
A Simple Example Binary Hypothesis Testing Optimal Receiver Frontend M-ary Signal Sets Message Sequences

Structure of a Generic Receiver

Receiver

Rt
Analog

Frontend Decision m̂
~R

I Receivers consist of:
I an analog frontend: maps observed signal Rt to decision

statistic ~R.
I decision device: determines which symbol m̂ was sent

based on observation of ~R.
I Optimum design of decision device will be considered first.
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Problem Setup
I Given:

I a random vector ~R 2 Rn of observations and
I hypotheses, H0 and H1, providing statistical models for ~R:

H0: ~R ⇠ p~R|H0
(~r |H0)

H1: ~R ⇠ p~R|H1
(~r |H1)

with known a priori probabilities p0 = Pr{H0} and
p1 = Pr{H1} (p0 + p1 = 1).

I Problem: Decide which of the two hypotheses is best
supported by the observation ~R.

I Specific objective: minimize the probability of error

Pr{e} = Pr{decide H0 when H1 is true}
+ Pr{decide H1 when H0 is true}
= Pr{decide H0|H1}Pr{H1}+ Pr{decide H1|H0}Pr{H0}
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Generic Decision Rule

I The decision device performs a mapping that assigns a
decision, H0 or H1, to each possible observation ~R 2 Rn.

I A generic way to realize such a mapping is:
I partition the space of all possible observations, Rn, into two

disjoint, complementary decision regions G0 and G1:

G0 [ G1 = Rn and G0 \ G1 = ∆.

I Decision Rule:

If ~R 2 G0: decide H0

If ~R 2 G1: decide H1
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Probability of Error

I The probability of error can now be expressed in terms of
the decision regions G0 and G1:

Pr{e} = Pr{decide H0|H1}Pr{H1}+ Pr{decide H1|H0}Pr{H0}
= p1

Z

G0

p~R|H1
(~r |H1) d~r + p0

Z

G1

p~R|H0
(~r |H0) d~r

I Our objective becomes to find the decision regions G0 and
G1 that minimize the probability of error.
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Probability of Error

I Since G0 [ G1 = Rn it follows that G1 = Rn \ G0

Pr{e} = p1

Z

G0

p~R|H1
(~r |H1) d~r + p0

Z

Rn\G0

p~R|H0
(~r |H0) d~r

= p0

Z

Rn
p~R|H0

(~r |H0) d~r

+
Z

G0

(p1p~R|H1
(~r |H1)� p0p~R|H0

(~r |H0)) d~r

= p0 �
Z

G0

(p0p~R|H0
(~r |H0)� p1p~R|H1

(~r |H1)) d~r .

I Pr{e} is minimized by chosing G0 to contain all~r for which
the integrand (p0p~R|H0

(~r |H0)� p1p~R|H1
(~r |H1)) < 0.
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Minimum Pr{e} (MPE) Decision Rule
I Thus, the decision region G0 that minimizes the probability

of error is given by:

G0 =
n

~r : (p0p~R|H0
(~r |H0)� p1p~R|H1

(~r |H1)) > 0
o

=
n

~r : p0p~R|H0
(~r |H0) > p1p~R|H1

(~r |H1))
o

=

(

~r :
p~R|H1

(~r |H1)

p~R|H0
(~r |H0)

<
p0
p1

)

I The decision region G1 follows

G1 = GC
0 =

(

~r :
p~R|H1

(~r |H1)

p~R|H0
(~r |H0)

>
p0
p1

)
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Likelihood Ratio
I The MPE decision rule can be written as

If
p~R|H1

(~R|H1)

p~R|H0
(~R|H0)

(

> p0
p1

decide H1

< p0
p1

decide H0

I Notation:
p~R|H1

(~R|H1)

p~R|H0
(~R|H0)

H1
?
H0

p0
p1

I The ratio of conditional density functions

L(~R) =
p~R|H1

(~R|H1)

p~R|H0
(~R|H0)

is called the likelihood ratio.
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Log-Likelihood Ratio

I Many of the densities of interest are exponential functions
(e.g., Gaussian).

I For these densities, it is advantageous to take the log of
both sides of the decision rule.

I Important: This does not change the decision rule
because the logarithm is monotonically increasing!

