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Parsevals Relationship

I Parsevals Theorem: If vectors x and y are represented
with respect to an orthonormal basis {Fn} by {Xn} and
{Yn}, respectively, then

hx , yi =
•

Â
n=1

Xn · Yn
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Parsevals Relationship

I Parsevals theorem implies

kxk2 =
•

Â
n=1

X 2
n

and

kx � yk2 =
•

Â
n=1

|Xn � Yn|
2

I Inner products, norms, and distances can be computed
using vectors or their representations; the results are the
same.
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Back to the Projection Theorem
I We claimed earlier that the projection theorem is

particularly useful when the subspace L is structured.
I Specifically, let L be a subspace of S spanned by a

(usually finite) orthonormal basis {Fn}
N�1
n=0 .

I Note that {Fn}
N�1
n=0 is not a complete basis for S .

I There are x 2 S that cannot be represented by this basis.
I Then, the projection y 2 L of a vector x 2 S is simply

y =
N�1

Â
n=0

YnFn with Yn = hx ,Fni.

I Examples:
I Band-limited Fourier series expansion
I Polynomial regression with Legendre polynomials
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Exercise: Orthonormal Basis

I Show that for orthonormal basis {Fn}, the representation
Xn of x is obtained by projection

hx ,Fni = Xn

I Hint: You need to find

X̂n = argmin
Xn

kx � XnFn � Â
m 6=n

XmFmk
2

I Show that Parsevals theorem is true.
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The Gram-Schmidt Procedure

I An arbitrary basis {Fn} can be converted into an
orthonormal basis {Yn} using an algorithm known as the
Gram-Schmidt procedure:

Step 1: Y1 = F1
kF1k

(normalize F1)
Step 2 (a): Ỹ2 = F2 � hF2,Y1i · Y1 (make Ỹ2 ? Y1)
Step 2 (b): Y2 = Ỹ2

kỸ2k

...

Step k (a): Ỹk = Fk � Âk�1
n=1hFk ,Yni · Yn

Step k (b): Yk = Ỹk
kỸkk

I Whenever Ỹn = 0, the basis vector is omitted.
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Gram-Schmidt Procedure

I Note:
I By construction, {Y} is an orthonormal set of vectors.
I If the orginal basis {F} is complete, then {Y} is also

complete.
I The Gram-Schmidt construction implies that every Fn can

be represented in terms of Ym, with m = 1, . . . , n.
I Because

I any basis can be normalized (using the Gram-Schmidt
procedure) and

I the benefits of orthonormal bases when computing the
representation of a vector

a basis is usually assumed to be orthonormal.
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Exercise: Gram-Schmidt Procedure

I The following three basis functions are given

F1(t) = I[0, T
2 ]
(t) F2(t) = I[0,T ](t) F3(t) = I[ T

2 ,T ](t)

where I[a,b](t) = 1 for a  t  b and zero otherwise.
1. Compute an orthonormal basis from the above basis

functions.
2. Compute the representation of Fn(t), n = 1, 2, 3 with

respect to this orthonormal basis.
3. Compute kF1(t)k and kF2(t)� F3(t)k
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Answers for Exercise

1. Orthonormal bases:

Y1(t) =
r

2
T

I[0, T
2 ]
(t) Y2(t) =

r
2
T

I[ T
2 ,T ](t)

2. Representations:

f1 =

 q
T
2

0

! 0

@

q
T
2q
T
2

1

A
 

0q
T
2

!

3. Distances: kF1(t)k =
q

T
2 and kF2(t)� F3(t)k =

q
T
2 .
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A Hilbert Space for Random Processes

I A vector space for random processes Xt that is analogous
to L2(a, b) is of greatest interest to us.
I This vector space contains random processes that satisfy,

i.e., Z b

a
E[X 2

t ] dt < •.

I Inner Product: cross-correlation

E[hXt ,Yt i] = E[
Z b

a
XtYt dt ].

I Fact: This vector space is separable; therefore, an
orthonormal basis {F} exists.
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A Hilbert Space for Random Processes
I (con’t)

I Representation:

Xt =
•

Â
n=1

XnFn(t) for a  t  b

with
Xn = hXt ,Fn(t)i =

Z b

a
Xt Fn(t) dt .

I Note that Xn is a random variable.
I For this to be a valid Hilbert space, we must interprete

equality of processes Xt and Yt in the mean squared
sense, i.e.,

Xt = Yt means E[|Xt � Yt |
2] = 0.
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Karhunen-Loeve Expansion

I Goal: Choose an orthonormal basis {F} such that the
representation {Xn} of the random process Xt consists of
uncorrelated random variables.
I The resulting representation is called Karhunen-Loeve

expansion.
I Thus, we want

E[XnXm] = E[Xn]E[Xm] for n 6= m.
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Karhunen-Loeve Expansion

I It can be shown, that for the representation {Xn} to consist
of uncorrelated random variables, the orthonormal basis
vectors {F} must satisfy

Z b

a
KX (t , u) · Fn(u) du = lnFn(t)

I where ln = Var[Xn].
I {Fn} and {ln} are the eigenfunctions and eigenvalues of

the autocovariance function KX (t , u), respectively.
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Example: Wiener Process

I For the Wiener Process, the autocovariance function is

KX (t , u) = RX (t , u) = s2 min(t , u).

I It can be shown that

Fn(t) =
r

2
T

sin((n �
1
2
)p

t
T
)

ln =

 
sT

(n �
1
2 )p

!2 for n = 1, 2, . . ..
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Properties of the K-L Expansion
I The eigenfunctions of the autocovariance function form a

complete basis.
I If Xt is Gaussian, then the representation {Xn} is a vector

of independent, Gaussian random variables.
I For white noise, KX (t , u) = N0

2 d(t � u). Then, the
eigenfunctions must satisfy

Z N0
2

d(t � u)F(u) du = lF(t).

I Any orthonormal set of bases {F} satisfies this condition!
I Eigenvalues l are all equal to N0

2 .
I If Xt is white, Gaussian noise then the representation {Xn}

are independent, identically distributed random variables.
I zero mean
I variance N0

2

© 2018, B.-P. Paris ECE 630: Statistical Communication Theory 121


