A Simple Example	Binary Hypothesis Testing	Optimal Receiver Frontend	M-ary Signal Sets	Message Sequence
0 00000	00000000 00000000 0000000	00 000000000000 0000000 0000000	00 0000000 000000000 00000000 00000000	000 00 000000 000000000

A Simple Communication System

Objectives: For the above system

- describe the optimum receiver and
- find the probability of error for that receiver.

A Simple Example	Binary Hypothesis Testing	Optimal Receiver Frontend	<i>M</i> -ary Signal Sets	Message Sequence

Assumptions

Noise: N_t is a white Gaussian noise process with spectral height $\frac{N_0}{2}$: $R_N(\tau) = \frac{N_0}{2}\delta(\tau).$

Additive White Gaussian Noise (AWGN).
Source: characterized by the <u>a priori</u> probabilities

$$\pi_0 = \Pr\{m = 0\} \quad \pi_1 = \Pr\{m = 1\}.$$

For this example, will assume $\pi_0 = \pi_1 = \frac{1}{2}$.

A Simple Example	Binary Hypothesis Testing	Optimal Receiver Frontend	<i>M</i> -ary Signal Sets	Message Sequence
		000000	000000000000000000000000000000000000000	000000000

Assumptions (cont'd)

Transmitter: maps information bits *m* to signals:

$$m \to \mathbf{s}(t) : \begin{cases} \mathbf{s}_0(t) = \sqrt{\frac{E_b}{T}} & \text{if } m = 0\\ \mathbf{s}_1(t) = -\sqrt{\frac{E_b}{T}} & \text{if } m = 1 \end{cases}$$

for $0 \le t \le T$.

- Note that we are considering the transmission of a single bit.
- In AWGN channels, each bit can be considered in isolation.

A Simple Example ○ ○○○●○ ○○○○○○○○○	Binary Hypothesis Testing	Optimal Receiver Frontend oo ooooooooooooooooooooooooooooooooo	<i>M</i> -ary Signal Sets	Message Sequence
O I I I I I				

Objective

In general, the objective is to find the receiver that minimizes the probability of error:

$$Pr\{e\} = Pr\{\hat{m} \neq m\}$$

= $\pi_0 Pr\{\hat{m} = 1 | m = 0\} + \pi_1 Pr\{\hat{m} = 0 | m = 1\}.$

For this example, optimal receiver will be given (next slide).
 Also, compute the probability of error for the communication system.

That is the focus of this example.

0 0000 ● 00000000 00	Message Sequence
00000000 0000000 000000000 0000000 000000	000 00 000000 000000000

Receiver

We will see that the following receiver minimizes the probability of error for *this* communication system.

- **RX Frontend** computes $R = \int_0^T R_t \sqrt{\frac{E_b}{T}} dt = \langle R_t, s_0(t) \rangle$.
- RX Backend compares R to a threshold to arrive at decision m̂.

nary Hypothesis Testing	Optimal Receiver Frontend	M-ary Signal Sets	Message Sequence
0000000 0000000 0000000	00 000000000000 00000000 0000000	00 00000000 000000000 00000000 00000000	000 00 000000 000000000

Plan for Finding $Pr\{e\}$

- Analysis of the receiver proceeds in the following steps:
 - 1. Find the *conditional* distribution of the output *R* from the receiver frontend.
 - Conditioning with respect to each of the possibly transmitted signals.
 - This boils down to finding conditional mean and variance of *R*.
 - 2. Find the conditional error probabilities $Pr\{\hat{m} = 0 | m = 1\}$ and $Pr\{\hat{m} = 1 | m = 0\}$.
 - Involves finding the probability that R exceeds a threshold.
 - 3. Total probability of error:

$$\Pr{e} = \pi_0 \Pr{\hat{m} = 0 | m = 1} + \pi_1 \Pr{\hat{m} = 0 | m = 1}.$$

A Simple Example	Binary Hypothesis Testing	Optimal Receiver Frontend	<i>M</i> -ary Signal Sets	Message Sequence
0 00000 00000000	00000000 00000000 0000000	00 000000000000 0000000 0000000	00 0000000 000000000 00000000 00000000	000 00 000000 000000000

Conditional Distribution of *R*

- There are two random effects that affect the received signal:
 - \blacktriangleright the additive white Gaussian noise N_t and
 - the random information bit m.
- By conditioning on m thus, on s(t) randomness is caused by the noise only.
- Conditional on *m*, the output *R* of the receiver frontend is a Gaussian random variable:
 - N_t is a Gaussian random process; for given s(t), $R_t = s(t) + N_t$ is a Gaussian random process.
 - The frontend performs a linear transformation of R_t : $R = \langle R_t, s_0(t) \rangle$.
- We need to find the conditional means and variances

