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Integrals of Random Processes

I We will see, that receivers always include a linear,
time-invariant system, i.e., a filter.

I Linear, time-invariant systems convolve the input random
process with the impulse response of the filter.
I Convolution is fundamentally an integration.

I We will establish conditions that ensure that an expression
like

Z (w) =
Z b

a
Xt (w)h(t) dt

is “well-behaved”.
I The result of the (definite) integral is a random variable.

I Concern: Does the above integral converge?
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Mean Square Convergence
I There are different senses in which a sequence of random

variables may converge: almost surely, in probability,
mean square, and in distribution.

I We will focus exclusively on mean square convergence.
I For our integral, mean square convergence means that the

Rieman sum and the random variable Z satisfy:
I Given e > 0, there exists a d > 0 so that

E[(
n

Â
k=1

Xtk h(tk )(tk � tk�1)� Z )
2

]  e.

with:
I a = t0 < t1 < · · · < tn = b
I tk�1  tk  tk
I d = maxk (tk � tk�1)
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Mean Square Convergence — Why We Care
I It can be shown that the integral converges if

Z b

a

Z b

a
RX (t , u)h(t)h(u) dt du < •

I We will see shortly that this implies E[|Z |
2] < •.

I Important: When the integral converges, then the order of
integration and expectation can be interchanged, e.g.,

E[Z ] = E[
Z b

a
Xth(t) dt ] =

Z b

a
E[Xt ]h(t) dt =

Z b

a
mX (t)h(t) dt

I Throughout this class, we will focus exclusively on cases
where RX (t , u) and h(t) are such that our integrals
converge.
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Exercise: Brownian Motion

I Definition: Let Nt be white Gaussian noise with N0
2 = s2.

The random process

Wt =
Z t

0
Ns ds for t � 0

is called Brownian Motion or Wiener Process.

I Compute the mean and autocorrelation functions of Wt .
I Answer: mW (t) = 0 and RW (t , u) = s2 min(t , u)
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Integrals of Gaussian Random Processes
I Let Xt denote a Gaussian random process with second

order description mX (t) and RX (t , s).
I Then, the integral

Z =
Z b

a
X (t)h(t) dt

is a Gaussian random variable.
I Moreover mean and variance are given by

µ = E[Z ] =
Z b

a
mX (t)h(t) dt

Var[Z ] = E[(Z � E[Z ])2] = E[(
Z b

a
(Xt � mx (t))h(t) dt)

2

]

=
Z b

a

Z b

a
CX (t , u)h(t)h(u) dt du
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Jointly Defined Random Processes

I Let Xt and Yt be jointly defined random processes.
I E.g., input and output of a filter.

I Then, joint densities of the form pXt Yu (x , y) can be defined.
I Additionally, second order descriptions that describe the

correlation between samples of Xt and Yt can be defined.
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Crosscorrelation and Crosscovariance
I Definition: The crosscorrelation function RXY (t , u) is

defined as:

RXY (t , u) = E[XtYu ] =
Z •

�•

Z •

�•
xypXt Yu (x , y) dx dy .

I Definition: The crosscovariance function CXY (t , u) is
defined as:

CXY (t , u) = RXY (t , u)� mX (t)mY (u).

I Definition: The processes Xt and Yt are called jointly
wide-sense stationary if:

1. RXY (t , u) = RXY (t � u) and

2. mX (t) and mY (t) are constants.
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Filtering of Random Processes

Filtered Random Process

Xt h(t) Yt
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Filtering of Random Processes

I Clearly, Xt and Yt are jointly defined random processes.
I Standard LTI system — convolution:

Yt =
Z

h(t � s)Xs ds = h(t) ⇤ Xt

I Recall: this convolution is “well-behaved” if
Z Z

RX (s, n)h(t � s)h(t � n) ds dn < •

I E.g.:
RR

RX (s, n) ds dn < • and h(t) stable.
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Second Order Description of Output: Mean
I The expected value of the filter’s output Yt is:

E[Yt ] = E[
Z

h(t � s)Xs ds]

=
Z

h(t � s)E[Xs] ds

=
Z

h(t � s)mX (s) ds

I For a wss process Xt , mX (t) is constant. Therefore,

E[Yt ] = mY (t) = mX

Z
h(s) ds

is also constant.
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Crosscorrelation of Input and Output
I The crosscorrelation between input and ouput signals is:

