ary Signal Sets

Message Sequences

Optimum Receiver - Version 1



F

© 2018, B.-P. Paris

ECE 630: Statistical Communication Theory

< □ > < □ > < □ > < □ > < □ > < □ >

inary Hypothesis Testin ooooooo oooooooo ooooooo Optimal Receiver Frontend

Message Sequences

Probability of Error

The probability of error for this receiver is

$$\Pr\{e\} = \pi_0 Q \left(\frac{\|\vec{s}_0 - \vec{s}_1\|}{2\sqrt{\frac{N_0}{2}}} + \sqrt{\frac{N_0}{2}} \frac{\ln(\pi_0/\pi_1)}{\|\vec{s}_0 - \vec{s}_1\|} \right) \\ + \pi_1 Q \left(\frac{\|\vec{s}_0 - \vec{s}_1\|}{2\sqrt{\frac{N_0}{2}}} - \sqrt{\frac{N_0}{2}} \frac{\ln(\pi_0/\pi_1)}{\|\vec{s}_0 - \vec{s}_1\|} \right)$$

For the important special case of equally likely signals:

$$\mathsf{Pr}\{\boldsymbol{e}\} = \mathsf{Q}\left(\frac{\|\vec{\boldsymbol{s}}_0 - \vec{\boldsymbol{s}}_1\|}{2\sqrt{\frac{N_0}{2}}}\right) = \mathsf{Q}\left(\frac{\|\vec{\boldsymbol{s}}_0 - \vec{\boldsymbol{s}}_1\|}{\sqrt{2N_0}}\right)$$

This is the minimum probability of error achievable by any receiver.

A Simple Example	Binary Hypothesis Testing	Optimal Receiver Frontend	M-ary Signal Sets	Message Sequences
00000 00000000	00000000 00000000 0000000	00 000000000000 ●00000000 0000000	00 00000000 0000000000 00000000 0000000	000 00 000000 000000

Optimum Receiver - Version 2

The optimum receiver derived above, computes the inner product

$$\langle ec{R},ec{s}_1-ec{s}_0
angle$$
 .

By Parseval's relationship, the inner product of the representation equals the inner product of the signals

$$\langle \vec{R}, \vec{s}_1 - \vec{s}_0 \rangle = \langle R_t, s_1(t) - s_0(t) \rangle$$

= $\int_0^T R_t(s_1(t) - s_0(t)) dt$
= $\int_0^T R_t s_1(t) dt - \int_0^T R_t s_0(t) dt.$

Ξ.

