Random Processes

Filtering of Random Processes

Signal Space Concepts

Separable Vector Spaces

Definition: A Hilbert space *H* is said to be separable if there exists a set of vectors {*Φ_n*}, *n* = 1, 2, ... that are elements of *H* and such that every element *x* ∈ *H* can be expressed as

$$x=\sum_{n=1}^{\infty}X_n\Phi_n.$$

- The coefficients X_n are scalars associated with vectors Φ_n .
- Equality is taken to mean

$$\lim_{n\to\infty}\left\|x-\sum_{n=1}^{\infty}X_n\Phi_n\right\|^2=0.$$

Random Processes 0000 00000000 0000000 000000 Filtering of Random Processes

Signal Space Concepts

Representation of a Vector

- The set of vectors {Φ_n} is said to be complete if the above is valid for every x ∈ H.
- A complete set of vectors {Φ_n} is said to form a basis for *H*.
- Definition: The representation of the vector x (with respect to the basis {\$\Phi_n\$}\$) is the sequence of coefficients {\$X_n\$}.
- Definition: The number of vectors \$\Phi_n\$ that is required to express every element \$x\$ of a separable vector space is called the dimension of the space.

Random Processes

Filtering of Random Processes

Signal Space Concepts

Example: Length-N column Vectors

- The space \mathbb{R}^N is separable and has dimension *N*.
 - Basis vectors (m = 1, ..., N):

$$\Phi_m = e_m = \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix}$$
 the 1 occurs on the *m*-th row

► There are *N* basis vectors; dimension is *N*.

Random Processes

Signal Space Concepts

Example: Length-N column Vectors — continued

- ► (con't)
 - For any vector $x \in \mathbb{R}^N$:

$$x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_N \end{pmatrix} = \sum_{m=1}^N x_m e_m$$

Gaussian	Basics	
000		
00000		
0000		

Random Processes

Filtering of Random Processes

Signal Space Concepts

Examples: L^2

Fourier Bases: The following is a complete basis for L²(0, T)

$$\Phi_{2n}(t) = \sqrt{\frac{2}{T}} \cos(2\pi nt/T)$$

$$m = 0, 1, 2, ...$$

$$\Phi_{2n+1}(t) = \sqrt{\frac{2}{T}} \sin(2\pi nt/T)$$

This implies that L²(0, T) is a separable vector space.
 L²(0, T) is infinite-dimensional.

Gaussian Basics	Random Processes	Filtering of Random Processes	Signal Space Concepts
000	0000	00000	000
00000	0000000	00	00000000000
0000	0000000	000000	000000000000000000000000000000000000000
	0000	00000	000000

Examples: L^2

Piecewise Linear Signals: The set of vectors (signals)

$$\Phi_n(t) = \begin{cases} \frac{1}{\sqrt{T}} & (n-1)T \le t < nT \\ 0 & \text{else} \end{cases}$$

is **not** a basis for $L^2(0, \infty)$.

Only piecewise constant signals can be represented.

Random Processes

Filtering of Random Processes

Signal Space Concepts

Orthonormal Bases

- Definition: A basis for a separable vector space is an orthonormal basis if the elements of the vectors that constitute the basis satisfy
 - 1. $\langle \Phi_n, \Phi_m \rangle = 0$ for all $n \neq m$. (*ortho*gonal)
 - 2. $\|\Phi_n\| = 1$, for all n = 1, 2, ... (*normal*ized)
- ► Note:
 - Not every basis is orthonormal.
 - We will see shortly, every basis can be turned into an orthonormal basis.
 - Not every set of orthonornal vectors constitutes a basis.
 - Example: Piecewise Linear Signals.

Gaussian Basics	Random Processes	Filtering of Random Processes	Signal Space Concepts
000 00000	0000 0000000	00000	000
0000	000000	00000 00000	

Representation with Orthonormal Basis

- An orthonormal basis is much prefered over an arbitrary basis because the representation of vector x is very easy to compute.
- The representation $\{X_n\}$ of a vector x

$$x=\sum_{n=1}^{\infty}X_n\Phi_n$$

with respect to an orthonormal basis $\{\Phi_n\}$ is computed using

$$X_n = \langle x, \Phi_n \rangle.$$

The representation X_n is obtained by projecting x onto the basis vector Φ_n !

In contrast, when bases are not orthonormal, finding the representation of x requires solving a system of linear equations.