RXY (t , u) = E[XtYu ] = E[Xt

Z
h(u � s)Xs ds

=
Z

h(u � s)E[XtXs] ds

=
Z

h(u � s)RX (t , s) ds

I For a wss input process

RXY (t , u) =
Z

h(u � s)RX (t , s) ds =
Z

h(n)RX (t , u � n) dn

=
Z

h(n)RX (t � u + n) dn = RXY (t � u)

I Input and output are jointly stationary.
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Autocorelation of Output
I The autocorrelation of Yt is given by

RY (t , u) = E[YtYu ] = E[
Z

h(t � s)Xs ds
Z

h(u � n)Xn dn]

=
Z Z

h(t � s)h(u � n)RX (s, n) ds dn

I For a wss input process:

RY (t , u) =
Z Z

h(t � s)h(u � n)RX (s, n) ds dn

=
Z Z

h(l)h(l � g)RX (t � l, u � l + g) dl dg

=
Z Z

h(l)h(l � g)RX (t � u � g) dl dg = RY (t � u)

I Define Rh(g) =
R

h(l)h(l � g) dl = h(l) ⇤ h(�l).
I Then, RY (t) =

R
Rh(g)RX (t � g) dg = Rh(t) ⇤ RX (t)
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Exercise: Filtered White Noise Process
I Let the white Gaussian noise process Xt be input to a filter

with impulse response

h(t) = e�atu(t) =

(
e�at for t � 0
0 for t < 0

I Compute the second order description of the output
process Yt .

I Answers:

I Mean: mY = 0
I Autocorrelation:

RY (t) =
N0
2

e�a|t|

2a
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Power Spectral Density — Concept
I Power Spectral Density (PSD) measures how the power

of a random process is distributed over frequency.
I Notation: SX (f )
I Units: Watts per Hertz (W/Hz)

I Thought experiment:
I Pass random process Xt through a narrow bandpass filter:

I center frequency f
I bandwidth Df
I denote filter output as Yt

I Measure the power P at the output of bandpass filter:

P = lim
T!•

1
T

Z T /2

�T /2
|Yt |

2 dt

I Relationship between power and (PSD)

P ⇡ SX (f ) · Df .
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Relation to Autocorrelation Function
I For a wss random process, the power spectral density is

closely related to the autocorrelation function RX (t).
I Definition: For a random process Xt with autocorrelation

function RX (t), the power spectral density SX (f ) is defined
as the Fourier transform of the autocorrelation function,

SX (f ) =
Z •

�•
RX (t)ej2pf t dt.

I For non-stationary processes, it is possible to define a
spectral represenattion of the process.

I However, the spectral contents of a non-stationary process
will be time-varying.

I Example: If Nt is white noise, i.e., RN(t) =
N0
2 d(t), then

SX (f ) =
N0
2

for all f

i.e., the PSD of white noise is flat over all frequencies.© 2018, B.-P. Paris ECE 630: Statistical Communication Theory 73
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Properties of the PSD
I Inverse Transform:

RX (t) =
Z •

�•
SX (f )e�j2pf t df .

I The total power of the process is

E[|Xt |
2] = RX (0) =

Z •

�•
SX (f ) df .

I SX (f ) is even and non-negative.
I Evenness of SX (f ) follows from evenness of RX (t).
I Non-negativeness is a consequence of the autocorrelation

function being positive definite
Z •

�•

Z •

�•
f (t)f ⇤(u)RX (t , u) dt du � 0

for all choices of f (·), including f (t) = e�j2pft .
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Filtering of Random Processes
I Random process Xt with autocorrelation RX (t) and PSD

SX (f ) is input to LTI filter with impuse response h(t) and
frequency response H(f ).

I The PSD of the output process Yt is

SY (f ) = |H(f )|2SX (f ).

I Recall that RY (t) = RX (t) ⇤ Ch(t),
I where Ch(t) = h(t) ⇤ h(�t).
I In frequency domain: SY (f ) = SX (f ) · F{Ch(t)}
I With

F{Ch(t)} = F{h(t) ⇤ h(�t)}

= F{h(t)} · F{h(�t)}

= H(f ) · H⇤(f ) = |H(f )|2.
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Exercise: Filtered White Noise
R

CNt Yt

I Let Nt be a white noise process that is input to the above
circuit. Find the power spectral density of the output
process.

I Answer:

SY (f ) =
����

1
1 + j2pfRC

����
2 N0

2
=

1
1 + (2pfRC)2

N0
2
.
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