1andom Proces 2000 20000000 2000000 Filtering of Random Processes

Power Spectral Density — Concept

- Power Spectral Density (PSD) measures how the power of a random process is distributed over frequency.
 - Notation: $S_X(f)$
 - Units: Watts per Hertz (W/Hz)
- Thought experiment:
 - Pass random process X_t through a narrow bandpass filter:
 - center frequency f
 - bandwidth Δf
 - denote filter output as Y_t
 - Measure the power P at the output of bandpass filter:

$$P = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} |Y_t|^2 dt$$

Relationship between power and (PSD)

$$P \approx S_X(f) \cdot \Delta f$$
.

© 2017, B.-P. Paris

ECE 630: Statistical Communication Theory

Random Proces

Filtering of Random Processes

Relation to Autocorrelation Function

- For a wss random process, the power spectral density is closely related to the autocorrelation function *R_X*(*τ*).
- Definition: For a random process X_t with autocorrelation function R_X(τ), the power spectral density S_X(f) is defined as the Fourier transform of the autocorrelation function,

$$S_X(f) = \int_{-\infty}^{\infty} R_X(\tau) e^{j2\pi f\tau} d\tau.$$

- For non-stationary processes, it is possible to define a spectral representation of the process.
- However, the spectral contents of a non-stationary process will be time-varying.
- **Example:** If N_t is white noise, i.e., $R_N(\tau) = \frac{N_0}{2}\delta(\tau)$, then

$$S_X(f) = \frac{N_0}{2}$$
 for all f

MASON UNIVERSITY

ECE 630: Statistical Communication Theory

© 2017, B.-P. Paris

Gaussian Basics	Random Processes	Filtering of Random Processes	Signal Space Concepts
000 00000 0000	0000 0000000 000000 0000	00000 00 000000 00000	000 00000000000 0000000000000000000000

Properties of the PSD

Inverse Transform:

$$R_X(\tau) = \int_{-\infty}^{\infty} S_X(f) e^{-j2\pi f\tau} df.$$

The total power of the process is

$$\mathbf{E}[|X_t|^2] = R_X(0) = \int_{-\infty}^{\infty} S_X(f) \, df.$$

- $S_X(f)$ is even and non-negative.
 - Evenness of $S_X(f)$ follows from evenness of $R_X(\tau)$.
 - Non-negativeness is a consequence of the autocorrelation function being positive definite

$$\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f(t)f^{*}(u)R_{X}(t,u)\,dt\,du\geq 0$$

for all choices of $f(\cdot)$, including $f(t) = e^{-j2\pi ft}$.

© 2017, B.-P. Paris

ssian Basics	Random Processes	Filtering of Random Processes	Signal Space Concepts
	0000 0000000	00000	000
	0000000	000000 000●0	00000000000000000000000000000000000000

Filtering of Random Processes

- Random process X_t with autocorrelation R_X(τ) and PSD S_X(f) is input to LTI filter with impuse response h(t) and frequency response H(f).
- The PSD of the output process Y_t is

$$S_{\mathbf{Y}}(f) = |H(f)|^2 S_{\mathbf{X}}(f).$$

- Recall that $R_Y(\tau) = R_X(\tau) * C_h(\tau)$,
- where $C_h(\tau) = h(\tau) * h(-\tau)$.
- In frequency domain: $S_Y(f) = S_X(f) \cdot \mathcal{F}\{C_h(\tau)\}$
- With

$$\mathcal{F}{C_h(\tau)} = \mathcal{F}{h(\tau) * h(-\tau)}$$

= $\mathcal{F}{h(\tau)} \cdot \mathcal{F}{h(-\tau)}$
= $H(f) \cdot H^*(f) = |H(f)|^2$.

