Random Processes

Filtering of Random Processes

Signal Space Concepts — Why we Care

- Signal Space Concepts are a powerful tool for the analysis of communication systems and for the design of optimum receivers.
- Key Concepts:
 - Orthonormal basis functions tailored to signals of interest — span the signal space.
 - Representation theorem: allows any signal to be represented as a (usually finite dimensional) vector
 - Signals are interpreted as points in signal space.
 - For random processes, representation theorem leads to random signals being described by random vectors with uncorrelated components.
 - Theorem of Irrelavance allows us to disregrad nearly all components of noise in the receiver.
- We will briefly review key ideas that provide underpinning for signal spaces.

Random Processes

Filtering of Random Processes

Linear Vector Spaces

- The basic structure needed by our signal spaces is the idea of linear vector space.
- Definition: A linear vector space S is a collection of elements ("vectors") with the following properties:
 - Addition of vectors is defined and satisfies the following conditions for any $x, y, z \in S$:
 - 1. $x + y \in S$ (closed under addition)
 - 2. x + y = y + x (commutative)
 - 3. (x + y) + z = x + (y + z) (associative)
 - 4. The zero vector $\vec{0}$ exists and $\vec{0} \in S$. $x + \vec{0} = x$ for all $x \in S$.
 - 5. For each $x \in S$, a unique vector (-x) is also in S and

$$x + (-x) = \vec{0}.$$

Random Processes

Filtering of Random Processes

Linear Vector Spaces — continued

Definition — continued:

- ► Associated with the set of vectors in S is a set of scalars. If a, b are scalars, then for any x, y ∈ S the following properties hold:
 - 1. $a \cdot x$ is defined and $a \cdot x \in S$.
 - 2. $a \cdot (b \cdot x) = (a \cdot b) \cdot x$
 - 3. Let 1 and 0 denote the multiplicative and additive identies of the field of scalars, then $1 \cdot x = x$ and $0 \cdot x = \vec{0}$ for all $x \in S$.
 - 4. Associative properties:

$$a \cdot (x + y) = a \cdot x + a \cdot y$$

 $(a + b) \cdot x = a \cdot x + b \cdot x$

aussian Basics	Random Processes	Filtering of Random Processes	Signal Space Concepts
00	0000	00000	0
00000	0000000	00	000
000	000000	000000	000000000000
	0000	00000	000000000000000000000000000000000000000
			00000

Running Examples

► The space of length-*N* vectors \mathbb{R}^N

$$\begin{pmatrix} x_1 \\ \vdots \\ x_N \end{pmatrix} + \begin{pmatrix} y_1 \\ \vdots \\ y_N \end{pmatrix} = \begin{pmatrix} x_1 + y_1 \\ \vdots \\ x_N + y_N \end{pmatrix} \text{ and } a \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_N \end{pmatrix} = \begin{pmatrix} a \cdot x_1 \\ \vdots \\ a \cdot x_N \end{pmatrix}$$

The collection of all square-integrable signals over [T_a, T_b], i.e., all signals x(t) satisfying

$$\int_{T_a}^{T_b} |x(t)|^2 \, dt < \infty.$$

Verifying that this is a linear vector space is easy.

This space is called $L^2(T_a, T_b)$ (pronounced: ell-two).

Random Processes

Filtering of Random Processes

Signal Space Concepts

Inner Product

- To be truly useful, we need linear vector spaces to provide
 - means to measure the length of vectors and
 - to measure the distance between vectors.
- Both of these can be achieved with the help of inner products.
- **Definition:** The inner product of two vectors $x, y, \in S$ is denoted by $\langle x, y \rangle$. The inner product is a *scalar* assigned to *x* and *y* so that the following conditions are satisfied:
 - 1. $\langle x, y \rangle = \langle y, x \rangle$ (for complex vectors $\langle x, y \rangle = \langle y, x \rangle^*$)
 - 2. $\langle a \cdot x, y \rangle = a \cdot \langle x, y \rangle$, with scalar *a*
 - 3. $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$, with vector z
 - 4. $\langle x, x \rangle > 0$, except when $x = \vec{0}$; then, $\langle x, x \rangle = 0$.

