Random Processes

Filtering of Random Processes

Integrals of Random Processes

- We will see, that receivers always include a linear, time-invariant system, i.e., a filter.
- Linear, time-invariant systems convolve the input random process with the impulse response of the filter.
 - Convolution is fundamentally an integration.
- We will establish conditions that ensure that an expression like

$$Z(\omega) = \int_{a}^{b} X_{t}(\omega) h(t) dt$$

is "well-behaved".

The result of the (definite) integral is a random variable.

Concern: Does the above integral converge?

Random Processes

Filtering of Random Processes

Mean Square Convergence

- There are different senses in which a sequence of random variables may converge: *almost surely*, *in probability*, *mean square*, and *in distribution*.
- We will focus exclusively on mean square convergence.
- For our integral, mean square convergence means that the Rieman sum and the random variable Z satisfy:
 - Given $\epsilon > 0$, there exists a $\delta > 0$ so that

$$\mathbf{E}[(\sum_{k=1}^n X_{\tau_k} h(\tau_k)(t_k - t_{k-1}) - Z)^2] \le \epsilon.$$

with:

Gaussian Basics	Random Processes	Filtering of Random Processes	Signal Space Concepts
000	0000	00000	0
000000	0000000	00	000
0000	000000	000000	00000000000
	0000	00000	000000000000000000000000000000000000000
			000000

Mean Square Convergence — Why We Care

It can be shown that the integral converges if

$$\int_{a}^{b} \int_{a}^{b} R_{X}(t, u) h(t) h(u) \, dt \, du < \infty$$

• We will see shortly that this implies $\mathbf{E}[|Z|^2] < \infty$.

Important: When the integral converges, then the order of integration and expectation can be interchanged, e.g.,

$$\mathbf{E}[Z] = \mathbf{E}[\int_a^b X_t h(t) \, dt] = \int_a^b \mathbf{E}[X_t] h(t) \, dt = \int_a^b m_X(t) h(t) \, dt$$

Throughout this class, we will focus exclusively on cases where R_X(t, u) and h(t) are such that our integrals converge.

000
000000
0000

Filtering of Random Processes

Exercise: Brownian Motion

• **Definition:** Let N_t be white Gaussian noise with $\frac{N_0}{2} = \sigma^2$. The random process

$$W_t = \int_0^t N_s \, ds \quad \text{for } t \ge 0$$

is called Brownian Motion or Wiener Process.

- Compute the mean and autocorrelation functions of W_t .

• Answer:
$$m_W(t) = 0$$
 and $R_W(t, u) = \sigma^2 \min(t, u)$

Random Processes

Filtering of Random Processes

Integrals of Gaussian Random Processes

- Let X_t denote a Gaussian random process with second order description $m_X(t)$ and $R_X(t, s)$.
- Then, the integral

$$Z = \int_{a}^{b} X(t) h(t) \, dt$$

is a Gaussian random variable.

Moreover mean and variance are given by

$$\mu = \mathbf{E}[Z] = \int_{a}^{b} m_{X}(t)h(t) dt$$

$$= \int_a^b \int_a^b C_X(t, u) h(t) h(u) \, dt \, du$$

Random Processes

0000000

Filtering of Random Processes

Jointly Defined Random Processes

- Let X_t and Y_t be jointly defined random processes.
 - E.g., input and output of a filter.
- ► Then, joint densities of the form $p_{X_t Y_u}(x, y)$ can be defined.
- Additionally, second order descriptions that describe the correlation between samples of X_t and Y_t can be defined.

Gaussian	Basics
000	
000000	
0000	

Filtering of Random Processes

Crosscorrelation and Crosscovariance

Definition: The crosscorrelation function R_{XY}(t, u) is defined as:

$$R_{XY}(t, u) = \mathbf{E}[X_t Y_u] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy p_{X_t Y_u}(x, y) \, dx \, dy.$$

Definition: The crosscovariance function $C_{XY}(t, u)$ is defined as:

$$C_{XY}(t, u) = R_{XY}(t, u) - m_X(t)m_Y(u).$$

- 1. $R_{XY}(t, u) = R_{XY}(t u)$ and
- 2. $m_X(t)$ and $m_Y(t)$ are constants.