A	Simple	Example
	0000	
	00000	000

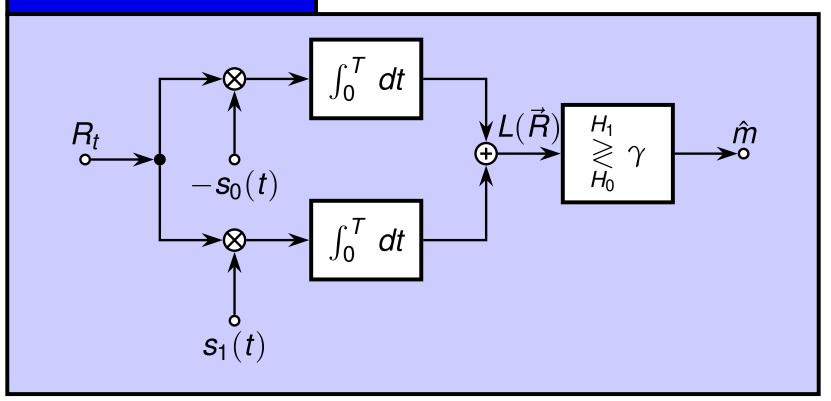
inary Hypothesis Testin

Optimal Receiver Frontend

M-ary Signal Sets

Message Sequences

Optimum Receiver - Version 2



E

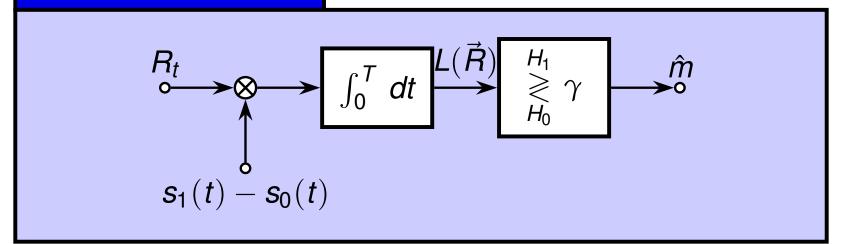
© 2018, B.-P. Paris

<ロト < 同ト < 三ト < 三ト

A Simple Example	Binary Hypothesis Testing	Optimal Receiver Frontend	M-ary Signal Sets	Message Sequences
00000 000000000	00000000 000000000 00000000	00 0000000000000 00000000	00 00000000 0000000000	000 00 000000
		0000000	00000000	0000000

Optimum Receiver - Version 2a

Correlator Receiver



The two correlators can be combined into a single correlator for an even simpler frontend.

-

Image: A transmission of the second secon

500

A Simple Example	Binary Hypothesis Testing	Optimal Receiver Frontend	M-ary Signal Sets	Message Sequences
00000 000000000	00000000 000000000	00 000000000000	00 0000000	000 00
	0000000	00000000 0000000	000000000000000000000000000000000000000	000000
			000000000000000000000000000000000000000	

Optimum Receiver - Version 3

- Yet another, important structure for the optimum receiver frontend results from the equivalence between correlation and convolution followed by sampling.
 - Convolution:

$$\mathbf{y}(t) = \mathbf{x}(t) * \mathbf{h}(t) = \int_0^T \mathbf{x}(\tau) \mathbf{h}(t-\tau) \, d\tau$$

• Sample at t = T:

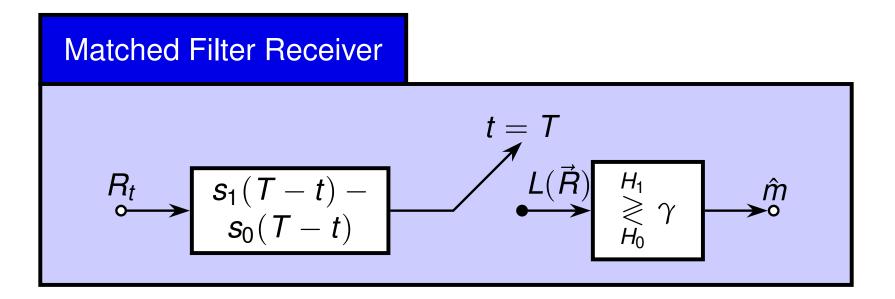
$$y(T) = x(t) * h(t)|_{t=T} = \int_0^T x(\tau)h(T-\tau) d\tau$$

• Let g(t) = h(T - t) (and, thus, h(t) = g(T - t)): $\int_0^T x(t)g(t) dt = \int_0^T x(\tau)h(T - \tau) d\tau = x(t) * h(t)|_{t=T}.$

► Correlating with g(t) is equivalent to convolving with h(t) = g(T − t), followed by symbol-rate sampling.

A Simple Example	Binary Hypothesis Testing ০০০০০০০০ ০০০০০০০০ ০০০০০০০০	Optimal Receiver Frontend	<i>M</i> -ary Signal Sets oo oooooooo oooooooooooooo	Message Sequences ooo oo oooooo
		0000000	000000000000000000000000000000000000000	000000

Optimum Receiver - Version 3



► The filter with impulse response
h(t) = s₁(T − t) − s₀(T − t) is called the matched filter for
s₁(t) − s₀(t).

◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Optimal Receiver Frontend

 Message Sequences

Exercises: Optimum Receiver

- For each of the following signal sets:
 - 1. draw a block diagram of the MPE receiver,
 - 2. compute the value of the threshold in the MPE receiver,
 - 3. compute the probability of error for this receiver for $\pi_0 = \pi_1$,
 - 4. find basis functions for the signal set,
 - 5. illustrate the location of the signals in the signal space spanned by the basis functions,
 - 6. draw the decision boundary formed by the optimum receiver.