Gaussian Basics	Random Processes	Filtering of Random Processes	Signal Space Concepts
000	0000	00000	000
00000	0000000	00	00000000000
0000	000000	000000	000000000000000000000000000000000000000
	0000	00000	000000

Parsevals Relationship

Parsevals Theorem: If vectors x and y are represented with respect to an orthonormal basis {\$\Delta_n\$} by {\$X_n\$} and {\$Y_n\$}, respectively, then

$$\langle x, y \rangle = \sum_{n=1}^{\infty} X_n \cdot Y_n$$

• With x = y, Parsevals theorem implies

$$\|x\|^2 = \sum_{n=1}^{\infty} X_n^2$$

and

$$||x - y||^2 = \sum_{n=1}^{\infty} |X_n - Y_n|^2$$

Gaussian Basics	Random Processes	Filtering of Random Processes	Signal Space Concepts
000	0000	00000	000
00000	0000000	00	00000000000
0000	000000	000000	000000000000000000000000000000000000000
	0000	00000	000000
	0000	00000	000000

Exercise: Orthonormal Basis

Show that for orthonormal basis {Φ_n}, the representation X_n of x is obtained by projection

$$\langle x, \Phi_n
angle = X_n$$

Show that Parsevals theorem is true.

Random Processes

Filtering of Random Processes

Signal Space Concepts

The Gram-Schmidt Procedure

► An arbitrary basis {Φ_n} can be converted into an orthonormal basis {Ψ_n} using an algorithm known as the Gram-Schmidt procedure:

Step 1:
$$\Psi_1 = \frac{\Phi_1}{\|\Phi_1\|}$$
 (normalize Φ_1)
Step 2 (a): $\tilde{\Psi}_2 = \Phi_2 - \langle \Phi_2, \Psi_1 \rangle \cdot \Psi_1$ (make $\tilde{\Psi}_2 \perp \Psi_1$)
Step 2 (b): $\Psi_2 = \frac{\tilde{\Psi}_2}{\|\tilde{\Psi}_2\|}$

Step k (a):
$$\tilde{\Psi}_k = \Phi_k - \sum_{n=1}^{k-1} \langle \Phi_k, \Psi_n \rangle \cdot \Psi_n$$

Step k (b): $\Psi_k = \frac{\tilde{\Psi}_k}{\|\tilde{\Psi}_k\|}$

• Whenever $\tilde{\Psi}_n = 0$, the basis vector is omitted.

Random Processes 0000 00000000 0000000 000000

Filtering of Random Processes

Signal Space Concepts

Gram-Schmidt Procedure

► Note:

- By construction, $\{\Psi\}$ is an orthonormal set of vectors.
- If the orginal basis $\{\Phi\}$ is complete, then $\{\Psi\}$ is also complete.
 - The Gram-Schmidt construction implies that every Φ_n can be represented in terms of Ψ_m , with m = 1, ..., n.

Because

- any basis can be normalized (using the Gram-Schmidt procedure) and
- the benefits of orthonormal bases when computing the representation of a vector

a basis is usually assumed to be orthonormal.

Random Processes oooo oooooooo ooooooo oooooo Filtering of Random Processes

Signal Space Concepts

Exercise: Gram-Schmidt Procedure

The following three basis functions are given

$$\Phi_{1}(t) = I_{[0,\frac{T}{2}]}(t) \quad \Phi_{2}(t) = I_{[0,T]}(t) \quad \Phi_{3}(t) = I_{[\frac{T}{2},T]}(t)$$

where $I_{[a,b]}(t) = 1$ for $a \le t \le b$ and zero otherwise.

- 1. Compute an *orthonormal* basis from the above basis functions.
- 2. Compute the representation of $\Phi_n(t)$, n = 1, 2, 3 with respect to this orthonormal basis.
- 3. Compute $\|\Phi_1(t)\|$ and $\|\Phi_2(t) \Phi_3(t)\|$

Random Processes

Filtering of Random Processes

Signal Space Concepts

Answers for Exercise

1. Orthonormal bases:

$$\Psi_{1}(t) = \sqrt{\frac{2}{T}} I_{[0,\frac{T}{2}]}(t) \quad \Psi_{2}(t) = \sqrt{\frac{2}{T}} I_{[\frac{T}{2},T]}(t)$$

