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Signal Space Concepts — Why we Care
I Signal Space Concepts are a powerful tool for the

analysis of communication systems and for the design of
optimum receivers.

I Key Concepts:
I Orthonormal basis functions — tailored to signals of

interest — span the signal space.
I Representation theorem: allows any signal to be

represented as a (usually finite dimensional) vector
I Signals are interpreted as points in signal space.

I For random processes, representation theorem leads to
random signals being described by random vectors with
uncorrelated components.
I Theorem of Irrelavance allows us to disregrad nearly all

components of noise in the receiver.
I We will briefly review key ideas that provide underpinning

for signal spaces.
© 2018, B.-P. Paris ECE 630: Statistical Communication Theory 77



Gaussian Basics Random Processes Filtering of Random Processes Signal Space Concepts

Linear Vector Spaces

I The basic structure needed by our signal spaces is the
idea of linear vector space.

I Definition: A linear vector space S is a collection of
elements (“vectors”) with the following properties:
I Addition of vectors is defined and satisfies the following

conditions for any x , y , z 2 S :
1. x + y 2 S (closed under addition)
2. x + y = y + x (commutative)
3. (x + y) + z = x + (y + z) (associative)
4. The zero vector~0 exists and~0 2 S . x +~0 = x for all x 2 S .
5. For each x 2 S , a unique vector (�x) is also in S and

x + (�x) =~0.
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Linear Vector Spaces — continued

I Definition — continued:
I Associated with the set of vectors in S is a set of scalars. If

a, b are scalars, then for any x , y 2 S the following
properties hold:

1. a · x is defined and a · x 2 S .
2. a · (b · x) = (a · b) · x
3. Let 1 and 0 denote the multiplicative and additive identies of

the field of scalars, then 1 · x = x and 0 · x =~0 for all x 2 S .
4. Associative properties:

a · (x + y) = a · x + a · y
(a + b) · x = a · x + b · x
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Running Examples
I The space of length-N vectors RN
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I The collection of all square-integrable signals over [Ta,Tb],
i.e., all signals x(t) satisfying

Z Tb

Ta

|x(t)|2 dt < •.

I Verifying that this is a linear vector space is easy.
I This space is called L2(Ta,Tb) (pronounced: ell-two).
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Inner Product

I To be truly useful, we need linear vector spaces to provide
I means to measure the length of vectors and
I to measure the distance between vectors.

I Both of these can be achieved with the help of inner
products.

I Definition: The inner product of two vectors x , y ,2 S is
denoted by hx , yi. The inner product is a scalar assigned
to x and y so that the following conditions are satisfied:

1. hx , yi = hy , xi (for complex vectors hx , yi = hy , xi⇤)
2. ha · x , yi = a · hx , yi, with scalar a
3. hx + y , zi = hx , zi+ hy , zi, with vector z
4. hx , xi > 0, except when x =~0; then, hx , xi = 0.
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Exercise: Valid Inner Products?

I x , y 2 RN with

hx , yi =
N

Â
n=1

xnyn

I Answer: Yes; this is the standard dot product.
I x , y 2 RN with

hx , yi =
N

Â
n=1

xn ·
N

Â
n=1

yn

I Answer: No; last condition does not hold, which makes
this inner product useless for measuring distances.
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Exercise: Valid Inner Products?
I x(t), y(t) 2 L2(a, b) with

hx(t), y(t)i =
Z b

a
x(t)y(t) dt

I Answer: Yes; continuous-time equivalent of the
dot-product.

I x , y 2 CN with

hx , yi =
N

Â
n=1

xny⇤

n

I Answer: Yes; the conjugate complex is critical to meet the
last condition (e.g., hj , ji = �1 < 0).

I x , y 2 RN with

hx , yi = xT Ky =
N

Â
n=1

N

Â
m=1

xnKn,mym

with K an N ⇥ N-matrix
I Answer: Only if K is positive definite (i.e., xT Kx > 0 for all

x 6=~0).
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Exercise: Valid Inner Products?

I x , y 2 RN with

hx , yi = xT Ky =
N

Â
n=1

N

Â
m=1

xnKn,mym

with K an N ⇥ N-matrix
I Answer: Only if K is positive definite (i.e., xT Kx > 0 for all

x 6=~0).
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Norm of a Vector
I Definition: The norm of vector x 2 S is denoted by kxk

and is defined via the inner product as

kxk =
q
hx , xi.