	A Simple Example	Binary Hypothesis Testing 00000000 000000000 00000000	Optimal Receiver Frontend	<i>M</i> -ary Signal Sets	Message Sequence
--	------------------	--	---------------------------	---------------------------	------------------

Conditional Distribution of *R*

The conditional means and variance of the frontend output R are

$$E[R|m = 0] = E_b$$
 $Var[R|m = 0] = \frac{N_0}{2}E_b$
 $E[R|m = 1] = -E_b$ $Var[R|m = 1] = \frac{N_0}{2}E_b$

Therefore, the conditional distributions of R are

$$p_{R|m=0}(r) \sim N(E_b, \frac{N_0}{2}E_b)$$
 $p_{R|m=1}(r) \sim N(-E_b, \frac{N_0}{2}E_b)$

The two conditional distributions differ in the mean and have equal variances.

A I

A Simple Example	Binary Hypothesis Testing	Optimal Receiver Frontend	M-ary Signal Sets	Message Sequence
0 00000	0000000	00	00	000
00000000	00000000	000000000000	0000000	00
	0000000	00000000	0000000000	000000
		0000000	0000000	000000000
			000000000000000000000000000000000000000	

Conditional Distribution of R

The two conditional pdfs are shown in the plot above, with

A Simple Example	Binary Hypothesis Testing	Optimal Receiver Frontend	<i>M</i> -ary Signal Sets	Message Sequence
0 00000	0000000	00	00	000
	00000000	000000000	0000000000	000000
		0000000	000000000000000000000000000000000000000	0000000000

Conditional Probability of Error

The receiver backend decides:

$$\hat{m} = egin{cases} 0 & ext{if } R > 0 \ 1 & ext{if } R < 0 \end{cases}$$

Two conditional error probabilities:

 $\Pr{\{\hat{m} = 0 | m = 1\}}$ and $\Pr{\{\hat{m} = 1 | m = 0\}}$

A Simple Example Binary

Optimal Receiver Frontend

Message Sequence

A Simple Example ○ ○○○○○ ○ ○○○○○●○○ Binary Hypothesis

Optimal Receiver Frontend

000000000

Message Sequence

A Simple Example ○ ○○○○ ○○○○○○○●○	Binary Hypothesis Testing	Optimal Receiver Frontend	<i>M</i> -ary Signal Sets	Message Sequence
		0000000	000000000000000000000000000000000000000	00000000000

Average Probability of Error

- The (average) probability of error is the average of the two conditional probabilities of error.
 - The average is weighted by the a priori probabilities π_0 and π_1 .

Thus,

 $\Pr\{e\} = \pi_0 \Pr\{\hat{m} = 1 | m = 0\} + \pi_1 \Pr\{\hat{m} = 0 | m = 1\}.$

• With the above conditional error probabilities and equal priors $\pi_0 = \pi_1 = \frac{1}{2}$

$$\Pr\{e\} = \frac{1}{2} Q\left(\sqrt{\frac{2E_b}{N0}}\right) + \frac{1}{2} Q\left(\sqrt{\frac{2E_b}{N0}}\right) = Q\left(\sqrt{\frac{2E_b}{N0}}\right)$$

- ▶ Note that the error probability depends on the ratio $\frac{E_b}{N_0}$,
 - where E_b is the energy of signals $s_0(t)$ and $s_1(t)$.
 - This ratio is referred to as the signal-to-noise ratio.

A Simple Example	Binary Hypothesis Testing	Optimal Receiver Frontend	M-ary Signal Sets	Message Sequence
0 00000 00000	00000000 000000000 00000000	00 000000000000 00000000	00 0000000 000000000	000 00 000000
		000000	00000000 000000000000000000000000000000	000000000

Exercise - Compute Probability of Error

Compute the probability of error for the example system if the only change in the system is that signals $s_0(t)$ and $s_1(t)$ are changed to triangular signals:

$$s_0(t) = \begin{cases} \frac{2A}{T} \cdot t & \text{for } 0 \le t \le \frac{T}{2} \\ 2A - \frac{2A}{T} \cdot t & \text{for } \frac{T}{2} \le t \le T \\ 0 & \text{else} \end{cases} \quad s_1(t) = -s_0(t)$$

with
$$A = \sqrt{\frac{3E_b}{T}}$$
.
Answer:
 $Pr\{e\} = Q\left(\sqrt{\frac{3E_b}{2N_0}}\right)$

Ar

A Simple Example	Binary Hypothesis Testing	Optimal Receiver Frontend	M-ary Signal Sets	Message Sequence
0 00000 00000000			00 00000000 00000000	000 00 000000
		0000000	00000000	0000000000

Structure of a Generic Receiver

Receivers consist of:

- an analog frontend: maps observed signal R_t to decision statistic R.
- decision device: determines which symbol \hat{m} was sent based on observation of \vec{R} .
- Optimum design of decision device will be considered first.