Random Processes

000 0000000 000000 00000 Filtering of Random Processes

Filtering of Random Processes

Filtered Random Process

$$X_t \longrightarrow h(t) \longrightarrow Y_t$$

Gaussian Basics	
000	
000000	
0000	

Filtering of Random Processes

Filtering of Random Processes

- \triangleright Clearly, X_t and Y_t are jointly defined random processes.
- Standard LTI system convolution:

$$Y_t = \int h(t - \sigma) X_\sigma \, d\sigma = h(t) * X_t$$

Recall: this convolution is "well-behaved" if

$$\iint R_X(\sigma,\nu)h(t-\sigma)h(t-\nu)\,d\sigma\,d\nu<\infty$$

► E.g.: $\iint R_X(\sigma, \nu) \, d\sigma \, d\nu < \infty$ and h(t) stable.

Second Order Description of Output: Mean

The expected value of the filter's output Y_t is:

$$\begin{aligned} \mathbf{E}[Y_t] &= \mathbf{E}[\int h(t-\sigma) X_\sigma \, d\sigma] \\ &= \int h(t-\sigma) \mathbf{E}[X_\sigma] \, d\sigma \\ &= \int h(t-\sigma) m_X(\sigma) \, d\sigma \end{aligned}$$

For a wss process X_t , $m_X(t)$ is constant. Therefore,

$$\mathbf{E}[Y_t] = m_{\mathbf{Y}}(t) = m_X \int h(\sigma) \, d\sigma$$

is also constant.

Gaussian	Basics
000	
000000	
0000	

Filtering of Random Processes

Crosscorrelation of Input and Output

The crosscorrelation between input and ouput signals is:

$$\begin{aligned} \mathsf{R}_{XY}(t, u) &= \mathsf{E}[X_t Y_u] = \mathsf{E}[X_t \int h(u - \sigma) X_\sigma \, d\sigma \\ &= \int h(u - \sigma) \mathsf{E}[X_t X_\sigma] \, d\sigma \\ &= \int h(u - \sigma) \mathsf{R}_X(t, \sigma) \, d\sigma \end{aligned}$$

For a wss input process

$$R_{XY}(t, u) = \int h(u - \sigma) R_X(t, \sigma) \, d\sigma = \int h(v) R_X(t, u - v) \, dv$$
$$= \int h(v) R_X(t - u + v) \, dv = R_{XY}(t - u)$$

Input and output are jointly stationary.

Random Processes

Filtering of Random Processes

Autocorelation of Output

• The autocorrelation of Y_t is given by

$$R_{Y}(t, u) = \mathbf{E}[Y_{t}Y_{u}] = \mathbf{E}[\int h(t-\sigma)X_{\sigma} \, d\sigma \int h(u-\nu)X_{\nu} \, d\nu]$$
$$= \int \int h(t-\sigma)h(u-\nu)R_{X}(\sigma, \nu) \, d\sigma \, d\nu$$

► For a wss input process:

$$\begin{aligned} \mathsf{R}_{\mathsf{Y}}(t,u) &= \iint h(t-\sigma)h(u-\nu)\mathsf{R}_{\mathsf{X}}(\sigma,\nu)\,d\sigma\,d\nu \\ &= \iint h(\lambda)h(\lambda-\gamma)\mathsf{R}_{\mathsf{X}}(t-\lambda,u-\lambda+\gamma)\,d\lambda\,d\gamma \\ &= \iint h(\lambda)h(\lambda-\gamma)\mathsf{R}_{\mathsf{X}}(t-u-\gamma)\,d\lambda\,d\gamma = \mathsf{R}_{\mathsf{Y}}(t-u) \end{aligned}$$

Gaussian Basics	Random Processes	Filtering of Random Processes	Signal Space Concepts
000	0000	00000	0
000000	0000000	00	000
0000	000000	00000	0000000000
	0000	00000	000000000000000000000000000000000000000
			00000

Exercise: Filtered White Noise Process

Let the white Gaussian noise process X_t be input to a filter with impulse response

$$h(t) = e^{-at}u(t) = \begin{cases} e^{-at} & \text{for } t \ge 0\\ 0 & \text{for } t < 0 \end{cases}$$