Gaussian Basics	Random Processes	Filtering of Random Processes	Signal Space Concepts
000	0000	00000	0
000000	0000000	00	000
0000	0000000	000000	00000000000
	0000	00000	000000000000000000000000000000000000000
			000000

Exercise: Valid Inner Products?

•
$$x, y \in \mathbb{R}^N$$
 with $\langle x, y \rangle = \sum_{n=1}^N x_n y_n$

Answer: Yes; this is the standard *dot product*. *x*, *y* ∈ \mathbb{R}^N with

$$\langle x, y \rangle = \sum_{n=1}^{N} x_n \cdot \sum_{n=1}^{N} y_n$$

Answer: No; last condition does not hold, which makes this inner product useless for measuring distances.

Gaussian Basics	Random Processes	Filtering of Random Processes	Signal Space Concepts
000 000000 0000	0000 0000000 000000 0000	00000 00 000000 00000	0 000 000000000000 000000000000000000

Exercise: Valid Inner Products?

► x(t), $y(t) \in L^2(a, b)$ with

$$\langle x(t), y(t) \rangle = \int_{a}^{b} x(t)y(t) dt$$

Answer: Yes; continuous-time equivalent of the dot-product.

▶ *x*,
$$y \in \mathbb{C}^N$$
 with

$$\langle x, y \rangle = \sum_{n=1}^{N} x_n y_n^*$$

Answer: Yes; the conjugate complex is critical to meet the last condition (e.g., (j, j) = −1 < 0).
 x, y ∈ ℝ^N with

$$\langle x, y \rangle = x^T K y = \sum_{n=1}^N \sum_{m=1}^N x_n K_{n,m} y_m$$

Gaussian Basics	Random Processes	Filtering of Random Processes	Signal Space Concepts
000 000000 0000	0000 0000000 000000 0000		0 000 000●0000000000 00000000000000000

Exercise: Valid Inner Products?

► *x*,
$$y \in \mathbb{R}^N$$
 with

$$\langle x, y \rangle = x^T K y = \sum_{n=1}^N \sum_{m=1}^N x_n K_{n,m} y_m$$

with *K* an $N \times N$ -matrix

Answer: Only if K is positive definite (i.e., $x^T K x > 0$ for all $x \neq \vec{0}$).

Gaussian Basics	Random Processes	Filtering of Random Processes	Signal Space Concepts
000	0000	00000	0
000000	0000000	00	000
0000	000000	000000	000000000000
	0000	00000	000000000000000000000000000000000000000
			00000

Norm of a Vector

Definition: The norm of vector x ∈ S is denoted by ||x|| and is defined via the inner product as

$$\|x\| = \sqrt{\langle x, x \rangle}.$$

- Notice that ||x|| > 0 unless $x = \vec{0}$, then ||x|| = 0.
- The norm of a vector measures the length of a vector.
- For signals $||x(t)||^2$ measures the *energy* of the signal.
- **Example:** For $x \in \mathbb{R}^N$, Cartesian length of a vector

$$||x|| = \sqrt{\sum_{n=1}^{N} |x_n|^2}$$

Gaussian Basics	Random Processes	Filtering of Random Processes	Signal Space Concepts
000 000000 0000	0000 0000000 000000 0000	00000 00 000000 00000	0 000 000000000000 0000000000000000000

Norm of a Vector — continued

Illustration:

$$\|a \cdot x\| = \sqrt{\langle a \cdot x, a \cdot x \rangle} = |a| \|x\|$$

Scaling the vector by *a*, scales its length by *a*.

Random Processes

Filtering of Random Processes

Inner Product Space

- We call a linear vector space with an associated, valid inner product an inner product space.
 - **Definition:** An inner product space is a linear vector space in which a inner product is defined for all elements of the space and the norm is given by $||x|| = \langle x, x \rangle$.

Standard Examples:

- 1. \mathbb{R}^N with $\langle x, y \rangle = \sum_{n=1}^N x_n y_n$.
- 2. $L^2(a, b)$ with $\langle x(t), y(t) \rangle = \int_a^b x(t)y(t) dt$.

Random Processes

Filtering of Random Processes

Schwartz Inequality

- The following relationship between norms and inner products holds for all inner product spaces.
- Schwartz Inequality: For any $x, y \in S$, where S is an inner product space,

$$|\langle x, y \rangle| \leq ||x|| \cdot ||y||$$

with equality if and only if $x = c \cdot y$ with scalar c

▶ Proof follows from $||x + a \cdot y||^2 \ge 0$ with $a = -\frac{\langle x, y \rangle}{||y||^2}$.