<ロ > < 同 > < 三 > < 三 > < 三 > <

A Simple Example	Binary Hypothesis Testing ০০০০০০০০ ০০০০০০০০ ০০০০০০০০	Optimal Receiver Frontend	<i>M</i> -ary Signal Sets oo ooooooooooooooooooooooooooooooooo	Message Sequences oo oo oooooo ooooooo

On-Off Keying

Signal set:

$$\left. \begin{array}{l} s_0(t) = 0 \\ s_1(t) = \sqrt{\frac{E}{T}} \end{array} \right\} \quad \text{for } 0 \le t \le T$$

 This signal set is referred to as On-Off Keying (OOK) or Amplitude Shift Keying (ASK).

< □ ▶

inary Hypothesis Testin

Optimal Receiver Frontend

M-ary Signal Sets

Message Sequences oo oo oooooo oooooo

Orthogonal Signalling

Signal set:

$$s_{0}(t) = \begin{cases} \sqrt{\frac{E}{T}} & \text{for } 0 \le t \le \frac{T}{2} \\ -\sqrt{\frac{E}{T}} & \text{for } \frac{T}{2} \le t \le T \end{cases}$$
$$s_{1}(t) = \sqrt{\frac{E}{T}} & \text{for } 0 \le t \le T \end{cases}$$

Alternatively:

$$\begin{aligned} s_0(t) &= \sqrt{\frac{2E}{T}} \cos(2\pi f_0 t) \\ s_1(t) &= \sqrt{\frac{2E}{T}} \cos(2\pi f_1 t) \end{aligned} \right\} \quad \text{for } 0 \le t \le T \end{aligned}$$

with $f_0 T$ and $f_1 T$ distinct integers.

This signal set is called Frequency Shift Keying (FSK).

© 2018, B.-P. Paris

ECE 630: Statistical Communication Theory

Α	Simple	Example
0	0000	
0	00000	000

inary Hypothesis Testin

Optimal Receiver Frontend

Message Sequences oo oo oooooo oooooo

Antipodal Signalling

Signal set:

$$\begin{aligned} s_0(t) &= -\sqrt{\frac{E}{T}} \\ s_1(t) &= \sqrt{\frac{E}{T}} \end{aligned} \right\} \quad \text{for } 0 \le t \le T \end{aligned}$$

This signal set is referred to as Antipodal Signalling.
Alternatively:

$$\left. \begin{array}{l} s_0(t) = \sqrt{\frac{2E}{T}} \cos(2\pi f_0 t) \\ s_1(t) = \sqrt{\frac{2E}{T}} \cos(2\pi f_0 t + \pi) \end{array} \right\} \quad \text{for } 0 \le t \le T \end{array}$$

This signal set is called Binary Phase Shift Keying (BPSK).

A Simple Example	Binary Hypothesis Testing	Optimal Receiver Frontend	M-ary Signal Sets
00000	0000000	00	00
00000000	00000000	000000000000	0000000
	0000000	00000000	0000000000
		000000	0000000

 nal Sets
 Message Sequences

 000
 00

 000
 00

 000
 00

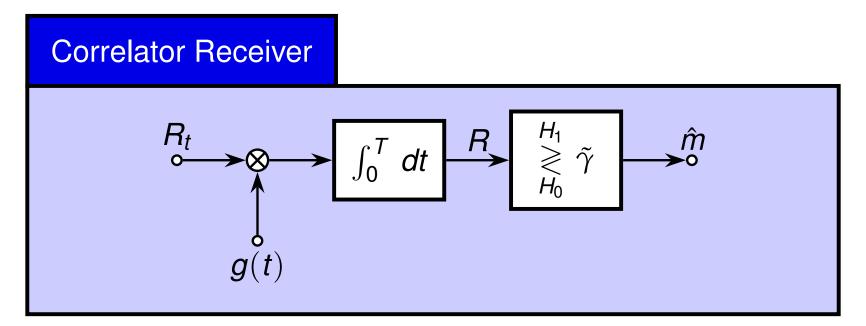
 000
 00

 000
 000000

 000
 0000000

Linear Receiver

Consider a receiver with a "generic" linear frontend.



- We refer to these receivers as *linear receivers* because their frontend performs a linear transformation of the received signal.
 - Specifically, frontend computes $R = \langle R_t, g(t) \rangle$.

