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Parsevals Relationship

» Parsevals Theorem: If vectors x and y are represented
with respect to an orthonormal basis {®,} by {X,} and
{Yn}, respectively, then
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Parsevals Relationship

» Parsevals theorem implies
|x||* = Z Xa
and
| x — YH2 Z | Xn — Yn‘z
» |nner products, norms, and distances can be computed

using vectors or their representations; the results are the
same.
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Back to the Projection Theorem

» We claimed earlier that the projection theorem is
particularly useful when the subspace L is structured.

» Specifically, let £ be a subspace of S spanned by a
(usually finite) orthonormal basis {cbn},’\,':—(}.

> Note that {@n},’;’;(} is not a complete basis for S.
» There are x € S that cannot be represented by this basis.

» Then, the projection y € L of a vector x € S is simply

N—1
y =Y Y,®,with Y, = (x, D).
n=0
» Examples:

» Band-limited Fourier series expansion P
» Polynomial regression with Legendre polynomials MASON
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Exercise: Orthonormal Basis

» Show that for orthonormal basis {®,}, the representation
Xn of x is obtained by projection

(X, Pn) = Xy

» Hint: You need to find

X, = arg n)1(in | x — Xn®p — Z chl)mH2

m#n

» Show that Parsevals theorem is true.
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The Gram-Schmidt Procedure

» An arbitrary basis {®,} can be converted into an
orthonormal basis {¥,} using an algorithm known as the
Gram-Schmidt procedure:

Step 1: V7 = W (normalize &4)
Step2( ) Yg (P?— <@2,IP~|> - ¥4 (make 1?2 J_Iﬂ)

Step 2 (b): ¥ = H%”

Step k (a): P = Pk — Li_1{(Pk, ¥n) - ¥
Step k (b): ¥y = 2k

» Whenever ¥, = 0, the basis vector is omitted. p

© 2018, B.-P. Paris ECE 630: Statistical Communication Theory




Signal Space Concepts

00000000 OOOO00O0O00Od

Gram-Schmidt Procedure

» Note:

» By construction, {¥} is an orthonormal set of vectors.
» If the orginal basis {®} is complete, then {¥} is also

complete.
» The Gram-Schmidt construction implies that every &, can
be represented in terms of ¥, with m=1, ..., n.
» Because

» any basis can be normalized (using the Gram-Schmidt
procedure) and

> the benefits of orthonormal bases when computing the
representation of a vector

a basis is usually assumed to be orthonormal.
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Exercise: Gram-Schmidt Procedure

» The following three basis functions are given
Py (t) = I[O,%](t) Dy (t) = /[o,T](t) P3(t) = /[g,r](t)

where [, (t) =1 for a < t < b and zero otherwise.

1. Compute an orthonormal basis from the above basis
functions.

2. Compute the representation of ®,(t), n = 1,2, 3 with
respect to this orthonormal basis.

3. Gompute ||@1(t)[| and || (1) — 3(t)|
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Answers for Exercise

1. Orthonormal bases:
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A Hilbert Space for Random Processes

» A vector space for random processes X; that is analogous
to L?(a, b) is of greatest interest to us.

» This vector space contains random processes that satisfy,
l.e.,

b
/ E[X2] ot < o.
a
» Inner Product: cross-correlation
b
E[(Xe, Vo)) = E[ | XY;d]

» Fact: This vector space is separable; therefore, an
orthonormal basis {®} exists.
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A Hilbert Space for Random Processes

» (con’t)
> Representation:

X =) Xn®p(t) fora<t<b
n=1
with )
Xn — <Xt, @n(t)> — Xt@n(t) dt

a

» Note that X, is a random variable.

» For this to be a valid Hilbert space, we must interprete
equality of processes X; and Y; in the mean squared
sense, i.e.,

Xt p— Yt meanS E“Xt — Yt‘2] p— O DﬁisORGE
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Karhunen-Loeve Expansion

» Goal: Choose an orthonormal basis {®} such that the

representation {X,} of the random process X; consists of
uncorrelated random variables.

» The resulting representation is called Karhunen-Loeve
expansion.

» Thus, we want

E[X,Xn] = E[Xn]E[Xm] for n £ m.

© 2018, B.-P. Paris

ECE 630: Statistical Communication Theory



Signal Space Concepts
000@00

Karhunen-Loeve Expansion

» It can be shown, that for the representation { X,} to consist
of uncorrelated random variables, the orthonormal basis
vectors {®} must satisfy

/b Kx(t, u) - dp(u) du = A, Pp(t)

» where A, = Var|[Xj].
> {d,} and {A,} are the eigenfunctions and eigenvalues of
the autocovariance function Kx (t, u), respectively.
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Example: Wiener Process

» For the Wiener Process, the autocovariance function is
Kx(t, u) = Rx(t, u) = o min(t, u).

» It can be shown that
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Properties of the K-L Expansion

» The eigenfunctions of the autocovariance function form a
complete basis.

> If X; is Gaussian, then the representation { X, } is a vector
of independent, Gaussian random variables.

> For white noise, Kx(t, u) = 205(t — u). Then, the
eigenfunctions must satisfy

/ Nos(t — uyd(u) du = (1)

> Any orthonormal set of bases {®} satisfies this condition!
» Eigenvalues A are all equal to %

> If X; is white, Gaussian noise then the representation { X}

are independent, identically distributed random variables.

» zero mean

. N /GEORGE
» variance 70
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