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A Simple Communication System

Simple Communication System

me {01} TX; s(t)I R; Rx: |me{0,1]
m — s(t) R; — m

Source

» Objectives: For the above system

» describe the optimum receiver and
» find the probability of error for that receiver.
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Assumptions

Noise: N is a white Gaussian noise process with spectral
height 2o
_ Mo

An(t) = -26(7)

» Additive White Gaussian Noise (AWGN).
Source: characterized by the a priori probabilities

7o = Pr{m: O} T4 = Pr{m: 1}.

N[—

» For this example, will assume g = 771 =
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Assumptions (cont'd)

Transmitter: maps information bits m to signals:

)
()= iftm=0
m — s(t) : 4 .
—\/T |fm:1
for0 <t<T.

» Note that we are considering the transmission
of a single bit.

» In AWGN channels, each bit can be
considered in isolation.
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Obijective

» In general, the objective is to find the receiver that
minimizes the probability of error:

Pr{e} = Pr{m # m}
=g Pr{im=1m=0} 4+ Pr{m=0m=1}.

» For this example, optimal receiver will be given (next slide).

» Also, compute the probability of error for the
communication system.

» That is the focus of this example.

© 2018, B.-P. Paris ECE 630: Statistical Communication Theory




A Simple Example Binary Hypothesis Testing Optimal Receiver Frontend M-ary Signal Sets
O 000Oe® 00000000 ole} 00

000000000 000000000 0000000000000 00000000

00000000 000000000 00000000000

0000000 00000000 0000000000
0000000 OOOOO0OOOO

Recelver

» We will see that the following receiver minimizes the
probability of error for this communication system.

Receiver

th >

0:
0 R<0:m=

Ep
T

» RX Frontend computes R = fOT R; 579 dt = (R, Sp(t)).

» RX Backend compares R to a threshold to arrive at p
deCiSiOH m, mesonce
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Plan for Finding Pr{e}

» Analysis of the receiver proceeds in the following steps:

1. Find the conditional distribution of the output R from the
receiver frontend.

» Conditioning with respect to each of the possibly transmitted
signals.

» This boils down to finding conditional mean and variance of
R.

2. Find the conditional error probabilities Pr{m = 0/m =1}
and Pr{m =1|m = 0}.
> Involves finding the probability that R exceeds a threshold.
3. Total probability of error:

Pr{e} = 700 Pr{m = O|m = 1}—|— 7T Pl’{m = O|m = 1}
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Conditional Distribution of R

» There are two random effects that affect the received
signal:
» the additive white Gaussian noise N; and
» the random information bit m.

» By conditioning on m — thus, on s(t) — randomness is

caused by the noise only.

» Conditional on m, the output R of the receiver frontend is a
Gaussian random variable:
» N;is a Gaussian random process; for given s(t),
R; = s(t) + N; is a Gaussian random process.
» The frontend performs a linear transformation of R;:
R = (R so(1))-

» We need to find the conditional means and variances Z e
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Conditional Distribution of R
» The conditional means and variance of the frontend output

R are
No
E[Rlm=0] = E, Var|Rlm = 0] = 5 —E,
No
ERmMm=1|=—-E, VarlRim=1| = ?Eb

» Therefore, the conditional distributions of R are

N N
PRim=0(r) ~ N(Ep, ?OEb) PRim=1(r) ~ N(—Ep, ?OEb)

» The two conditional distributions differ in the mean and
have equal variances.
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Conditional Distribution of R
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Conditional Probability of Error

Receiver

R;o > fT.dt R>R>8:m:? A

0 R <

Ep
VT
» The receiver backend decides:

. 0 ifR>0
m
1 ftR<O0
» Two conditional error probabilities:

Pr{m=0m=1} and Pr{m=1m=0} Misas
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Error Probability Pr{/ = 0|m = 1}
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» Conditional error
probability
Pr{m=0m=1}
corresponds to
shaded area.
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Error P
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robability Pr{fh =

» Conditional error
probability
Pr{m=1|m= 0}
corresponds to
shaded area.

Pri{im=1lm=0} =Pr{R < 0|lm =0}

e B |2Ep |
o prR‘m:O(r) dr — Q ( N—O> . Dﬁzs‘m“
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Average Probability of Error

» The (average) probability of error is the average of the two
conditional probabilities of error.
» The average is weighted by the a priori probabilities 775 and
7l .
» Thus,

Pr{e} = 71 Pr{m = 1\m = O} + 74 Pr{m = O\m = 1}.

