Gaussian Basics Random Processes Filtering of Random Processes Signal Space Concepts
000 ®000 000

000000 00000000 000000000000
0000 0000000 00000000000 0OO000(G

0000 000000

Random Processes — Why we Care

» Random processes describe signals that change randomly
over time.

» Compare: deterministic signals can be described by a
mathematical expression that describes the signal exactly
for all time.

» Example: x(t) = 3 cos(2rtfet + 7w /4) with f, = 1GHz.

» We will encounter three types of random processes in
communication systems:

1. (nearly) deterministic signal with a random parameter —
Example: sinusoid with random phase.

2. signals constructed from a sequence of random variables
— Example: digitally modulated signals with random
symbols
3. noise-like signals
» Objective: Develop a framework to describe and analyze p

random signals encountered in the receiverofa ~ J1ASON
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Random Process — Formal Definition

» Random processes can be defined completely analogous
to random variables over a probability triple space
(O, F,P).

» Definition: A random process is a mapping from each
element w of the sample space (2 to a function of time
(i.e., a signal).

» Notation: X;(w) — we will frequently omit w to simplify
notation.

» Observations:

» We will be interested in both real and complex valued
random processes.
» Note, for a given random outcome wg, X;(wq) is a
deterministic signal.
> Note, for a fixed time fp, X, (w) is a random variable. Masss
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Sample Functions and Ensemble

» For a given random outcome wy, X;(wp) is a deterministic
signal.

» Each signal that that can be produced by a our random
process is called a sample function of the random process.

» The collection of all sample functions of a random process
is called the ensemble of the process.

» Example: Let ©(w) be a random variable with four equally
likely, possible values Q2 = {0, Z, i, X }. Define the
random process Xi(w) = cos(27tfyt + O(w)).

The ensemble of this random process consists of the four
sample functions:

Xi(wq) = cos(2rthot)  Xi(wo) = —sin(27thi)
Xt(w3) = — COS(27Tf0t) Xt(w4) = Sin(27'(fot) Dﬁssonee
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Probability Distribution of a Random Process

» For a given time instant ¢, X;(w) is a random variable.
» Since it is a random variable, it has a pdf (or pmf in the
discrete case).
> We denote this pdf as px, (x).
» The statistical properties of a random process are
specified completely if the joint pdf

le‘-l ..... th (X1 1oty Xn)

is available forallnand t;, i =1, ..., n.

» This much information is often not available.
» Joint pdfs with many sampling instances can be

cumbersome.
> We will shortly see a more concise summary of the P
statistics for a random process. MAS6R
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Random Process with Random Parameters

» A deterministic signal that depends on a random
parameter is a random process.

» Note, the sample functions of such random processes do
not “look” random.

» Running Examples:
» Example (discrete phase): Let ©(w) be a random variable
with four equally likely, possible values Q = {0, Z, rr, 3L }.
Define the random process X;(w) = cos(27tfyt + O(w)).
» Example (continuous phase): same as above but phase

©(w) is uniformly distributed between 0 and 27,
O(w) ~ U|0,27).

» For both of these processes, the complete statistical
description of the random process can be found.
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Example: Discrete Phase Process

» Discrete Phase Process: Let ©(w) be a random variable
with four equally likely, possible values Q = {0, Z, , 3% }.
Define the random process X;(w) = cos(2rtfyt + O(w)).

» Find the first-order density py,(x) for this process.

» Find the second-order density Px:, x,, (x1, X2) for this
process.
» Note, since the phase values are discrete the above pdfs

must be expressed with the help of /-functions.
» Alternatively, one can derive a probability mass function.
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Solution: Discrete Phase Process

» First-order density function:

Px,(X) = %(5()( — cos(2rtfyt)) + 6(x + sin(2mft) )+

5(X—|- COS(27‘L’f0t)) + 5(X — Sin(27'lff0t)))

» Second-order density function:

1
pXt1 X, (X1 : X2) = Z(é X1 — COS(27Tf0t1 )) . 5(X2 — COS(27Tf()t2 )—|—

d(Xx1 + cos(2mthyty)) - 6(Xo + cos(27thyt

(
5(X1 + Sin(27'lff0t1)) : 5(X2 + Sih(27‘[fot2)
( 2
(5(X1 — Sin(271ff0t1 )) y 5(X2 — Sin(27(fot2)
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Example: Continuous Phase Process

» Continuous Phase Process: Let ©(w) be a random
variable that is uniformly distributed between 0 and 27,
®(w) ~ |0, 27). Define the random process
Xi(w) = cos(2mtfyt + O(w)).

» Find the first-order density py,(x) for this process.

» Find the second-order density Px., x,, (X1, Xo) for this
process.
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Solution: Continuous Phase Process

» First-order density:

1
X)) =
P ) = A=

Notice that px,(x) does not depend on t.
» Second-order density:

for x| < 1.

1 1
Px;, x, (X1, X2) = 5
Ty /1 — X5

d(x1 — cos(27tfy(ty — to) + arccos(xz)))+
d(xy — cos(2mfy(ty — b)) — arccos(xz)))]
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Random Processes Constructed from Sequence of
Random Experiments

» Model for digitally modulated signals.
» Example:
» Let Xy (w) denote the outcome of the k-th toss of a coin:

1 if heads on k-th toss
—1 if tails on k-th toss.

