Random Processes

Filtering of Random Processes

Signal Space Concepts

Parsevals Relationship

Parsevals Theorem: If vectors x and y are represented with respect to an orthonormal basis {\$\Delta_n\$} by {\$X_n\$} and {\$Y_n\$}, respectively, then

$$\langle x,y
angle = \sum_{n=1}^{\infty} X_n\cdot Y_n$$

Random Processes

Filtering of Random Processes

Signal Space Concepts

Parsevals Relationship

Parsevals theorem implies

$$\|x\|^2 = \sum_{n=1}^{\infty} X_n^2$$

and

$$||x - y||^2 = \sum_{n=1}^{\infty} |X_n - Y_n|^2$$

Inner products, norms, and distances can be computed using vectors or their representations; the results are the same.

Random Processes

Filtering of Random Processes

Signal Space Concepts

Back to the Projection Theorem

- We claimed earlier that the projection theorem is particularly useful when the subspace L is structured.
- Specifically, let \mathcal{L} be a subspace of \mathcal{S} spanned by a (usually finite) orthonormal basis $\{\Phi_n\}_{n=0}^{N-1}$.
 - Note that $\{\Phi_n\}_{n=0}^{N-1}$ is **not** a complete basis for S.
 - There are $x \in S$ that cannot be represented by this basis.
- ▶ Then, the projection $y \in \mathcal{L}$ of a vector $x \in S$ is simply

$$y = \sum_{n=0}^{N-1} Y_n \Phi_n$$
 with $Y_n = \langle x, \Phi_n \rangle$.

Examples:

- Band-limited Fourier series expansion
- Polynomial regression with Legendre polynomials

Gaussian Basics	Random Processes	Filtering of Random Processes
000	0000	00000
00000	0000000	00
0000	000000	000000
	0000	00000

Signal Space Concepts

Exercise: Orthonormal Basis

Show that for orthonormal basis {\$\Delta_n\$}\$, the representation \$X_n\$ of \$x\$ is obtained by projection

$$\langle x, \Phi_n
angle = X_n$$

Hint: You need to find

$$\hat{X}_n = \arg\min_{X_n} \|x - X_n \Phi_n - \sum_{m \neq n} X_m \Phi_m\|^2$$

Gaussian	Basics
000	
000000	
0000	

Random Processes

Filtering of Random Processes

Signal Space Concepts

The Gram-Schmidt Procedure

An arbitrary basis {\$\Phi_n\$} can be converted into an orthonormal basis {\$\Y_n\$} using an algorithm known as the Gram-Schmidt procedure:

Step 1:
$$\Psi_1 = \frac{\Phi_1}{\|\Phi_1\|}$$
 (normalize Φ_1)
Step 2 (a): $\tilde{\Psi}_2 = \Phi_2 - \langle \Phi_2, \Psi_1 \rangle \cdot \Psi_1$ (make $\tilde{\Psi}_2 \perp \Psi_1$)
Step 2 (b): $\Psi_2 = \frac{\tilde{\Psi}_2}{\|\tilde{\Psi}_2\|}$

Step k (a):
$$\tilde{\Psi}_k = \Phi_k - \sum_{n=1}^{k-1} \langle \Phi_k, \Psi_n \rangle \cdot \Psi_n$$

Step k (b): $\Psi_k = \frac{\tilde{\Psi}_k}{\|\tilde{\Psi}_k\|}$

• Whenever $\tilde{\Psi}_n = 0$, the basis vector is omitted.

Random Processes

Filtering of Random Processes

Signal Space Concepts

Gram-Schmidt Procedure

► Note:

- By construction, $\{\Psi\}$ is an orthonormal set of vectors.
- If the orginal basis $\{\Phi\}$ is complete, then $\{\Psi\}$ is also complete.
 - The Gram-Schmidt construction implies that every Φ_n can be represented in terms of Ψ_m , with m = 1, ..., n.

Because

- any basis can be normalized (using the Gram-Schmidt procedure) and
- the benefits of orthonormal bases when computing the representation of a vector
- a basis is usually assumed to be orthonormal.

Random Processes

Filtering of Random Processes

Signal Space Concepts

Exercise: Gram-Schmidt Procedure

The following three basis functions are given

$$\Phi_{1}(t) = I_{[0,\frac{T}{2}]}(t) \quad \Phi_{2}(t) = I_{[0,T]}(t) \quad \Phi_{3}(t) = I_{[\frac{T}{2},T]}(t)$$

where $I_{[a,b]}(t) = 1$ for $a \le t \le b$ and zero otherwise.