» With the above conditional error probabilities and equal
priors 7y = 71 = 3

B /2Eb / 2Eb _ / 2Ep
» Note that the error probability depends on the ratio %

» where E, is the energy of signals sy (t) and sq(t). Leronce
» This ratio is referred to as the signal-to-noise ratio. =~ e
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Exercise - Compute Probability of Error

» Compute the probability of error for the example system if
the only change in the system is that signals sy(t) and
s1(t) are changed to triangular signals:

(28 t for0<t< 1
So(t) = < 2A 't forL <t<T si(t)=—50(t)
|0 else
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Structure of a Generic Receiver

Recelver

RTH

Analog

R . .
—> Decision F—°m
Frontend

» Receivers consist of:

> an analog frontend: maps observed signal R; to decision
statistic R.

» decision device: determines which symbol m was sent
based on observation of R.

> Optimum design of decision device will be considered first.pfszsc
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Problem Setup

» Given: )
» arandom vector R € R" of observations and B
» hypotheses, Hy and H;, providing statistical models for R:

Ho: R ~ PRI H, (F|Ho)
Hi: R ~ P& H, (FIH1)

with known a priori probabilities 7o = Pr{Hy} and
1 = Pr{H} (mo + 1y = 1).
» Problem: Decide which of the two hypotheses is best
supported by the observation R.
» Specific objective: minimize the probability of error

Pr{e} = Pr{decide Hy when Hj is true}
+ Pr{decide H; when Hj is true}
— Pr{decide Hy|H;} Pr{H;} + Pr{decide H;|Hy} Pri¥isasx
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Generic Decision Rule

» The decision device performs a mapping that assigns a
decision, Hy or Hy, to each possible observation R € R”.

» A generic way to realize such a mapping is:

» partition the space of all possible observations, R”, into two
disjoint, complementary decision regions Iy and I7:

IoUli=R"and I;N Iy = Q.
» Decision Rule:

If R € Iy: decide Hy
If R € Iy: decide H;
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Probability of Error

» The probability of error can now be expressed in terms of
the decision regions Iy and I:

Pr{e} = Pr{decide Hy|H;} Pr{H;} + Pr{decide H;|Ho} Pr{Ho}
=701 | Ppypy (FIHh) OF + 70 | Py (FIH0) F
0 1

» Qur objective becomes to find the decision regions Iy and
I'y that minimize the probability of error.
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Probability of Error

» Since I[h U Ty = R"itfollows that I7 = R"\ I
Prie} = m | Py, (FIH) 07 + o [
=710 | Paypy (FlHo) P
+ [ (r1pay (FIHY) — opgy, (71 o)) o
— g — Ao(nop§’H0(7]Ho) — 1Py (FIHh)) dF.

» Pr{e} is minimized by chosing I to contain all 7 for which
the integrand (ﬂopmHo (?|Ho) — T4 pl_f?|H1 (?|H1 )) < 0.

© 2018, B.-P. Paris ECE 630: Statistical Communication Theory




Binary Hypothesis Testing
0000000

Minimum Pr{e} (MPE) Decision Rule

» Thus, the decision region Iy that minimizes the probability
of error is given by:

Io = {7 : (7toPpyp, (FIHo) — 71Ppyw, (FHr)) > 0}

= {7 : 7topgy, (FIHo) > m1Pgy, (FIH1)) |
{_, :D,E,>|/-/1 (?|H1) 7'(0}
=<7 < —

. p/??IHo (F|Ho) 45

» The decision region I follows
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Likelihood Ratio

» The MPE decision rule can be written as

y P, (RIH:) {> % decide Hy
p§|HO(R‘H0) < 72 decide Hy
> Notation: .
P, (RIFH) Hr g
— <
PrH, (RIHo) Ho 701

» The ratio of conditional density functions
p,E,>|/-/1 ('E"| H1 )
pﬁ“-/o ('E?| HO)
/GEORGE
is called the likelihood ratio. MASEN

A(R) =
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Log-Likelihood Ratio

» Many of the densities of interest are exponential functions
(e.g., Gaussian).

» For these densities, it is advantageous to take the log of
both sides of the decision rule.

» Important: This does not change the decision rule
because the logarithm is monotonically increasing!

» The MPE decision rule can be written as:

Py (RIFH) | 10 (m>

L(R) = In _
pﬁ|HO(R|HO) Ho

» L(R) = In(A(R)) is called the log-likelihood ratio.
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