Gaussian Basics	
000	
000000	
0000	

Random Processes

Filtering of Random Processes

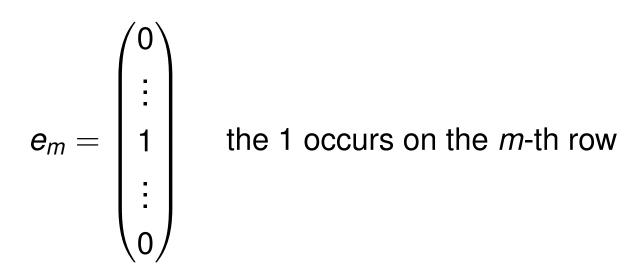
Signal Space Concepts

Orthogonality

Definition: Two vectors are orthogonal if the inner product of the vectors is zero, i.e.,

$$\langle x,y
angle = 0.$$

Example: The standard basis vectors e_m in \mathbb{R}^N are orthogonal; recall



Random Processes

Filtering of Random Pr 00000 00 000000 000000 00000 Signal Space Concepts

Orthogonality

Example: The basis functions for the Fourier Series expansion $w_m(t) \in L^2(0, T)$ are orthogonal; recall

$$w_m(t) = \frac{1}{\sqrt{T}} e^{j2\pi m t/T}.$$

Gaussian Basics	Random Processes	Filtering of Random Processes	Signal Space Concepts
000	0000	00000	0
00000	0000000	00	000
0000	000000	000000	000000000000000000000000000000000000000
	0000	00000	000000000000000000000000000000000000000
			000000

Distance between Vectors

Definition: The distance d between two vectors is defined as the norm of their difference, i.e.,

$$d(x,y) = \|x-y\|$$

Example: The Cartesian (or Euclidean) distance between vectors in \mathbb{R}^N :

$$d(x, y) = ||x - y|| = \sqrt{\sum_{n=1}^{N} |x_n - y_n|^2}.$$

Example: The root-mean-squared error (RMSE) between two signals in L²(a, b) is

$$d(x(t), y(t)) = ||x(t) - y(t)|| = \sqrt{\int_a^b |x(t) - y(t)|^2} dt$$

Random Processes

Filtering of Random Processes

Properties of Distances

Distance measures defined by the norm of the difference between vectors x, y have the following properties:

1.
$$d(x, y) = d(y, x)$$

2.
$$d(x, y) = 0$$
 if and only if $x = y$

3. $d(x, y) \le d(x, z) + d(y, z)$ for all vectors z (Triangle inequality)

Gaussian Basics	Random Processes	Filtering of Random Processes	Signal Space Concepts
000	0000	00000	0
000000	0000000	00	000
0000	000000	000000	00000000000
	0000	00000	000000000000000000000000000000000000000
			000000

Exercise: Prove the Triangle Inequality

► Begin like this:

$$d^{2}(x, y) = ||x - y||^{2}$$

= $||(x - z) + (z - y)||^{2}$
= $\langle (x - z) + (z - y), (x - z) + (z - y) \rangle$

$$d^{2}(x, y) = \langle x - z, x - z \rangle + 2\langle x - z, z - y \rangle + \langle z - y, z - y \rangle$$

$$\leq \langle x - z, x - z \rangle + 2|\langle x - z, z - y \rangle| + \langle z - y, z - y \rangle$$

(Schwartz) : $\leq \langle x - z, x - z \rangle + 2||x - z|| \cdot ||z - y|| + \langle z - y, z - y \rangle$

$$= d(x, z)^{2} + 2d(x, z) \cdot d(y, z) + d(y, z)^{2}$$

$$= (d(x, z) + d(y, z))^{2}$$

Random Processes 0000 00000000 0000000 0000000 0000 Filtering of Random Processes

Signal Space Concepts

Hilbert Spaces — Why we Care

- We would like our vector spaces to have one more property.
 - We say the sequence of vectors {x_n} converges to vector x, if

$$\lim_{n\to\infty}\|x_n-x\|=0.$$

- We would like the limit point x of any sequence {x_n} to be in our vector space.
- Integrals and derivatives are fundamentally limits; we want derivatives and integrals to stay in the vector space.
- A vector space is said to be closed if it contains all of its limit points.
- Definition: A closed, inner product space is A Hilbert Space.