A Simple Example 00000 000000000	Binary Hypothesis Testing	Optimal Receiver Frontend oo ooooooooooooooooooooooooooooooooo	<i>M</i> -ary Signal Sets	Message Sequence
			000000000000000000000000000000000000000	

Problem Setup

- Given:
 - a random vector $\vec{R} \in \mathbb{R}^n$ of observations and
 - ▶ hypotheses, H_0 and H_1 , providing statistical models for \vec{R} :

$$H_{0}: \vec{R} \sim p_{\vec{R}|H_{0}}(\vec{r}|H_{0})$$
$$H_{1}: \vec{R} \sim p_{\vec{R}|H_{1}}(\vec{r}|H_{1})$$

with known *a priori* probabilities $\pi_0 = \Pr\{H_0\}$ and $\pi_1 = \Pr\{H_1\}$ ($\pi_0 + \pi_1 = 1$).

- **Problem:** Decide which of the two hypotheses is best supported by the observation \vec{R} .
 - Specific objective: minimize the probability of error

 $Pr{e} = Pr{decide H_0 when H_1 is true}$

+ Pr{decide H_1 when H_0 is true}

 $= \Pr\{\text{decide } H_0 | H_1\} \Pr\{H_1\} + \Pr\{\text{decide } H_1 | H_0\} \Pr\{M_1\} + \Pr\{M_1$

A Simple Example	Binary Hypothesis Testing	Optimal Receiver Frontend	<i>M</i> -ary Signal Sets	Message Sequence
0 00000 00000000	00●00000 00000000 0000000	00 000000000000 0000000 0000000	00 00000000 0000000000 000000000000000	000 00 000000 000000000

Generic Decision Rule

- ► The decision device performs a mapping that assigns a decision, H_0 or H_1 , to each possible observation $\vec{R} \in \mathbb{R}^n$.
- A generic way to realize such a mapping is:
 - ▶ partition the space of all possible observations, \mathbb{R}^n , into two disjoint, complementary decision regions Γ_0 and Γ_1 :

$$\Gamma_0 \cup \Gamma_1 = \mathbb{R}^n$$
 and $\Gamma_0 \cap \Gamma_1 = \emptyset$.

Decision Rule:

If $\vec{R} \in \Gamma_0$: decide H_0 If $\vec{R} \in \Gamma_1$: decide H_1

A Simple Example o ooooo oooooooooo	Binary Hypothesis Testing	Optimal Receiver Frontend	<i>M</i> -ary Signal Sets	Message Sequence

Probability of Error

The probability of error can now be expressed in terms of the decision regions Γ₀ and Γ₁:

$$\Pr\{e\} = \Pr\{\text{decide } H_0 | H_1\} \Pr\{H_1\} + \Pr\{\text{decide } H_1 | H_0\} \Pr\{H_0\} \\ = \pi_1 \int_{\Gamma_0} p_{\vec{R}|H_1}(\vec{r}|H_1) \, d\vec{r} + \pi_0 \int_{\Gamma_1} p_{\vec{R}|H_0}(\vec{r}|H_0) \, d\vec{r}$$

Our objective becomes to find the decision regions Γ₀ and Γ₁ that minimize the probability of error.

A Simple Example Binary Hypothesis Testing Optima O OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO	Receiver Frontend <i>M</i> -ary Signal Sets 00 00 0000000 0000000 00 0000000 00 0000000 00 00000000 00 00000000 00 000000000 00 000000000 00 000000000 00 000000000	Message Sequence
--	---	------------------

Probability of Error

Since $\Gamma_0 \cup \Gamma_1 = \mathbb{R}^n$ it follows that $\Gamma_1 = \mathbb{R}^n \setminus \Gamma_0$

$$\begin{aligned} \Pr\{e\} &= \pi_1 \int_{\Gamma_0} p_{\vec{R}|H_1}(\vec{r}|H_1) \, d\vec{r} + \pi_0 \int_{\mathbb{R}^n \setminus \Gamma_0} p_{\vec{R}|H_0}(\vec{r}|H_0) \, d\vec{r} \\ &= \pi_0 \int_{\mathbb{R}^n} p_{\vec{R}|H_0}(\vec{r}|H_0) \, d\vec{r} \\ &+ \int_{\Gamma_0} (\pi_1 p_{\vec{R}|H_1}(\vec{r}|H_1) - \pi_0 p_{\vec{R}|H_0}(\vec{r}|H_0)) \, d\vec{r} \\ &= \pi_0 - \int_{\Gamma_0} (\pi_0 p_{\vec{R}|H_0}(\vec{r}|H_0) - \pi_1 p_{\vec{R}|H_1}(\vec{r}|H_1)) \, d\vec{r}. \end{aligned}$$