X (w) = {
» Let p(t) denote a pulse of duration T, e.g.,

(1) = 1 for0<t<T
PU=9 0 else.

» Define the random process X;
Xi(w) = ¥ Xi(w)p(t — nT)
k
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Probability Distribution

» Assume that heads and tails are equally likely.

» Then the first-order density for the above random process
IS

px (X) = 5 (8(x 1) +6(x +1)).

» The second-order density is:

(5(X1 —Xg)p)(t1 (X1) ifnT < t1, t2 < (n+ 1)T

Px;, X, (X1, X2) =
X (X1 2) { px, (X1)px, (X2)  else.

» These expression become more complicated when p(t) is
not a rectangular pulse.
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Probability Density of Random Processs Defined
Directly

» Sometimes the n-th order probability distribution of the
random process is given.

» Most important example: Gaussian Random Process
» Statistical model for noise.

» Definition: The random process X; is Gaussian if the

vector X of samples taken at times ti, ... ., t,
Xt,
X=1 :
X,
is a Gaussian random vector for all ¢4, ..., In.
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Second Order Description of Random Processes

» Characterization of random processes in terms of n-th
order densities is

» frequently not available
» mathematically cumbersome
» A more tractable, practical alternative description is

provided by the second order description for a random
process.
» Definition: The second order description of a random
process consists of the
» mean function and the
» autocorrelation function
of the process.

» Note, the second order description can be computed from
the (second-order) joint density.

» The converse is not true — at a minimum the distribution Pnﬂss.aﬁ

must be specified (e.g., Gaussian). e
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Mean Function

» The second order description of a process relies on the
mean and autocorrelation functions — these are defined
as follows

» Definition: The mean of a random process is defined as:

o0

E(X;] = mx(t) = / X - px,(x) dx

— 00

» Note, that the mean of a random process is a deterministic
signal.
» The mean is computed from the first oder density function.
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Autocorrelation Function

» Definition: The autocorrelation function of a random
process is defined as:

Rx(t, u) = E[XiX,] = /_ /_ Xy - Px,x, (X, y) dx dy

» Autocorrelation is computed from second order density
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Autocovariance Function

» Closely related: autocovariance function:

Cx(t,u) = E[(Xt — mx (1)) (Xu — mx(u))]
= Rx(t,u) — mx(t)mx(u)
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Exercise: Discrete Phase Example

» Find the second-order description for the discrete phase
random process.

» Discrete Phase Process: Let ©(w) be a random variable
with four equally likely, possible values (2 = {0, 7, 7, 37” :

Define the random process X;(w) = cos(27tfot + O(w)).
» Answer:
» Mean: my(t) = 0.
> Autocorrelation function:

Rx(t, u) = %cos(Zﬂfo(t —U)).
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Exercise: Continuous Phase Example

» Find the second-order description for the continuous phase
random process.

» Continuous Phase Process: Let ©(w) be a random
variable that is uniformly distributed between 0 and 27,
O(w) ~ |0, 27). Define the random process
Xi(w) = cos(2tfyt + O(w)).
» Answer:
» Mean: myx(t) = 0.
> Autocorrelation function:

Ry (t u) = %cos(27rfo(t— 0).
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Properties of the Autocorrelation Function

» The autocorrelation function of a (real-valued) random
process satisfies the following properties:
1. Rx(t, 1) >0
2. Rx(t,u) = Rx(u,t) (symmetry)
3. |Rx(t,u)| < 3(Rx(t,t) + Rx(u, u))
4. |Rx(t, u)|? < Rx(t, t)- Rx(u, u)
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Stationarity

» The concept of stationarity is analogous to the idea of
time-invariance in linear systems.

» Interpretation: For a stationary random process, the
statistical properties of the process do not change with
time.

» Definition: A random process X; Is strict-sense stationary
(sss) to the n-th order if:

forall T.

» The statistics of X; do not depend on absolute time but only
on the time differences between the sample times.
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Wide-Sense Stationarity

» A simpler and more tractable notion of stationarity is based
on the second-order description of a process.
» Definition: A random process X; is wide-sense stationary
(wss) if
1. the mean function my(t) is constant and
2. the autocorrelation function Rx(t, u) depends on t and u
only through t — u, i.e., Rx(t,u) = Rx(t — u)
» Notation: for a wss random process, we write the
autocorrelation function in terms of the single
time-parameter T =t — u:

Rx(t, U) = Rx(t— U) = Rx(T).
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Exercise: Stationarity

» True or False: Every random process that is strict-sense
stationarity to the second order is also wide-sense
stationary.

» Answer: True

» True or False: Every random process that is wide-sense
stationary must be strict-sense stationarity to the second
order.

» Answer: False
» True or False: The discrete phase process is strict-sense
stationary.
» Answer: False; first order density depends on t, therefore,
not even first-order sss.
» True or False: The discrete phase process is wide-sense
stationary. P
» Answer: True MASON
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White Gaussian Noise

» Definition: A (real-valued) random process X; is called
white Gaussian Noise if
» X; is Gaussian for each time instance t
» Mean: my(t) =0 for all ¢
No

> Autocorrelation function: Rx(7) = 246(7)

» White Gaussian noise is a good model for noise in
communication systems.
» Note, that the variance of X; is infinite:
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