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Separable Vector Spaces

I Definition: A Hilbert space H is said to be separable if
there exists a set of vectors {Fn}, n = 1, 2, . . . that are
elements of H and such that every element x 2 H can be
expressed as

x =
•

Â
n=1

XnFn.

I The coefficients Xn are scalars associated with vectors Fn.
I Equality is taken to mean

lim
n!•
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= 0.
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Representation of a Vector

I The set of vectors {Fn} is said to be complete if the above
is valid for every x 2 H.

I A complete set of vectors {Fn} is said to form a basis for
H.

I Definition: The representation of the vector x (with
respect to the basis {Fn}) is the sequence of coefficients
{Xn}.

I Definition: The number of vectors Fn that is required to
express every element x of a separable vector space is
called the dimension of the space.
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Example: Length-N column Vectors

I The space RN is separable and has dimension N.
I Basis vectors (m = 1, . . . ,N):

Fm = em =

0

B

B

B

B

B

B

B

@

0
...
1
...
0

1

C

C

C

C

C

C

C

A

the 1 occurs on the m-th row

I There are N basis vectors; dimension is N.
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Example: Length-N column Vectors — continued

I (con’t)
I For any vector x 2 RN :

x =

0

B

B

B

B

@

x1

x2
...

xN

1

C

C

C

C

A

=
N

Â
m=1

xmem
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Examples: L2

I Fourier Bases: The following is a complete basis for
L2(0,T )

F2n(t) =
r

2
T

cos(2pnt/T )

F2n+1(t) =
r

2
T

sin(2pnt/T )

n = 0, 1, 2, . . .

I This implies that L2(0,T ) is a separable vector space.
I L2(0,T ) is infinite-dimensional.
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Examples: L2

I Piecewise Linear Signals: The set of vectors (signals)

Fn(t) =

(

1p
T

(n � 1)T  t < nT

0 else

is not a basis for L2(0,•).
I Only piecewise constant signals can be represented.
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Orthonormal Bases

I Definition: A basis for a separable vector space is an
orthonormal basis if the elements of the vectors that
constitute the basis satisfy

1. hFn,Fmi = 0 for all n 6= m. (orthogonal)
2. kFnk = 1, for all n = 1, 2, . . . (normalized)

I Note:
I Not every basis is orthonormal.

I We will see shortly, every basis can be turned into an
orthonormal basis.

I Not every set of orthonornal vectors constitutes a basis.
I Example: Piecewise Linear Signals.
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Representation with Orthonormal Basis
I An orthonormal basis is much prefered over an arbitrary

basis because the representation of vector x is very easy
to compute.

I The representation {Xn} of a vector x

x =
•

Â
n=1

XnFn

with respect to an orthonormal basis {Fn} is computed
using

Xn = hx ,Fni.
The representation Xn is obtained by projecting x onto the
basis vector Fn!

I In contrast, when bases are not orthonormal, finding the
representation of x requires solving a system of linear
equations.
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Parsevals Relationship
I Parsevals Theorem: If vectors x and y are represented

with respect to an orthonormal basis {Fn} by {Xn} and
{Yn}, respectively, then

hx , yi =
•

Â
n=1

Xn · Yn

I With x = y , Parsevals theorem implies

kxk2 =
•

Â
n=1

X 2
n

and

kx � yk2 =
•

Â
n=1

|Xn � Yn|2
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Exercise: Orthonormal Basis

I Show that for orthonormal basis {Fn}, the representation
Xn of x is obtained by projection

hx ,Fni = Xn

I Show that Parsevals theorem is true.
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The Gram-Schmidt Procedure

I An arbitrary basis {Fn} can be converted into an
orthonormal basis {Yn} using an algorithm known as the
Gram-Schmidt procedure:

Step 1: Y1 = F1
kF1k (normalize F1)

Step 2 (a): Ỹ2 = F2 � hF2,Y1i · Y1 (make Ỹ2 ? Y1)
Step 2 (b): Y2 = Ỹ2

kỸ2k
...