Optimal Receiver Frontend

00 00000000000000 00000000 0**000000** *M*-ary Signal Sets

00000000

Message Sequences ooo oo ooooooo ooooooo

Linear Receiver

- derive general expressions for the conditional pdfs at the output *R* of the frontend,
- derive general expressions for the error probability,
- confirm that the optimum linear receiver correlates with $g(t) = s_1(t) s_0(t)$,
 - i.e., the MPE receiver is also the best linear receiver.
- These results are useful for the analysis of arbitrary linear receivers.

<ロ > < 同 > < 同 > < 三 > < 三 >

S Q A

Optimal Receiver Frontend

00 0000000000000 00000000 0000000 *M*-ary Signal Sets

<ロト < 同ト < 巨ト < 巨ト

Message Sequences

Conditional Distributions

Hypotheses:

$$H_0: R_t = s_0(t) + N_t$$

 $H_1: R_t = s_1(t) + N_t$

signals are observed for $0 \le t \le T$.

• Priors are π_0 and π_1 .

• Conditional distributions of $R = \langle R_t, g(t) \rangle$ are Gaussian:

$$H_0: R \sim \mathsf{N}(\underbrace{\langle s_0(t), g(t) \rangle}_{\mu_0}, \underbrace{\frac{N_0}{2} \|g(t)\|^2}_{\sigma^2})$$
$$H_1: R \sim \mathsf{N}(\underbrace{\langle s_1(t), g(t) \rangle}_{\mu_1}, \underbrace{\frac{N_0}{2} \|g(t)\|^2}_{\sigma^2})$$

E

SQ (V

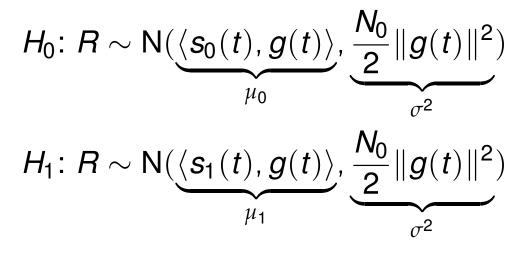
inary Hypothesis Testin 00000000 00000000 00000000

Optimal Receiver Frontend

00 0000000000000 00000000 0000000 Message Sequences

MPE Decision Rule

For the decision problem



the MPE decision rule is

$$R \stackrel{H_1}{\underset{H_0}{\gtrless}} ilde{\gamma}$$

with

$$\tilde{\gamma} = \frac{\mu_0 + \mu_1}{2} + \frac{\sigma^2}{\mu_1 - \mu_0} \ln(\frac{\pi_0}{\pi_1}).$$

A Simple Example Binary Hypothesis Testing Optimal Re 000000000000000000000000000000000000	ver Frontend M-ary Signal Sets Message Sequences 00 00 00 000000000000000000000000000000000000
---	--

Probability of Error

The probability of error, assuming π₀ = π₁, for this decision rule is

$$\Pr\{e\} = \mathsf{Q}\left(\frac{\mu_1 - \mu_0}{2\sigma}\right)$$
$$= \mathsf{Q}\left(\frac{\langle s_1(t) - s_0(t), g(t) \rangle}{2\sqrt{\frac{N_0}{2}} \|g(t)\|}\right)$$

Question: Which choice of g(t) minimizes the probability of error?

A Simple Exampl	е
00000	
00000000	

Optimal Receiver Frontend

 Message Sequences

Best Linear Receiver

The probability of error is minimized when

$$rac{\langle s_1(t)-s_0(t),g(t)
angle}{2\sqrt{rac{N_0}{2}}\|g(t)\|}$$

is maximized with respect to g(t).

We know from the Schwartz inequality that

 $\langle s_1(t) - s_0(t), g(t) \rangle \le \| s_1(t) - s_0(t) \| \cdot \| g(t) \|$

with equality if and only if $g(t) = c \cdot (s_1(t) - s_0(t)), c > 0$.

• Hence, to minimize probability of error, choose $g(t) = s_1(t) - s_0(t)$. Then,

$$\Pr\{e\} = \mathsf{Q}\left(\frac{\|s_1(t) - s_0(t)\|}{2\sqrt{\frac{N_0}{2}}}\right) = \mathsf{Q}\left(\frac{\|s_1(t) - s_0(t)\|}{\sqrt{2N_0}}\right)$$