72

© 2017, B.-P. Paris

Gaussian Basics 000 00000 0000	Random Processes 0000 00000000 0000000 000000	Filtering of Random Processes ○○○○○ ○○○○○○ ○○○○○●	Signal Space Concepts 000 00000000000 00000000000000000000
---	---	--	---

Exercise: Filtered White Noise

- Let N_t be a white noise process that is input to the above circuit. Find the power spectral density of the output process.
- Answer:

$$S_{Y}(f) = \left| \frac{1}{1 + j2\pi fRC} \right|^{2} \frac{N_{0}}{2} = \frac{1}{1 + (2\pi fRC)^{2}} \frac{N_{0}}{2}$$

© 2017, B.-P. Paris

Random Process 2000 20000000 2000000 2000000 iltering of Random Processes

Signal Space Concepts

Signal Space Concepts — Why we Care

- Signal Space Concepts are a powerful tool for the analysis of communication systems and for the design of optimum receivers.
- Key Concepts:
 - Orthonormal basis functions tailored to signals of interest — span the signal space.
 - Representation theorem: allows any signal to be represented as a (usually finite dimensional) vector
 - Signals are interpreted as points in signal space.
 - For random processes, representation theorem leads to random signals being described by random vectors with uncorrelated components.
 - Theorem of Irrelavance allows us to disregrad nearly all components of noise in the receiver.
- We will briefly review key ideas that provide underpinning for signal spaces.

© 2017, B.-P. Paris

andom Processe 0000 00000000 0000000 Itering of Random Processes 0000 0 00000

Linear Vector Spaces

- The basic structure needed by our signal spaces is the idea of linear vector space.
- Definition: A linear vector space S is a collection of elements ("vectors") with the following properties:
 - Addition of vectors is defined and satisfies the following conditions for any *x*, *y*, *z* ∈ S:
 - 1. $x + y \in S$ (closed under addition)
 - 2. x + y = y + x (commutative)
 - 3. (x + y) + z = x + (y + z) (associative)
 - 4. The zero vector $\vec{0}$ exists and $\vec{0} \in S$. $x + \vec{0} = x$ for all $x \in S$.
 - 5. For each $x \in S$, a unique vector (-x) is also in S and $x + (-x) = \vec{0}$.

© 2017, B.-P. Paris

andom Processe

iltering of Random Processes

Linear Vector Spaces — continued

Definition — continued:

- Associated with the set of vectors in S is a set of scalars. If a, b are scalars, then for any x, y ∈ S the following properties hold:
 - 1. $a \cdot x$ is defined and $a \cdot x \in S$.
 - 2. $a \cdot (b \cdot x) = (a \cdot b) \cdot x$
 - 3. Let 1 and 0 denote the multiplicative and additive identies of the field of scalars, then $1 \cdot x = x$ and $0 \cdot x = \vec{0}$ for all $x \in S$.
 - 4. Associative properties:

$$a \cdot (x + y) = a \cdot x + a \cdot y$$

 $(a + b) \cdot x = a \cdot x + b \cdot x$

© 2017, B.-P. Paris

Gaussian Basics	Random Processes	Filtering of Random Processes	Signal Space Concepts
000 00000 0000	0000 0000000 000000 0000	00000 00 000000 00000	

Running Examples

• The space of length-N vectors \mathbb{R}^N

$$\begin{pmatrix} x_1 \\ \vdots \\ x_N \end{pmatrix} + \begin{pmatrix} y_1 \\ \vdots \\ y_N \end{pmatrix} = \begin{pmatrix} x_1 + y_1 \\ \vdots \\ x_N + y_N \end{pmatrix} \text{ and } a \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_N \end{pmatrix} = \begin{pmatrix} a \cdot x_1 \\ \vdots \\ a \cdot x_N \end{pmatrix}$$

• The collection of all square-integrable signals over $[T_a, T_b]$, i.e., all signals x(t) satisfying

$$\int_{T_a}^{T_b} |x(t)|^2 \, dt < \infty.$$

- Verifying that this is a linear vector space is easy.
 This space is called L²(T_a, T_b) (pronounced: ell-two).