I The MPE decision rule can be written as:

L(~R) = ln

0

@

p~R|H1
(~R|H1)

p~R|H0
(~R|H0)

1

A

H1
?
H0

ln
✓

p0
p1

◆

I L(~R) = ln(L(~R)) is called the log-likelihood ratio.
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Example: Gaussian Hypothesis Testing
I The most important hypothesis testing problem for

communications over AWGN channels is
H0:~R ⇠ N( ~m0, s2I)

H1:~R ⇠ N( ~m1, s2I)
I This problem arises when

I one of two known signals is transmitted over an AWGN
channel, and

I a linear analog frontend is used.
I Note that

I the conditional means are different - reflecting different
signals

I covariance matrices are the same - since they depend on
noise only.

I components of ~R are independent - indicating that the
frontend projects Rt onto orthogonal bases.
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Resulting Log-Likelihood Ratio
I For this problem, the log-likelihood ratio simplifies to

L(~R) =
1

2s2

n

Â
k=1

(Rk � m0k )
2 � (Rk � m1k )

2

=
1

2s2 (k~R � ~m0k2 � k~R � ~m1k2)

=
1

2s2

⇣

2h~R, ~m1 � ~m0i � (k ~m1k2 � k ~m0k2)
⌘

I The second expressions shows that the Euclidean distance
between observations ~R and means ~mi plays a central role
in Gaussian hypothesis testing.

I The last expression highlights the projection of the
observation ~R onto the difference between the means ~mi .
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MPE Decision Rule

I With the above log-liklihood ratio, the MPE decision rule
becomes equivalently

I either

h~R, ~m1 � ~m0i
H1
?
H0

s2 ln
✓

p0
p1

◆

+
k ~m1k2 � k ~m0k2

2

I or

k~R � ~m0k2 � 2s2 ln(p0)
H1
?
H0

k~R � ~m1k2 � 2s2 ln(p1)

© 2017, B.-P. Paris ECE 630: Statistical Communication Theory 140



A Simple Example Binary Hypothesis Testing Optimal Receiver Frontend M-ary Signal Sets Message Sequences

Decision Regions

I The MPE decision rule divides Rn into two half planes that
are the decision regions G0 and G1.

I The dividing line (decision boundary) between the regions
is perpendicular to ~m1 � ~m0.

I This is a consequence of the inner product in the first form
of the decision rule.

I If the priors p0 and p1 are equal, then the decision
boundary passes through the midpoint ~m0+ ~m1

2 .
I For unequal priors, the decision boundary is shifted towards

the mean of the less likely hypothesis.
I The distance of this shift equals d = 2s2| ln(p0/p1)|

k ~m1� ~m0k .
I This follows from the (squared) distances in the second

form of the decision rule.
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Decision Regions
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Probability of Error
I Question: What is the probability of error with the MPE

decision rule?
I Using MPE decision rule

h~R, ~m1 � ~m0i
H1
?
H0

s2 ln
✓

p0
p1

◆

+
k ~m1k2 � k ~m0k2

2

I Plan:
I Find conditional densities of h~R, ~m1 � ~m0i under H0 and H1.
I Find conditional error probabilities

Z

Gi
p~R|Hj

(~r |Hj ) d~r for i 6= j .

I Find average probability of error.
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Conditional Distributions

I Since h~R, ~m1 � ~m0i is a linear transformation and ~R is
Gaussian, the conditional distributions are Gaussian.

H0: N(kh ~m0, ~m1i � ~m0k2
| {z }

µ0

, s2k ~m0 � ~m1k2
| {z }

s2
m

)

H1: N(k ~m1k2 � h ~m0, ~m1i
| {z }

µ1

, s2k ~m0 � ~m1k2
| {z }

s2
m

)
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Conditional Error Probabilities

I The MPE decision rule compares

h~R, ~m1 � ~m0i
H1
?
H0

s2 ln
✓

p0
p1

◆

+
k ~m1k2 � k ~m0k2

2
| {z }

g

I Resulting conditional probabilities of error

Pr{e|H0} = Q
✓

g � µ0
sm

◆

= Q
✓k ~m0 � ~m1k

2s
+

s ln(p0/p1)
k ~m0 � ~m1k

◆

Pr{e|H1} = Q
✓

µ1 � g

sm

◆

= Q
✓k ~m0 � ~m1k

2s
� s ln(p0/p1)

k ~m0 � ~m1k
◆
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Average Probability of Error
I The average error probability equals

Pr{e} =Pr{decide H0|H1}Pr{H1}+ Pr{decide H1|H0}Pr{H0}
=p0Q

✓k ~m0 � ~m1k
2s

+
s ln(p0/p1)
k ~m0 � ~m1k

◆

+

p1Q
✓k ~m0 � ~m1k

2s
� s ln(p0/p1)

k ~m0 � ~m1k
◆

I Important special case: p0 = p1 = 1
2

Pr{e} = Q
✓k ~m0 � ~m1k

2s

◆

I The error probability depends on the ratio of
I distance between means k ~m0 � ~m1k
I and noise standard deviation