I Notice that kxk > 0 unless x =~0, then kxk = 0.
I The norm of a vector measures the length of a vector.
I For signals kx(t)k2 measures the energy of the signal.

I Example: For x 2 RN , Cartesian length of a vector

kxk =

vuut
N

Â
n=1

|xn|2
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Norm of a Vector — continued

I Illustration:

ka · xk =
q
ha · x , a · xi = |a|kxk

I Scaling the vector by a, scales its length by a.
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Inner Product Space

I We call a linear vector space with an associated, valid
inner product an inner product space.
I Definition: An inner product space is a linear vector space

in which a inner product is defined for all elements of the
space and the norm is given by kxk = hx , xi.

I Standard Examples:
1. RN with hx , yi = ÂN

n=1 xnyn.
2. L2(a, b) with hx(t), y(t)i =

R b
a x(t)y(t) dt .
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Schwartz Inequality

I The following relationship between norms and inner
products holds for all inner product spaces.

I Schwartz Inequality: For any x , y 2 S , where S is an
inner product space,

|hx , yi|  kxk · kyk

with equality if and only if x = c · y with scalar c
I Proof follows from kx + a · yk2

� 0 with a = �
hx ,yi
kyk2 .
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Orthogonality
I Definition: Two vectors are orthogonal if the inner product

of the vectors is zero, i.e.,

hx , yi = 0.

I Example: The standard basis vectors em in RN are
orthogonal; recall

em =

0
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the 1 occurs on the m-th row
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Orthogonality

I Example: The basis functions for the Fourier Series
expansion wm(t) 2 L2(0,T ) are orthogonal; recall

wm(t) =
1

p
T

ej2pmt/T .
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Distance between Vectors
I Definition: The distance d between two vectors is defined

as the norm of their difference, i.e.,

d(x , y) = kx � yk
I Example: The Cartesian (or Euclidean) distance between

vectors in RN :

d(x , y) = kx � yk =

vuut
N

Â
n=1

|xn � yn|2.

I Example: The root-mean-squared error (RMSE) between
two signals in L2(a, b) is

d(x(t), y(t)) = kx(t)� y(t)k =

s
Z b

a
|x(t)� y(t)|2 dt
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Properties of Distances

I Distance measures defined by the norm of the difference
between vectors x , y have the following properties:

1. d(x , y) = d(y , x)
2. d(x , y) = 0 if and only if x = y
3. d(x , y)  d(x , z) + d(y , z) for all vectors z (Triangle

inequality)
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Exercise: Prove the Triangle Inequality
I Begin like this:

d2(x , y) = kx � yk2

= k(x � z) + (z � y)k2

= h(x � z) + (z � y), (x � z) + (z � y)i

I
d2(x , y) = hx � z, x � zi+ 2hx � z, z � yi+ hz � y , z � yi

 hx � z, x � zi+ 2|hx � z, z � yi|+ hz � y , z � yi
(Schwartz) :  hx � z, x � zi+ 2kx � zk · kz � yk+ hz � y , z � yi

= d(x , z)2 + 2d(x , z) · d(y , z) + d(y , z)2

= (d(x , z) + d(y , z))2
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Hilbert Spaces — Why we Care
I We would like our vector spaces to have one more

property.
I We say the sequence of vectors {xn} converges to vector

x , if
lim

n!•
kxn � xk = 0.

I We would like the limit point x of any sequence {xn} to be
in our vector space.

I Integrals and derivatives are fundamentally limits; we want
derivatives and integrals to stay in the vector space.

I A vector space is said to be closed if it contains all of its
limit points.

I Definition: A closed, inner product space is A Hilbert
Space.
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Hilbert Spaces — Examples

I Examples: Both RN and L2(a, b) are Hilbert Spaces.
I Counter Example: The space of rational number Q is not

closed (i.e., not a Hilbert space)
I E.g.,

•

Â
n=0

1
n!

= e /2 Q,

even though all 1
n! 2 Q.
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Subspaces

I Definition: Let S be a linear vector space. The space L is
a subspace of S if

1. L is a subset of S and
2. L is closed.

I If x , y 2 L then also x , y ,2 S .
I And, a · x + b · y 2 L for all scalars a, b.

I Example: Let S be L2(Ta,Tb). Define L as the set of all
sinusoids of frequency f0, i.e., signals of the form
x(t) = A cos(2pf0t + f), with 0  A < • and 0  f < 2p

1. All such sinusoids are square integrable.
2. Linear combination of two sinusoids of frequency f0 is a

sinusoid of the same frequency.
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Projection Theorem
I Definition: Let L be a subspace of the Hilbert Space H.

