Random Processes

Filtering of Random Processes

Signal Space Concepts

Properties of the Autocorrelation Function

- The autocorrelation function of a (real-valued) random process satisfies the following properties:
 - 1. $R_X(t, t) \ge 0$
 - 2. $R_X(t, u) = R_X(u, t)$ (symmetry)
 - 3. $|R_X(t, u)| \leq \frac{1}{2}(R_X(t, t) + R_X(u, u))$
 - 4. $|R_X(t, u)|^2 \leq R_X(t, t) \cdot R_X(u, u)$

Random Processes

Filtering of Random Processes

Signal Space Concepts

Stationarity

- The concept of stationarity is analogous to the idea of time-invariance in linear systems.
- Interpretation: For a stationary random process, the statistical properties of the process do not change with time.
- Definition: A random process X_t is strict-sense stationary (sss) to the *n*-th order if:

$$p_{X_{t_1},...,X_{t_n}}(x_1,...,x_n) = p_{X_{t_1+T},...,X_{t_n+T}}(x_1,...,x_n)$$

for all T.

The statistics of X_t do not depend on absolute time but only on the time differences between the sample times.

Random Processes ○○○○ ○○○○○○○ ○○○○○○○ ○●○○ Filtering of Random Processes

Signal Space Concepts

Wide-Sense Stationarity

- A simpler and more tractable notion of stationarity is based on the second-order description of a process.
- Definition: A random process X_t is wide-sense stationary (wss) if
 - **1**. the mean function $m_X(t)$ is constant **and**
 - 2. the autocorrelation function $R_X(t, u)$ depends on t and u only through t u, i.e., $R_X(t, u) = R_X(t u)$
- Notation: for a wss random process, we write the autocorrelation function in terms of the single time-parameter \(\tau = t u\):

$$R_X(t, u) = R_X(t-u) = R_X(\tau).$$

Gaussian Basics	Random Processes	Filtering of Random Processes	Signal Space Concepts
000	0000	00000	000
00000	0000000	00	00000000000
0000	000000	000000	000000000000000000000000000000000000000
	0000	00000	000000

Exercise: Stationarity

- True or False: Every random process that is strict-sense stationarity to the second order is also wide-sense stationary.
 - Answer: True
- True or False: Every random process that is wide-sense stationary must be strict-sense stationarity to the second order.
 - Answer: False
- True or False: The discrete phase process is strict-sense stationary.
 - Answer: False; first order density depends on t, therefore, not even first-order sss.
- True or False: The discrete phase process is wide-sense stationary.
 - Answer: True

Random Processes

Filtering of Random Processes

White Gaussian Noise

- Definition: A (real-valued) random process X_t is called white Gaussian Noise if
 - X_t is Gaussian for each time instance t
 - Mean: $m_X(t) = 0$ for all t
 - Autocorrelation function: $R_X(\tau) = \frac{N_0}{2}\delta(\tau)$
 - White Gaussian noise is a good model for noise in communication systems.
 - Note, that the variance of X_t is infinite:

$$\operatorname{Var}(X_t) = \mathbf{E}[X_t^2] = R_X(0) = \frac{N_0}{2}\delta(0) = \infty.$$

• Also, for
$$t \neq u$$
: $\mathbf{E}[X_t X_u] = R_X(t, u) = R_X(t - u) = 0$.

Random Processes 0000 00000000 0000000 0000000 0000 Filtering of Random Processes

Signal Space Concepts

Integrals of Random Processes

- We will see, that receivers always include a linear, time-invariant system, i.e., a filter.
- Linear, time-invariant systems convolve the input random process with the impulse response of the filter.
 - Convolution is fundamentally an integration.
- We will establish conditions that ensure that an expression like

$$Z(\omega) = \int_{a}^{b} X_{t}(\omega) h(t) dt$$

is "well-behaved".

- The result of the (definite) integral is a random variable.
- Concern: Does the above integral converge?