Step k (a): Ỹk = Fk � Âk�1
n=1hFk ,Yni · Yn

Step k (b): Yk = Ỹk
kỸkk

I Whenever Ỹn = 0, the basis vector is omitted.
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Gram-Schmidt Procedure

I Note:
I By construction, {Y} is an orthonormal set of vectors.
I If the orginal basis {F} is complete, then {Y} is also

complete.
I The Gram-Schmidt construction implies that every Fn can

be represented in terms of Ym, with m = 1, . . . , n.
I Because

I any basis can be normalized (using the Gram-Schmidt
procedure) and

I the benefits of orthonormal bases when computing the
representation of a vector

a basis is usually assumed to be orthonormal.
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Exercise: Gram-Schmidt Procedure

I The following three basis functions are given

F1(t) = I[0, T
2 ]
(t) F2(t) = I[0,T ](t) F3(t) = I[ T

2 ,T ](t)

where I[a,b](t) = 1 for a  t  b and zero otherwise.
1. Compute an orthonormal basis from the above basis

functions.
2. Compute the representation of Fn(t), n = 1, 2, 3 with

respect to this orthonormal basis.
3. Compute kF1(t)k and kF2(t)� F3(t)k
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Answers for Exercise

1. Orthonormal bases:

Y1(t) =
r

2
T

I[0, T
2 ]
(t) Y2(t) =

r

2
T

I[ T
2 ,T ](t)

2. Representations:

f1 =

 

q

T
2

0

!

0

@

q

T
2

q

T
2

1

A

 

0
q

T
2

!

3. Distances: kF1(t)k =
q

T
2 and kF2(t)� F3(t)k =

q

T
2 .
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A Hilbert Space for Random Processes

I A vector space for random processes Xt that is analogous
to L2(a, b) is of greatest interest to us.

I This vector space contains random processes that satisfy,
i.e.,

Z b

a
E[X 2

t ] dt < •.

I Inner Product: cross-correlation

E[hXt ,Yt i] = E[
Z b

a
XtYt dt ].

I This vector space is separable; therefore, an orthonormal
basis {F} exists.
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A Hilbert Space for Random Processes
I (con’t)

I Representation:

Xt =
•

Â
n=1

XnFn(t) for a  t  b

with
Xn = hXt ,Fn(t)i =

Z b

a
Xt Fn(t) dt .

I Note that Xn is a random variable.
I For this to be a valid Hilbert space, we must interprete

equality of processes Xt and Yt in the mean squared
sense, i.e.,

Xt = Yt means E[|Xt � Yt |2] = 0.
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Karhunen-Loeve Expansion

I Goal: Choose an orthonormal basis {F} such that the
representation {Xn} of the random process Xt consists of
uncorrelated random variables.

I The resulting representation is called Karhunen-Loeve
expansion.

I Thus, we want

E[XnXm] = E[Xn]E[Xm] for n 6= m.
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Karhunen-Loeve Expansion

I It can be shown, that for the representation {Xn} to consist
of uncorrelated random variables, the orthonormal basis
vectors {F} must satisfy

Z b

a
KX (t , u) · Fn(u) du = lnFn(t)

I where ln = Var[Xn].
I {Fn} and {ln} are the eigenfunctions and eigenvalues of

the autocovariance function KX (t , u), respectively.
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Example: Wiener Process

I For the Wiener Process, the autocovariance function is

KX (t , u) = RX (t , u) = s2 min(t , u).

I It can be shown that

Fn(t) =
r

2
T

sin((n � 1
2
)p

t
T
)

ln =

 

sT
(n � 1

2 )p

!2 for n = 1, 2, . . ..
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Properties of the K-L Expansion
I The eigenfunctions of the autocovariance function form a

complete basis.
I If Xt is Gaussian, then the representation {Xn} is a vector

of independent, Gaussian random variables.
I For white noise, KX (t , u) = N0

2 d(t � u). Then, the
eigenfunctions must satisfy

Z N0
2

d(t � u)F(u) du = lF(t).

I Any orthonormal set of bases {F} satisfies this condition!
I Eigenvalues l are all equal to N0

2 .
I If Xt is white, Gaussian noise then the representation {Xn}

are independent, identically distributed random variables.
I zero mean
I variance N0

2
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