2. Representations:

$$\phi_1 = \begin{pmatrix} \sqrt{\frac{T}{2}} \\ 0 \end{pmatrix} \quad \begin{pmatrix} \sqrt{\frac{T}{2}} \\ \sqrt{\frac{T}{2}} \end{pmatrix} \quad \begin{pmatrix} 0 \\ \sqrt{\frac{T}{2}} \end{pmatrix}$$

3. Distances: $\|\Phi_1(t)\| = \sqrt{\frac{T}{2}}$ and $\|\Phi_2(t) - \Phi_3(t)\| = \sqrt{\frac{T}{2}}$.

Random Processes

Filtering of Random Processes

Signal Space Concepts

A Hilbert Space for Random Processes

- A vector space for random processes X_t that is analogous to L²(a, b) is of greatest interest to us.
 - This vector space contains random processes that satisfy, i.e.,

$$\int_a^b \mathbf{E}[X_t^2] \, dt < \infty.$$

Inner Product: cross-correlation

$$\mathbf{E}[\langle X_t, Y_t \rangle] = \mathbf{E}[\int_a^b X_t Y_t \, dt].$$

This vector space is separable; therefore, an orthonormal basis {\$\Delta\$} exists.

Random Processes

Filtering of Random Processes

Signal Space Concepts

A Hilbert Space for Random Processes

► (con't)

Representation:

$$X_t = \sum_{n=1}^{\infty} X_n \Phi_n(t)$$
 for $a \le t \le b$

with

$$X_n = \langle X_t, \Phi_n(t) \rangle = \int_a^b X_t \Phi_n(t) dt.$$

- Note that X_n is a random variable.
- For this to be a valid Hilbert space, we must interprete equality of processes X_t and Y_t in the mean squared sense, i.e.,

$$X_t = Y_t$$
 means $\mathbf{E}[|X_t - Y_t|^2] = 0$.

Random Processes

Filtering of Random Processes

Signal Space Concepts

Karhunen-Loeve Expansion

- ► Goal: Choose an orthonormal basis {Φ} such that the representation {X_n} of the random process X_t consists of uncorrelated random variables.
 - The resulting representation is called Karhunen-Loeve expansion.

► Thus, we want

$$\mathbf{E}[X_nX_m] = \mathbf{E}[X_n]\mathbf{E}[X_m]$$
 for $n \neq m$.

Random Processes

Filtering of Random Processes

Signal Space Concepts

Karhunen-Loeve Expansion

It can be shown, that for the representation {X_n} to consist of uncorrelated random variables, the orthonormal basis vectors {Φ} must satisfy

$$\int_{a}^{b} K_{X}(t, u) \cdot \Phi_{n}(u) \, du = \lambda_{n} \Phi_{n}(t)$$

• where $\lambda_n = \operatorname{Var}[X_n]$.

 {Φ_n} and {λ_n} are the eigenfunctions and eigenvalues of the autocovariance function K_X(t, u), respectively.

Random Processes

Filtering of Random Processes

Signal Space Concepts

Example: Wiener Process

For the Wiener Process, the autocovariance function is

$$K_X(t, u) = R_X(t, u) = \sigma^2 \min(t, u).$$

It can be shown that

$$\Phi_n(t) = \sqrt{\frac{2}{T}} \sin\left(\left(n - \frac{1}{2}\right)\pi\frac{t}{T}\right)$$

$$\lambda_n = \left(\frac{\sigma T}{\left(n - \frac{1}{2}\right)\pi}\right)^2 \quad \text{for } n = 1, 2, \dots$$

Random Processes 0000 00000000 0000000 000000 Filtering of Random Processes

Signal Space Concepts

Properties of the K-L Expansion

- The eigenfunctions of the autocovariance function form a complete basis.
- If X_t is Gaussian, then the representation {X_n} is a vector of independent, Gaussian random variables.
- For white noise, $K_X(t, u) = \frac{N_0}{2}\delta(t u)$. Then, the eigenfunctions must satisfy

$$\int \frac{N_0}{2} \delta(t-u) \Phi(u) \, du = \lambda \Phi(t).$$

- Any orthonormal set of bases $\{\Phi\}$ satisfies this condition!
- Eigenvalues λ are all equal to $\frac{N_0}{2}$.
- If X_t is white, Gaussian noise then the representation $\{X_n\}$ are independent, identically distributed random variables.
 - zero mean
 - variance $\frac{N_0}{2}$

e