Random Processes

Filtering of Random Processes ○●○○○ ○○ ○○○○○○

Signal Space Concepts

Mean Square Convergence

- There are different senses in which a sequence of random variables may converge: *almost surely*, *in probability*, *mean square*, and *in distribution*.
- We will focus exclusively on mean square convergence.
- For our integral, mean square convergence means that the Rieman sum and the random variable Z satisfy:
 - Given $\epsilon > 0$, there exists a $\delta > 0$ so that

$$\mathbf{E}[(\sum_{k=1}^n X_{\tau_k} h(\tau_k)(t_k - t_{k-1}) - Z)^2] \le \epsilon.$$

with:

- $\bullet a = t_0 < t_1 < \cdots < t_n = b$
- $t_{k-1} \le \tau_k \le t_k$ • $\delta = \max_k (t_k - t_{k-1})$

Random Processes

Filtering of Random Processes

Signal Space Concepts

Mean Square Convergence — Why We Care

It can be shown that the integral converges if

$$\int_{a}^{b} \int_{a}^{b} R_{X}(t, u) h(t) h(u) \, dt \, du < \infty$$

Important: When the integral converges, then the order of integration and expectation can be interchanged, e.g.,

$$\mathbf{E}[Z] = \mathbf{E}[\int_a^b X_t h(t) \, dt] = \int_a^b \mathbf{E}[X_t] h(t) \, dt = \int_a^b m_X(t) h(t) \, dt$$

Throughout this class, we will focus exclusively on cases where R_X(t, u) and h(t) are such that our integrals converge.

ssian Basics	Random Processes	Filtering of Random Processes	Signal Space Concepts
	0000	00000	000
00	0000000	00	00000000000
0	000000	000000	000000000000000000000000000000000000000
	0000	00000	000000

Exercise: Brownian Motion

• **Definition:** Let N_t be white Gaussian noise with $\frac{N_0}{2} = \sigma^2$. The random process

$$W_t = \int_0^t N_s \, ds \quad \text{for } t \ge 0$$

is called Brownian Motion or Wiener Process.

- Compute the mean and autocorrelation functions of W_t .
- Answer: $m_W(t) = 0$ and $R_W(t, u) = \sigma^2 \min(t, u)$

Gau

Random Processes

Filtering of Random Processes

Signal Space Concepts

Integrals of Gaussian Random Processes

- Let X_t denote a Gaussian random process with second order description $m_X(t)$ and $R_X(t, s)$.
- Then, the integral

$$Z = \int_{a}^{b} X(t) h(t) \, dt$$

is a Gaussian random variable.

Moreover mean and variance are given by

$$\mu = \mathbf{E}[Z] = \int_{a}^{b} m_{X}(t)h(t) dt$$
$$Var[Z] = \mathbf{E}[(Z - \mathbf{E}[Z])^{2}] = \mathbf{E}[(\int_{a}^{b} (X_{t} - m_{x}(t))h(t) dt)^{2}]$$

$$= \int_a^b \int_a^b C_X(t, u) h(t) h(u) \, dt \, du$$

Random Processes

Filtering of Random Processes

Signal Space Concepts

Jointly Defined Random Processes

- Let X_t and Y_t be jointly defined random processes.
 - E.g., input and output of a filter.
- Then, joint densities of the form $p_{X_tY_u}(x, y)$ can be defined.
- Additionally, second order descriptions that describe the correlation between samples of X_t and Y_t can be defined.

ussian Basics	Random Processes	Filtering of Random Processes	Sig
0	0000	00000	00
000	0000000	0•	00
00	000000	000000	00
	0000	00000	00

Crosscorrelation and Crosscovariance

Definition: The crosscorrelation function R_{XY}(t, u) is defined as:

$$R_{XY}(t, u) = \mathbf{E}[X_t Y_u] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy p_{X_t Y_u}(x, y) \, dx \, dy.$$

Definition: The crosscovariance function C_{XY}(t, u) is defined as:

$$C_{XY}(t, u) = R_{XY}(t, u) - m_X(t)m_Y(u).$$

Definition: The processes X_t and Y_t are called jointly wide-sense stationary if:

1.
$$R_{XY}(t, u) = R_{XY}(t - u)$$
 and

2. $m_X(t)$ and $m_Y(t)$ are constants.