© 2017, B.-P. Paris

andom Process 0000 00000000 0000000 Itering of Random Processes

Inner Product

- ► To be truly useful, we need linear vector spaces to provide
 - means to measure the length of vectors and
 - to measure the distance between vectors.
- Both of these can be achieved with the help of inner products.
- ▶ Definition: The inner product of two vectors x, y, ∈ S is denoted by (x, y). The inner product is a scalar assigned to x and y so that the following conditions are satisfied:
 - 1. $\langle x, y \rangle = \langle y, x \rangle$ (for complex vectors $\langle x, y \rangle = \langle y, x \rangle^*$)
 - 2. $\langle a \cdot x, y \rangle = a \cdot \langle x, y \rangle$, with scalar *a*
 - **3**. $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$, with vector *z*
 - 4. $\langle x, x \rangle > 0$, except when $x = \vec{0}$; then, $\langle x, x \rangle = 0$.

© 2017, B.-P. Paris

ECE 630: Statistical Communication Theory

Gaussian Basics ooo ooooo oooo	Random Processes	Filtering of Random Processes	Signal Space Concepts ○○○ ○●○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○
	0000	00000	000000

Exercise: Valid Inner Products?

• $x, y \in \mathbb{R}^N$ with

$$\langle x, y \rangle = \sum_{n=1}^{N} x_n y_n$$

- Answer: Yes; this is the standard dot product.
- $x, y \in \mathbb{R}^N$ with

$$\langle x, y \rangle = \sum_{n=1}^{N} x_n \cdot \sum_{n=1}^{N} y_n$$

- Answer: No; last condition does not hold, which makes this inner product useless for measuring distances.
- $x(t), y(t) \in L^2(a, b)$ with

$$\langle x(t), y(t) \rangle = \int_{a}^{b} x(t)y(t) dt$$

Yes: continuous-time equivalent of the dot-product. © 2017, B.-P. Paris

Gaussian Basics	Random Processes	Filtering of Random Processes	Signal Space Concepts
000 00000 0000	0000 0000000 000000 0000	00000 00 000000 00000	000 00000000000 0000000000000000000000

Exercise: Valid Inner Products?

•
$$x, y \in \mathbb{C}^N$$
 with

$$\langle x, y \rangle = \sum_{n=1}^{N} x_n y_n^*$$

- ► Answer: Yes; the conjugate complex is critical to meet the last condition (e.g., (j, j) = −1 < 0).</p>
- $x, y \in \mathbb{R}^N$ with

$$\langle x, y \rangle = x^T K y = \sum_{n=1}^N \sum_{m=1}^N x_n K_{n,m} y_m$$

with *K* an $N \times N$ -matrix

• Answer: Only if K is positive definite (i.e., $x^T K x > 0$ for all $x \neq \vec{0}$).

© 2017, B.-P. Paris

Gaussian	Basics

andom Process 0000 00000000 0000000 0000000 iltering of Random Processes

Signal Space Concepts

Norm of a Vector

▶ Definition: The norm of vector x ∈ S is denoted by ||x|| and is defined via the inner product as

$$\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}.$$

- Notice that ||x|| > 0 unless $x = \vec{0}$, then ||x|| = 0.
- The norm of a vector measures the length of a vector.
- For signals $||x(t)||^2$ measures the *energy* of the signal.
- **Example:** For $x \in \mathbb{R}^N$, Cartesian length of a vector

$$\|x\| = \sqrt{\sum_{n=1}^N |x_n|^2}$$

© 2017, B.-P. Paris

ECE 630: Statistical Communication Theory

Aandom Processe

Itering of Random Processes 0000 000000 00000 Signal Space Concepts

Norm of a Vector — continued

Illustration:

$$\|a \cdot x\| = \sqrt{\langle a \cdot x, a \cdot x \rangle} = a \|x\|$$

Scaling the vector by *a*, scales its length by *a*.

© 2017, B.-P. Paris

ECE 630: Statistical Communication Theory

andom Processe 000 0000000 000000 Itering of Random Processes 0000 0 00000 Signal Space Concepts

Inner Product Space

- We call a linear vector space with an associated, valid inner product an inner product space.
 - Definition: An inner product space is a linear vector space in which a inner product is defined for all elements of the space and the norm is given by ||x|| = (x, x).