- Compute the second order description of the output process Y_t .
- Answers:
 - Mean: *m_Y* = 0
 - Autocorrelation:

$$R_{Y}(\tau) = \frac{N_0}{2} \frac{e^{-a|\tau|}}{2a}$$

Random Processes

Filtering of Random Processes

Power Spectral Density — Concept

- Power Spectral Density (PSD) measures how the power of a random process is distributed over frequency.
 - Notation: $S_X(f)$
 - Units: Watts per Hertz (W/Hz)
- Thought experiment:
 - Pass random process X_t through a narrow bandpass filter:
 - center frequency f
 - bandwidth Δf
 - denote filter output as Y_t

Measure the power P at the output of bandpass filter:

$$P = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} |Y_t|^2 dt$$

Relationship between power and (PSD)

$$P \approx S_X(f) \cdot \Delta f.$$

Random Processes

Filtering of Random Processes

Relation to Autocorrelation Function

- For a wss random process, the power spectral density is closely related to the autocorrelation function $R_X(\tau)$.
- **Definition:** For a random process X_t with autocorrelation function $R_X(\tau)$, the power spectral density $S_X(f)$ is defined as the Fourier transform of the autocorrelation function,

$$S_X(f) = \int_{-\infty}^{\infty} R_X(\tau) e^{j2\pi f\tau} d\tau.$$

- For non-stationary processes, it is possible to define a spectral representation of the process.
- However, the spectral contents of a non-stationary process will be time-varying.

• **Example:** If N_t is white noise, i.e., $R_N(\tau) = \frac{N_0}{2}\delta(\tau)$, then

$$S_X(f) = \frac{N_0}{2}$$
 for all f

Random Processes

Filtering of Random Processes

Properties of the PSD

Inverse Transform:

0000

$$R_X(\tau) = \int_{-\infty}^{\infty} S_X(f) e^{-j2\pi f\tau} df.$$

The total power of the process is

$$\mathbf{E}[|X_t|^2] = R_X(0) = \int_{-\infty}^{\infty} S_X(f) \, df.$$

- ► $S_X(f)$ is even and non-negative.
 - Evenness of $S_X(f)$ follows from evenness of $R_X(\tau)$.

Non-negativeness is a consequence of the autocorrelation function being positive definite

$$\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f(t)f^{*}(u)R_{X}(t,u)\,dt\,du\geq 0$$

for all choices of $f(\cdot)$, including $f(t) = e^{-j2\pi ft}$.

Gaussian Basics	
000	
000000	
0000	

Filtering of Random Processes

Filtering of Random Processes

- Random process X_t with autocorrelation R_X(τ) and PSD S_X(f) is input to LTI filter with impuse response h(t) and frequency response H(f).
- > The PSD of the output process Y_t is

$$S_Y(f) = |H(f)|^2 S_X(f).$$

- Recall that $R_Y(\tau) = R_X(\tau) * C_h(\tau)$,
- where $C_h(\tau) = h(\tau) * h(-\tau)$.
- ► In frequency domain: $S_Y(f) = S_X(f) \cdot \mathcal{F}\{C_h(\tau)\}$

With

$$\mathcal{F}{C_h(\tau)} = \mathcal{F}{h(\tau) * h(-\tau)}$$
$$= \mathcal{F}{h(\tau)} \cdot \mathcal{F}{h(-\tau)}$$
$$= H(f) \cdot H^*(f) = |H(f)|^2$$

n Basics	Random Processes	Filtering of Random Processes	Signal Space
	0000	00000	0
C	0000000	00	000
	000000	000000	00000000
	0000	00000	00000000
			00000

Exercise: Filtered White Noise

- Let N_t be a white noise process that is input to the above circuit. Find the power spectral density of the output process.
- Answer:

$$S_{Y}(f) = \left|\frac{1}{1+j2\pi fRC}\right|^{2} \frac{N_{0}}{2} = \frac{1}{1+(2\pi fRC)^{2}} \frac{N_{0}}{2}$$

Concepts