Ga

Random Processes

0000000 000000 000 Filtering of Random Processes

Filtering of Random Processes

Filtered Random Process

$$X_t \longrightarrow h(t) \longrightarrow Y_t$$

Random Processes

Filtering of Random Processes

Filtering of Random Processes

- Clearly, X_t and Y_t are jointly defined random processes.
- Standard LTI system convolution:

$$Y_t = \int h(t - \sigma) X_\sigma \, d\sigma = h(t) * X_t$$

Recall: this convolution is "well-behaved" if

$$\iint R_X(\sigma,\nu)h(t-\sigma)h(t-\nu)\,d\sigma\,d\nu<\infty$$

• E.g.: $\iint R_X(\sigma, \nu) \, d\sigma \, d\nu < \infty$ and h(t) stable.

Random Processes

Filtering of Random Processes

Second Order Description of Output: Mean

• The expected value of the filter's output Y_t is:

$$\begin{aligned} \mathbf{E}[\mathbf{Y}_t] &= \mathbf{E}[\int h(t-\sigma) X_\sigma \, d\sigma] \\ &= \int h(t-\sigma) \mathbf{E}[X_\sigma] \, d\sigma \\ &= \int h(t-\sigma) m_X(\sigma) \, d\sigma \end{aligned}$$

For a wss process X_t , $m_X(t)$ is constant. Therefore,

$$\mathbf{E}[\mathbf{Y}_t] = m_{\mathbf{Y}}(t) = m_{\mathbf{X}} \int h(\sigma) \, d\sigma$$

is also constant.

Random Processes

Filtering of Random Processes

Crosscorrelation of Input and Output

The crosscorrelation between input and ouput signals is:

$$\begin{aligned} \mathsf{R}_{XY}(t, u) &= \mathsf{E}[X_t Y_u] = \mathsf{E}[X_t \int h(u - \sigma) X_\sigma \, d\sigma \\ &= \int h(u - \sigma) \mathsf{E}[X_t X_\sigma] \, d\sigma \\ &= \int h(u - \sigma) \mathsf{R}_X(t, \sigma) \, d\sigma \end{aligned}$$

For a wss input process

$$R_{XY}(t, u) = \int h(u - \sigma) R_X(t, \sigma) \, d\sigma = \int h(v) R_X(t, u - v) \, dv$$
$$= \int h(v) R_X(t - u + v) \, dv = R_{XY}(t - u)$$

Input and output are jointly stationary.

Random Processes 0000 0000000 000000 0000 Filtering of Random Processes

Autocorelation of Output

• The autocorrelation of Y_t is given by

$$R_{Y}(t, u) = \mathbf{E}[Y_{t}Y_{u}] = \mathbf{E}[\int h(t-\sigma)X_{\sigma} \, d\sigma \int h(u-\nu)X_{\nu} \, d\nu]$$
$$= \int \int h(t-\sigma)h(u-\nu)R_{X}(\sigma, \nu) \, d\sigma \, d\nu$$

For a wss input process:

$$R_{Y}(t, u) = \iint h(t - \sigma) h(u - v) R_{X}(\sigma, v) \, d\sigma \, dv$$

=
$$\iint h(\lambda) h(\lambda - \gamma) R_{X}(t - \lambda, u - \lambda + \gamma) \, d\lambda \, d\gamma$$

=
$$\iint h(\lambda) h(\lambda - \gamma) R_{X}(t - u - \gamma) \, d\lambda \, d\gamma = R_{Y}(t - u)$$

© 2017, B.-P. Paris

1

Random Processes	Filtering of Random Processes	Signal Space Concepts
0000	00000	000
0000000	00	00000000000
000000	000000	000000000000000000000000000000000000000
0000	00000	000000
	Random Processes 0000 0000000 0000000 000000 0000	Random ProcessesFiltering of Random Processes000

Exercise: Filtered White Noise Process

Let the white Gaussian noise process X_t be input to a filter with impulse response

$$h(t) = e^{-at}u(t) = \begin{cases} e^{-at} & \text{for } t \ge 0\\ 0 & \text{for } t < 0 \end{cases}$$

- Compute the second order description of the output process Y_t .
- Answers:
 - Mean: *m_Y* = 0
 - Autocorrelation:

$$R_Y(\tau) = \frac{N_0}{2} \frac{e^{-a|\tau|}}{2a}$$

Ga