The vector x 2 H (and x /2 L) is orthogonal to the
subspace L if hx , yi = 0 for every y 2 L.

I Projection Theorem: Let H be a Hilbert Space and L is a
subspace of H.
Every vector x 2 H has a unique decomposition

x = y + z

with y 2 L and z orthogonal to L.
Furthermore,

kzk = kx � yk = min
n2L

kx � nk.

I y is called the projection of x onto L.
I Distance from x to all elements of L is minimized by y .
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Exercise: Fourier Series
I Let x(t) be a signal in the Hilbert space L2(0,T ).
I Define the subspace L of signals nn(t) = An cos(2pnt/T )

for a fixed n and T .
I Find the signal y(t) 2 L that minimizes

min
y(t)2L

kx(t)� y(t)k2.

I Answer: y(t) is the sinusoid with amplitude

An =
2
T

Z T

0
x(t) cos(2pnt/T ) dt =

2
T
hx(t), cos(2pnt/T )i.

I Note that this is (part of the trigonometric form of) the
Fourier Series expansion.

I Note that the inner product involves the projection of x(t)
onto an element of L.
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Projection Theorem

I The Projection Theorem is most useful when the subspace
L has certain structural properties.

I In particular, we will be interested in the case when L is
spanned by a set of orthonormal vectors.
I Let’s define what that means.

© 2018, B.-P. Paris ECE 630: Statistical Communication Theory 99



Gaussian Basics Random Processes Filtering of Random Processes Signal Space Concepts

Separable Vector Spaces

I Definition: A Hilbert space H is said to be separable if
there exists a set of vectors {Fn}, n = 1, 2, . . . that are
elements of H and such that every element x 2 H can be
expressed as

x =
•

Â
n=1

XnFn.

I The coefficients Xn are scalars associated with vectors Fn.
I Equality is taken to mean

lim
n!•

�����x �

•

Â
n=1

XnFn

�����

2

= 0.
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Representation of a Vector

I The set of vectors {Fn} is said to be complete if the above
is valid for every x 2 H.

I A complete set of vectors {Fn} is said to form a basis for
H.

I Definition: The representation of the vector x (with
respect to the basis {Fn}) is the sequence of coefficients
{Xn}.

I Definition: The number of vectors Fn that is required to
express every element x of a separable vector space is
called the dimension of the space.
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Example: Length-N column Vectors

I The space RN is separable and has dimension N.
I Basis vectors (m = 1, . . . ,N):

Fm = em =

0
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the 1 occurs on the m-th row

I There are N basis vectors; dimension is N.
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Example: Length-N column Vectors — continued

I (con’t)
I For any vector x 2 RN :

x =

0

BBBB@

x1
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N

Â
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xmem
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Examples: L2

I Fourier Bases: The following is a complete basis for
L2(0,T )

F2n(t) =
r

2
T

cos(2pnt/T )

F2n+1(t) =
r

2
T

sin(2pnt/T )

n = 0, 1, 2, . . .

I This implies that L2(0,T ) is a separable vector space.
I L2(0,T ) is infinite-dimensional.
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Examples: L2

I Piecewise Linear Signals: The set of vectors (signals)

Fn(t) =

(
1

p
T

(n � 1)T  t < nT

0 else

is not a basis for L2(0,•).
I Only piecewise constant signals can be represented.
I But, this is a basis for the subspace of L2 consisting of

piecewise constant signals.
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Orthonormal Bases

I Definition: A basis for a separable vector space is an
orthonormal basis if the elements of the vectors that
constitute the basis satisfy

1. hFn,Fmi = 0 for all n 6= m. (orthogonal)
2. kFnk = 1, for all n = 1, 2, . . . (normalized)

I Note:
I Not every basis is orthonormal.

I We will see shortly, every basis can be turned into an
orthonormal basis.

I Not every set of orthonornal vectors constitutes a basis.
I Example: Piecewise Linear Signals.
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Representation with Orthonormal Basis
I An orthonormal basis is much prefered over an arbitrary

basis because the representation of vector x is very easy
to compute.

I The representation {Xn} of a vector x

x =
•

Â
n=1

XnFn

with respect to an orthonormal basis {Fn} is computed
using

Xn = hx ,Fni.

The representation Xn is obtained by projecting x onto the
basis vector Fn!
I In contrast, when bases are not orthonormal, finding the

representation of x requires solving a system of linear
equations.
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