► \Pr{e} is minimized by chosing Γ_0 to contain all \vec{r} for which the integrand $(\pi_0 p_{\vec{R}|H_0}(\vec{r}|H_0) - \pi_1 p_{\vec{R}|H_1}(\vec{r}|H_1)) < 0.$

A Simple Example	Binary Hypothesis Testing	Optimal Receiver Frontend	<i>M</i> -ary Signal Sets	Message Sequence
00000000	00000000	000000000000 00000000 0000000	00000000 0000000000 00000000 00000000	00 000000 000000000

Minimum $Pr\{e\}$ (MPE) Decision Rule

Thus, the decision region Γ_0 that minimizes the probability of error is given by:

$$\begin{split} &\Gamma_{0} = \left\{ \vec{r} : (\pi_{0} \rho_{\vec{R}|H_{0}}(\vec{r}|H_{0}) - \pi_{1} \rho_{\vec{R}|H_{1}}(\vec{r}|H_{1})) > 0 \right\} \\ &= \left\{ \vec{r} : \pi_{0} \rho_{\vec{R}|H_{0}}(\vec{r}|H_{0}) > \pi_{1} \rho_{\vec{R}|H_{1}}(\vec{r}|H_{1})) \right\} \\ &= \left\{ \vec{r} : \frac{\rho_{\vec{R}|H_{1}}(\vec{r}|H_{1})}{\rho_{\vec{R}|H_{0}}(\vec{r}|H_{0})} < \frac{\pi_{0}}{\pi_{1}} \right\} \end{split}$$

• The decision region Γ_1 follows

$$\Gamma_{1} = \Gamma_{0}^{C} = \left\{ \vec{r} : \frac{p_{\vec{R}|H_{1}}(\vec{r}|H_{1})}{p_{\vec{R}|H_{0}}(\vec{r}|H_{0})} > \frac{\pi_{0}}{\pi_{1}} \right\}$$

A Simple Example	Binary Hypothesis Testing	Optimal Receiver Frontend	M-ary Signal Sets	Message Sequence
0 00000 00000000	0000000 00000000 00000000	00 000000000000 00000000 0000000	00 00000000 0000000000 00000000 0000000	000 00 000000 000000000

Likelihood Ratio

The MPE decision rule can be written as

If
$$\frac{p_{\vec{R}|H_1}(\vec{R}|H_1)}{p_{\vec{R}|H_0}(\vec{R}|H_0)} \begin{cases} > \frac{\pi_0}{\pi_1} & \text{decide } H_1 \\ < \frac{\pi_0}{\pi_1} & \text{decide } H_0 \end{cases}$$

Notation:

$$\frac{p_{\vec{R}|H_1}(\vec{R}|H_1)}{p_{\vec{R}|H_0}(\vec{R}|H_0)} \stackrel{H_1}{\underset{H_0}{\overset{\geq}{\approx}}} \frac{\pi_0}{\pi_1}$$

The ratio of conditional density functions

$$\Lambda(\vec{R}) = \frac{p_{\vec{R}|H_1}(\vec{R}|H_1)}{p_{\vec{R}|H_0}(\vec{R}|H_0)}$$

is called the likelihood ratio.

A Sim	nple Example	Binary Hypothesis Testing	Optimal Receiver Frontend	M-ary Signal Sets	Message Sequence
0 0000	000000	0000000 00000000 00000000	00 000000000000 00000000 0000000	00 0000000 000000000 00000000 00000000	000 00 000000 000000000

Log-Likelihood Ratio

- Many of the densities of interest are exponential functions (e.g., Gaussian).
- For these densities, it is advantageous to take the log of both sides of the decision rule.
 - Important: This does not change the decision rule because the logarithm is monotonically increasing!
- The MPE decision rule can be written as:

$$L(\vec{R}) = \ln \left(\frac{p_{\vec{R}|H_1}(\vec{R}|H_1)}{p_{\vec{R}|H_0}(\vec{R}|H_0)} \right) \stackrel{H_1}{\underset{H_0}{\gtrless}} \ln \left(\frac{\pi_0}{\pi_1} \right)$$

► $L(\vec{R}) = \ln(\Lambda(\vec{R}))$ is called the log-likelihood ratio.