© 2017, B.-P. Paris ECE 630: Statistical Communication Theory 146



A Simple Example Binary Hypothesis Testing Optimal Receiver Frontend M-ary Signal Sets Message Sequences

Maximum-Likelihood (ML) Decision Rule
I The maximum-likelihood decision rule disregards priors

and decides for the hypothesis with higher likelihood.
I ML Decision rule:

L(~R) =
p~R|H1

(~R|H1)

p~R|H0
(~R|H0)

H1
?
H0

1

or equivalently, in terms of the log-likelihood,

L(~R) = ln

0

@

p~R|H1
(~R|H1)

p~R|H0
(~R|H0)

1

A

H1
?
H0

0

I Obviously, the ML decision is equivalent to the MPE rule
when the priors are equal.

I In the Gaussian case, the ML rule does not require
knowledge of the noise variance.
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A-Posteriori Probability
I By Bayes rule, the probability of hypothesis Hi after

observing ~R is

Pr{Hi |~R =~r} =
pi p~R|Hi

(~r |Hi)

p~R(~r )
,

where p~R(~r ) is the unconditional pdf of ~R

p~R(~r ) = Â
i

pi p~R|Hi
(~r |Hi).

I Maximum A-Posteriori (MAP) decision rule:

Pr{H1|~R =~r}
H1
?
H0

Pr{H0|~R =~r}

I Interpretation: Decide in favor of the hypothesis that is
more likely given the observed signal ~R.
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The MAP and MPE Rules are Equivalent
I The MAP and MPE rules are equivalent: the MAP decision

rule achieves the minimum probability of error.
I The MAP rule can be written as

Pr{H1|~R =~r}
Pr{H0|~R =~r}

H1
?
H0

1.

I Inserting Pr{Hi |~R =~r} =
pi p~R|Hi

(~r |Hi )

p~R(~r )
yields

p1p~R|H1
(~r |H1)

p0p~R|H0
(~r |H0)

H1
?
H0

1

I This is obviously equal to the MPE rule
p~R|H1

(~r |H1)

p~R|H0
(~r |H0)

H1
?
H0

p0
p1

.
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More than Two Hypotheses

I Frequently, more than two hypotheses must be considered:

H0: ~R ⇠ p~R|H0
(~r |H0)

H1: ~R ⇠ p~R|H1
(~r |H1)

...

HM : ~R ⇠ p~R|HM
(~r |HM)

I In these cases, it is no longer possible to reduce the
decision rules to

I the computation of the likelihood ratio
I followed by comparison to a threshold
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More than Two Hypotheses

I Instead the decision rules take the following forms
I MPE rule:

m̂ = arg max
i2{0,...,M�1}

pi p~R|Hi
(~r |Hi )

I ML rule:
m̂ = arg max

i2{0,...,M�1}
p~R|Hi

(~r |Hi )

I MAP rule:

m̂ = arg max
i2{0,...,M�1}

Pr{Hi |~R =~r}
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More than Two Hypotheses: The Gaussian Case
I When the hypotheses are of the form Hi : ~R ⇠ N(~mi , s2I),

then the decision rules become:
I MPE and MAP decision rules:

m̂ = arg min
i2{0,...,M�1}

k~r � ~mik2 � 2s2 ln(pi )

= arg max
i2{0,...,M�1}

h~r , ~mi i+ s2 ln(pi )� k~mik2

2

I ML decision rule:

m̂ = arg min
i2{0,...,M�1}

k~r � ~mik2

= arg max
i2{0,...,M�1}

h~r , ~mi i � k~mik2

2

I This is also the MPE rule when the priors are all equal.
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Take-Aways

I The conditional densities p~R|Hi
(~r |Hi) play a key role.

I MPE decision rule:
I Binary hypotheses:

L(~R) =
p~R|H1

(~R|H1)

p~R|H0
(~R|H0)

H1
?
H0

p0
p1

I M hypotheses:

m̂ = arg max
i2{0,...,M�1}

pi p~R|Hi
(~r |Hi ).
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Take-Aways

I For the Gaussian case (different means, equal variance),
decisions are based on the Euclidean distance between
observations ~R and conditional means ~mi :

m̂ = arg min
i2{0,...,M�1}

k~r � ~mik2 � 2s2 ln(pi)

= arg max
i2{0,...,M�1}

h~r , ~mii+ s2 ln(pi)� k~mik2

2
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