Random Processes

Filtering of Random Processes

Signal Space Concepts

Hilbert Spaces — Examples

- **Examples:** Both \mathbb{R}^N and $L^2(a, b)$ are Hilbert Spaces.
- Counter Example: The space of rational number Q is not closed (i.e., not a Hilbert space)

► E.g.,

$$\sum_{n=0}^{\infty}rac{1}{n!}=oldsymbol{e}
otin\mathbb{Q}$$
,

even though all $\frac{1}{n!} \in \mathbb{Q}$.

Random Processes

Filtering of Random Processes

Signal Space Concepts

Subspaces

- Definition: Let S be a linear vector space. The space L is a subspace of S if
 - 1. \mathcal{L} is a *subset* of \mathcal{S} and
 - **2**. \mathcal{L} is closed.
 - If $x, y \in \mathcal{L}$ then also $x, y, \in \mathcal{S}$.
 - And, $a \cdot x + b \cdot y \in \mathcal{L}$ for all scalars a, b.
- ► **Example:** Let S be $L^2(T_a, T_b)$. Define \mathcal{L} as the set of all sinusoids of frequency f_0 , i.e., signals of the form $x(t) = A\cos(2\pi f_0 t + \phi)$, with $0 \le A < \infty$ and $0 \le \phi < 2\pi$
 - 1. All such sinusoids are square integrable.
 - 2. Linear combination of two sinusoids of frequency f_0 is a sinusoid of the same frequency.

Gaussian Basics	Random Processes	Filtering of Random Processes	Signal Space Concepts
000	0000	00000	0
00000	0000000	00	000
0000	000000	000000	000000000000
	0000	00000	000000000000000000000000000000000000000
			000000

Projection Theorem

- **Definition:** Let \mathcal{L} be a subspace of the Hilbert Space \mathcal{H} . The vector $x \in \mathcal{H}$ (and $x \notin \mathcal{L}$) is orthogonal to the subspace \mathcal{L} if $\langle x, y \rangle = 0$ for every $y \in \mathcal{L}$.
- Projection Theorem: Let H be a Hilbert Space and L is a subspace of H.

Every vector $x \in \mathcal{H}$ has a unique decomposition

$$x = y + z$$

with $y \in \mathcal{L}$ and *z* orthogonal to \mathcal{L} . Furthermore,

$$||z|| = ||x - y|| = \min_{\nu \in \mathcal{L}} ||x - \nu||.$$

- > y is called the projection of x onto \mathcal{L} .
- Distance from x to all elements of \mathcal{L} is minimized by y.

Random Processes

Filtering of Random Processes

Signal Space Concepts

Exercise: Fourier Series

- Let x(t) be a signal in the Hilbert space $L^2(0, T)$.
- Define the subspace \mathcal{L} of signals $\nu_n(t) = A_n \cos(2\pi nt/T)$ for a fixed *n* and *T*.
- Find the signal $y(t) \in \mathcal{L}$ that minimizes

$$\min_{\mathbf{y}(t)\in\mathcal{L}} \|\mathbf{x}(t)-\mathbf{y}(t)\|^2.$$

• Answer: y(t) is the sinusoid with amplitude

$$A_n = \frac{2}{T} \int_0^T x(t) \cos(2\pi nt/T) dt = \frac{2}{T} \langle x(t), \cos(2\pi nt/T) \rangle.$$

- Note that this is (part of the trigonometric form of) the Fourier Series expansion.
- Note that the inner product involves the projection of x(t) onto an element of L.

Random Processes

Filtering of Random Processes

Signal Space Concepts

Projection Theorem

- The Projection Theorem is most useful when the subspace *L* has certain structural properties.
- In particular, we will be interested in the case when L is spanned by a set of orthonormal vectors.
 - Let's define what that means.

Random Processes

Filtering of Random Processes

Signal Space Concepts

Separable Vector Spaces

• **Definition:** A Hilbert space \mathcal{H} is said to be separable if there exists a set of vectors $\{\Phi_n\}, n = 1, 2, ...$ that are elements of \mathcal{H} and such that every element $x \in \mathcal{H}$ can be expressed as

$$x=\sum_{n=1}^{\infty}X_n\Phi_n.$$

The coefficients X_n are scalars associated with vectors Φ_n .