Standard Examples:

- 1. \mathbb{R}^N with $\langle x, y \rangle = \sum_{n=1}^N x_n y_n$.
- 2. $L^2(a, b)$ with $\langle x(t), y(t) \rangle = \int_a^b x(t)y(t) dt$.

© 2017, B.-P. Paris

ECE 630: Statistical Communication Theory

andom Processe 0000 00000000 0000000 000000 iltering of Random Processes

Signal Space Concepts

Schwartz Inequality

- The following relationship between norms and inner products holds for all inner product spaces.
- Schwartz Inequality: For any $x, y \in S$, where S is an inner product space,

$$|\langle x, y \rangle| \leq ||x|| \cdot ||y||$$

with equality if and only if $x = c \cdot y$ with scalar c

• Proof follows from $||x + a \cdot y||^2 \ge 0$ with $a = -\frac{\langle x, y \rangle}{||y||^2}$.

© 2017, B.-P. Paris

ECE 630: Statistical Communication Theory

Gaussian Basics	Random Processes	Filtering of Random Processes	Signal Space Concepts
000 00000 0000	0000 0000000 0000000	00000 00 000000	000 000000000000 00000000000000000000
			000000

Orthogonality

Definition: Two vectors are orthogonal if the inner product of the vectors is zero, i.e.,

$$\langle x, y \rangle = 0.$$

• **Example:** The standard basis vectors e_m in \mathbb{R}^N are orthogonal; recall

$$e_m = \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix}$$
 the 1 occurs on the *m*-th row

ECE 630: Statistical Communication Theory

andom Process 0000 0000000 000000 0000 Itering of Random Processes

Signal Space Concepts

Orthogonality

• **Example:** The basis functions for the Fourier Series expansion $w_m(t) \in L^2(0, T)$ are orthogonal; recall

$$w_m(t) = \frac{1}{\sqrt{T}} e^{j2\pi m t/T}.$$

86

© 2017, B.-P. Paris

aussian Basics	Random Processes	Filtering of Random Processes	Signal Space Concepts
	0000	00000	000
0000	0000000	00	000000000000000000000000000000000000000
000	000000	000000	000000000000000000000000000000000000000
	0000	00000	000000

Distance between Vectors

Definition: The distance d between two vectors is defined as the norm of their difference, i.e.,

$$d(x,y) = \|x-y\|$$

Example: The Cartesian (or Euclidean) distance between vectors in R^N:

$$d(x, y) = ||x - y|| = \sqrt{\sum_{n=1}^{N} |x_n - y_n|^2}.$$

Example: The root-mean-squared error (RMSE) between two signals in L²(a, b) is

$$d(x(t), y(t)) = ||x(t) - y(t)|| = \sqrt{\int_a^b |x(t) - y(t)|^2} dt$$

87

ECE 630: Statistical Communication Theory

© 2017, B.-P. Paris

andom Processes 0000 0000000 000000 000000 Itering of Random Processes

Properties of Distances

- Distance measures defined by the norm of the difference between vectors x, y have the following properties:
 - 1. d(x, y) = d(y, x)
 - 2. d(x, y) = 0 if and only if x = y
 - 3. $d(x, y) \le d(x, z) + d(y, z)$ for all vectors z (Triangle inequality)

© 2017, B.-P. Paris

ECE 630: Statistical Communication Theory

andom Processe 2000 20000000 2000000 2000000 Filtering of Random Processes

Exercise: Prove the Triangle Inequality

Begin like this:

 $d^{2}(x, y) = ||x - y||^{2}$ = $||(x - z) + (z - y)||^{2}$ = $\langle (x - z) + (z - y), (x - z) + (z - y) \rangle$

$$d^{2}(x, y) = \langle x - z, x - z \rangle + 2\langle x - z, z - y \rangle + \langle z - y, z - y \rangle$$

$$\leq \langle x - z, x - z \rangle + 2|\langle x - z, z - y \rangle| + \langle z - y, z - y \rangle$$

$$\leq \langle x - z, x - z \rangle + 2||x - z|| \cdot ||z - y|| + \langle z - y, z - y \rangle$$