- 1. Compute an *orthonormal* basis from the above basis functions.
- 2. Compute the representation of $\Phi_n(t)$, n = 1, 2, 3 with respect to this orthonormal basis.
- 3. Compute $\|\Phi_1(t)\|$ and $\|\Phi_2(t) \Phi_3(t)\|$

Random Processes

Filtering of Random Processes

Answers for Exercise

1. Orthonormal bases:

$$\Psi_{1}(t) = \sqrt{\frac{2}{T}} I_{[0,\frac{T}{2}]}(t) \quad \Psi_{2}(t) = \sqrt{\frac{2}{T}} I_{[\frac{T}{2},T]}(t)$$

2. Representations:

$$\phi_1 = \begin{pmatrix} \sqrt{\frac{T}{2}} \\ 0 \end{pmatrix} \quad \begin{pmatrix} \sqrt{\frac{T}{2}} \\ \sqrt{\frac{T}{2}} \end{pmatrix} \quad \begin{pmatrix} 0 \\ \sqrt{\frac{T}{2}} \end{pmatrix}$$

3. Distances:
$$\|\Phi_1(t)\| = \sqrt{\frac{T}{2}}$$
 and $\|\Phi_2(t) - \Phi_3(t)\| = \sqrt{\frac{T}{2}}$.

Random Processes

Filtering of Random Processes

Signal Space Concepts

A Hilbert Space for Random Processes

- A vector space for random processes X_t that is analogous to L²(a, b) is of greatest interest to us.
 - This vector space contains random processes that satisfy, i.e.,

$$\int_a^b \mathbf{E}[X_t^2] \, dt < \infty.$$

Inner Product: cross-correlation

$$\mathbf{E}[\langle X_t, Y_t \rangle] = \mathbf{E}[\int_a^b X_t Y_t \, dt].$$

Fact: This vector space is separable; therefore, an orthonormal basis $\{\Phi\}$ exists.

Random Processes

Filtering of Random Processes

Signal Space Concepts

A Hilbert Space for Random Processes

(con't)

Representation:

$$X_t = \sum_{n=1}^{\infty} X_n \Phi_n(t)$$
 for $a \le t \le b$

with

$$X_n = \langle X_t, \Phi_n(t) \rangle = \int_a^b X_t \Phi_n(t) dt.$$

Note that X_n is a random variable.

For this to be a valid Hilbert space, we must interprete equality of processes X_t and Y_t in the mean squared sense, i.e.,

$$X_t = Y_t$$
 means $\mathbf{E}[|X_t - Y_t|^2] = 0$

Random Processes

Filtering of Random Processes

Karhunen-Loeve Expansion

- ► Goal: Choose an orthonormal basis {Φ} such that the representation {X_n} of the random process X_t consists of uncorrelated random variables.
 - The resulting representation is called Karhunen-Loeve expansion.

Thus, we want

 $\mathbf{E}[X_nX_m] = \mathbf{E}[X_n]\mathbf{E}[X_m]$ for $n \neq m$.

Gaussian	Basics
000	
000000	
0000	

Random Processes

Filtering of Random Processes

Signal Space Concepts

Karhunen-Loeve Expansion

It can be shown, that for the representation {X_n} to consist of uncorrelated random variables, the orthonormal basis vectors {Φ} must satisfy

$$\int_{a}^{b} K_{X}(t, u) \cdot \Phi_{n}(u) \, du = \lambda_{n} \Phi_{n}(t)$$

• where $\lambda_n = \operatorname{Var}[X_n]$.

• { Φ_n } and { λ_n } are the eigenfunctions and eigenvalues of the autocovariance function $K_X(t, u)$, respectively.

Random Processes

Filtering of Random Processes

Signal Space Concepts

Example: Wiener Process

For the Wiener Process, the autocovariance function is

$$K_X(t, u) = R_X(t, u) = \sigma^2 \min(t, u).$$

It can be shown that

$$\Phi_n(t) = \sqrt{\frac{2}{T}} \sin\left(\left(n - \frac{1}{2}\right)\pi\frac{t}{T}\right)$$

$$\lambda_n = \left(\frac{\sigma T}{\left(n - \frac{1}{2}\right)\pi}\right)^2 \quad \text{for } n = 1, 2, \dots$$

Gaussian Basics	Random Processes	Filtering of Random Processes	Signal Space Concepts
000	0000	00000	0
000000	0000000	00	000
0000	000000	000000	000000000000
	0000	00000	000000000000000000000000000000000000000
			00000

Properties of the K-L Expansion

- The eigenfunctions of the autocovariance function form a complete basis.
- ▶ If X_t is Gaussian, then the representation $\{X_n\}$ is a vector of independent, Gaussian random variables.
- For white noise, $K_X(t, u) = \frac{N_0}{2}\delta(t u)$. Then, the eigenfunctions must satisfy

$$\int \frac{N_0}{2} \delta(t-u) \Phi(u) \, du = \lambda \Phi(t).$$

- Any orthonormal set of bases $\{\Phi\}$ satisfies this condition!
- Eigenvalues λ are all equal to $\frac{N_0}{2}$.
- If X_t is white, Gaussian noise then the representation $\{X_n\}$ are independent, identically distributed random variables.
 - zero mean
 - variance $\frac{N_0}{2}$