Equality is taken to mean

$$\lim_{n\to\infty}\left\|x-\sum_{n=1}^{\infty}X_n\Phi_n\right\|^2=0.$$

Random Processes

Filtering of Random Processes

Signal Space Concepts

Representation of a Vector

- ► The set of vectors $\{\Phi_n\}$ is said to be complete if the above is valid for every $x \in \mathcal{H}$.
- A complete set of vectors {Φ_n} is said to form a basis for *H*.
- Definition: The representation of the vector x (with respect to the basis {\$\Delta_n\$}\$) is the sequence of coefficients {\$X_n\$}.
- Definition: The number of vectors \$\Phi_n\$ that is required to express every element \$x\$ of a separable vector space is called the dimension of the space.

Gaussian	Basics
000	
000000	
0000	

Random Processes

Filtering of Random Processes

Signal Space Concepts

Example: Length-N column Vectors

▶ The space \mathbb{R}^N is separable and has dimension *N*.

Basis vectors (m = 1, ..., N):

$$\Phi_m = e_m = \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix}$$
 the 1 occurs on the *m*-th row

There are N basis vectors; dimension is N.

Random Processes

Filtering of Random Processes

Signal Space Concepts

Example: Length-N column Vectors — continued

► (con't)

For any vector $x \in \mathbb{R}^N$:

$$x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_N \end{pmatrix} = \sum_{m=1}^N x_m e_m$$

Random Processes

Filtering of Random Processes

Signal Space Concepts

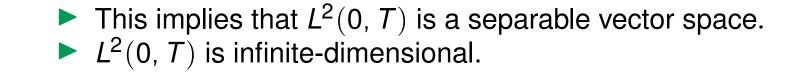
Examples: L^2

Fourier Bases: The following is a complete basis for L²(0, T)

$$\Phi_{2n}(t) = \sqrt{\frac{2}{T}} \cos(2\pi nt/T)$$

$$n = 0, 1, 2, ...$$

$$\Phi_{2n+1}(t) = \sqrt{\frac{2}{T}} \sin(2\pi nt/T)$$



Gaussian Basics	Random Processes	Filtering of Random Processes	Signal Space Concepts
000 000000 0000	0000 0000000 000000 0000		0 000 000000000000 0000000000000000000

Examples: L^2

Piecewise Linear Signals: The set of vectors (signals)

$$\Phi_n(t) = \begin{cases} \frac{1}{\sqrt{T}} & (n-1)T \le t < nT \\ 0 & \text{else} \end{cases}$$

is **not** a basis for $L^2(0, \infty)$.

- Only piecewise constant signals can be represented.
- But, this is a basis for the subspace of L² consisting of piecewise constant signals.

Random Processes

Filtering of Random Processes

Signal Space Concepts

Orthonormal Bases

- Definition: A basis for a separable vector space is an orthonormal basis if the elements of the vectors that constitute the basis satisfy
 - 1. $\langle \Phi_n, \Phi_m \rangle = 0$ for all $n \neq m$. (*ortho*gonal)
 - 2. $\|\Phi_n\| = 1$, for all n = 1, 2, ... (*normal*ized)
- Note:
 - Not every basis is orthonormal.
 - We will see shortly, every basis can be turned into an orthonormal basis.
 - Not every set of orthonornal vectors constitutes a basis.
 - Example: Piecewise Linear Signals.

Gaussian Basics	Random Processes	Filtering of Random Processes	Signal Space Concepts
000	0000	00000	0
000000	0000000	00	000
0000	000000	000000	000000000000
	0000	00000	00000000000000000000000000000000000000
			000000

Representation with Orthonormal Basis

- An orthonormal basis is much prefered over an arbitrary basis because the representation of vector x is very easy to compute.
- The representation $\{X_n\}$ of a vector x

$$x=\sum_{n=1}^{\infty}X_n\Phi_n$$

with respect to an orthonormal basis $\{\Phi_n\}$ is computed using

$$X_n = \langle x, \Phi_n \rangle.$$

The representation X_n is obtained by projecting x onto the basis vector Φ_n !

In contrast, when bases are not orthonormal, finding the representation of x requires solving a system of linear equations.