$$= (d(x, z) + (d(y, z))^{2}$$

© 2017, B.-P. Paris

ECE 630: Statistical Communication Theory

andom Process 0000 00000000 0000000 000000 Filtering of Random Processes

Hilbert Spaces — Why we Care

- We would like our vector spaces to have one more property.
 - We say the sequence of vectors {*x_n*} converges to vector *x*, if

$$\lim_{n\to\infty}\|x_n-x\|=0.$$

- We would like the limit point x of any sequence {x_n} to be in our vector space.
- Integrals and derivatives are fundamentally limits; we want derivatives and integrals to stay in the vector space.
- A vector space is said to be closed if it contains all of its limit points.
- Definition: A closed, inner product space is A Hilbert Space.

© 2017, B.-P. Paris

andom Processes ooo ooooooo oooooo ooo Itering of Random Processes ooooo oooooo ooooo Signal Space Concepts

Hilbert Spaces — Examples

- **Examples:** Both \mathbb{R}^N and $L^2(a, b)$ are Hilbert Spaces.
- Counter Example: The space of rational number Q is not closed (i.e., not a Hilbert space)

© 2017, B.-P. Paris

ECE 630: Statistical Communication Theory

Random Process 2000 20000000 2000000 2000000 iltering of Random Processes

Signal Space Concepts

Subspaces

- Definition: Let S be a linear vector space. The space L is a subspace of S if
 - 1. \mathcal{L} is a *subset* of \mathcal{S} and
 - 2. \mathcal{L} is closed.
 - If $x, y \in \mathcal{L}$ then also $x, y, \in \mathcal{S}$.
 - And, $a \cdot x + b \cdot y \in \mathcal{L}$ for all scalars a, b.
- Example: Let S be L²(T_a, T_b). Define L as the set of all sinusoids of frequency f₀, i.e., signals of the form x(t) = Acos(2πf₀t + φ), with 0 ≤ A < ∞ and 0 ≤ φ < 2π</p>
 - 1. All such sinusoids are square integrable.
 - 2. Linear combination of two sinusoids of frequency f_0 is a sinusoid of the same frequency.

© 2017, B.-P. Paris

cs

andom Processe 000 0000000 000000 000 Filtering of Random Processes

Signal Space Concepts

Projection Theorem

- Definition: Let L be a subspace of the Hilbert Space H. The vector x ∈ H (and x ∉ L) is orthogonal to the subspace L if ⟨x, y⟩ = 0 for every y ∈ L.
- Projection Theorem: Let H be a Hilbert Space and L is a subspace of H.

Every vector $x \in \mathcal{H}$ has a unique decomposition

$$x = y + z$$

with $y \in \mathcal{L}$ and z orthogonal to \mathcal{L} . Furthermore,

$$||z|| = ||x - y|| = \min_{\nu \in \mathcal{L}} ||x - \nu||.$$

- y is called the projection of x onto \mathcal{L} .
- Distance from x to all elements of \mathcal{L} is minimized by y.

© 2017, B.-P. Paris

aussian Basics	Random Processes	Filtering of Random Processes	Signal Space Concepts
00 0000 000	0000 0000000 0000000 0000	00000 00 000000 000000	000 00000000000 0000000000000000000000

Exercise: Fourier Series

- Let x(t) be a signal in the Hilbert space $L^2(0, T)$.
- Define the subspace \mathcal{L} of signals $\nu_n(t) = A_n \cos(2\pi nt/T)$ for a fixed *n*.
- Find the signal $y(t) \in \mathcal{L}$ that minimizes

$$\min_{\mathbf{y}(t)\in\mathcal{L}}\|\mathbf{x}(t)-\mathbf{y}(t)\|^2.$$

• **Answer:** y(t) is the sinusoid with amplitude

$$A_n = \frac{2}{T} \int_0^T x(t) \cos(2\pi nt/T) dt = \frac{2}{T} \langle x(t), \cos(2\pi nt/T) \rangle.$$

- Note that this is (part of the trigonometric form of) the Fourier Series expansion.
- Note that the inner product performs the projection of x(t) onto L.

© 2017, B.-P. Paris