
Gaussian Basics Random Processes Filtering of Random Processes Signal Space Concepts

Properties of the Autocorrelation Function

I The autocorrelation function of a (real-valued) random
process satisfies the following properties:

1. RX (t , t) � 0
2. RX (t , u) = RX (u, t) (symmetry)
3. |RX (t , u)|  1

2 (RX (t , t) + RX (u, u))
4. |RX (t , u)|2  RX (t , t) · RX (u, u)
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Stationarity
I The concept of stationarity is analogous to the idea of

time-invariance in linear systems.
I Interpretation: For a stationary random process, the

statistical properties of the process do not change with
time.

I Definition: A random process Xt is strict-sense stationary
(sss) to the n-th order if:

pXt1 ,...,Xtn
(x1, . . . , xn) = pXt1+T ,...,Xtn+T (x1, . . . , xn)

for all T .
I The statistics of Xt do not depend on absolute time but only

on the time differences between the sample times.

© 2017, B.-P. Paris ECE 630: Statistical Communication Theory 52



Gaussian Basics Random Processes Filtering of Random Processes Signal Space Concepts

Wide-Sense Stationarity

I A simpler and more tractable notion of stationarity is based
on the second-order description of a process.

I Definition: A random process Xt is wide-sense stationary
(wss) if

1. the mean function mX (t) is constant and
2. the autocorrelation function RX (t , u) depends on t and u

only through t � u, i.e., RX (t , u) = RX (t � u)
I Notation: for a wss random process, we write the

autocorrelation function in terms of the single
time-parameter t = t � u:

RX (t , u) = RX (t � u) = RX (t).
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Exercise: Stationarity
I True or False: Every random process that is strict-sense

stationarity to the second order is also wide-sense
stationary.

I Answer: True
I True or False: Every random process that is wide-sense

stationary must be strict-sense stationarity to the second
order.

I Answer: False
I True or False: The discrete phase process is strict-sense

stationary.
I Answer: False; first order density depends on t , therefore,

not even first-order sss.
I True or False: The discrete phase process is wide-sense

stationary.
I Answer: True
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White Gaussian Noise

I Definition: A (real-valued) random process Xt is called
white Gaussian Noise if

I Xt is Gaussian for each time instance t
I Mean: mX (t) = 0 for all t
I Autocorrelation function: RX (t) =

N0
2 d(t)

I White Gaussian noise is a good model for noise in
communication systems.

I Note, that the variance of Xt is infinite:

Var(Xt ) = E[X 2
t ] = RX (0) =

N0
2

d(0) = •.

I Also, for t 6= u: E[XtXu ] = RX (t , u) = RX (t � u) = 0.
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Integrals of Random Processes

I We will see, that receivers always include a linear,
time-invariant system, i.e., a filter.

I Linear, time-invariant systems convolve the input random
process with the impulse response of the filter.

I Convolution is fundamentally an integration.
I We will establish conditions that ensure that an expression

like
Z (w) =

Z b

a
Xt (w)h(t) dt

is “well-behaved”.
I The result of the (definite) integral is a random variable.

I Concern: Does the above integral converge?
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Mean Square Convergence
I There are different senses in which a sequence of random

variables may converge: almost surely, in probability,
mean square, and in distribution.

I We will focus exclusively on mean square convergence.
I For our integral, mean square convergence means that the

Rieman sum and the random variable Z satisfy:
I Given e > 0, there exists a d > 0 so that

E[(
n

Â
k=1

Xtk h(tk )(tk � tk�1)� Z )
2

]  e.

with:
I a = t0 < t1 < · · · < tn = b
I tk�1  tk  tk
I d = maxk (tk � tk�1)
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Mean Square Convergence — Why We Care

I It can be shown that the integral converges if
Z b

a

Z b

a
RX (t , u)h(t)h(u) dt du < •

I Important: When the integral converges, then the order of
integration and expectation can be interchanged, e.g.,

E[Z ] = E[
Z b

a
Xth(t) dt ] =

Z b

a
E[Xt ]h(t) dt =

Z b

a
mX (t)h(t) dt

I Throughout this class, we will focus exclusively on cases
where RX (t , u) and h(t) are such that our integrals
converge.
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Exercise: Brownian Motion

I Definition: Let Nt be white Gaussian noise with N0
2 = s2.

The random process

Wt =
Z t

0
Ns ds for t � 0

is called Brownian Motion or Wiener Process.

I Compute the mean and autocorrelation functions of Wt .
I Answer: mW (t) = 0 and RW (t , u) = s2 min(t , u)
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Integrals of Gaussian Random Processes
I Let Xt denote a Gaussian random process with second

order description mX (t) and RX (t , s).
I Then, the integral

Z =
Z b

a
X (t)h(t) dt

is a Gaussian random variable.
I Moreover mean and variance are given by

µ = E[Z ] =
Z b

a
mX (t)h(t) dt

Var[Z ] = E[(Z � E[Z ])2] = E[(
Z b

a
(Xt � mx (t))h(t) dt)

2

]

=
Z b

a

Z b

a
CX (t , u)h(t)h(u) dt du
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Jointly Defined Random Processes

I Let Xt and Yt be jointly defined random processes.
I E.g., input and output of a filter.

I Then, joint densities of the form pXt Yu (x , y) can be defined.
I Additionally, second order descriptions that describe the

correlation between samples of Xt and Yt can be defined.
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Crosscorrelation and Crosscovariance
I Definition: The crosscorrelation function RXY (t , u) is

defined as:

RXY (t , u) = E[XtYu ] =
Z •

�•

Z •

�•
xypXt Yu (x , y) dx dy .

I Definition: The crosscovariance function CXY (t , u) is
defined as:

CXY (t , u) = RXY (t , u)� mX (t)mY (u).

I Definition: The processes Xt and Yt are called jointly
wide-sense stationary if:

1. RXY (t , u) = RXY (t � u) and
2. mX (t) and mY (t) are constants.
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Filtering of Random Processes

Filtered Random Process

Xt h(t) Yt
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Filtering of Random Processes

I Clearly, Xt and Yt are jointly defined random processes.
I Standard LTI system — convolution:

Yt =
Z

h(t � s)Xs ds = h(t) ⇤ Xt

I Recall: this convolution is “well-behaved” if
Z Z

RX (s, n)h(t � s)h(t � n) ds dn < •

I E.g.:
RR

RX (s, n) ds dn < • and h(t) stable.
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Second Order Description of Output: Mean
I The expected value of the filter’s output Yt is:

E[Yt ] = E[
Z

h(t � s)Xs ds]

=
Z

h(t � s)E[Xs] ds

=
Z

h(t � s)mX (s) ds

I For a wss process Xt , mX (t) is constant. Therefore,

E[Yt ] = mY (t) = mX

Z

h(s) ds

is also constant.
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Crosscorrelation of Input and Output
I The crosscorrelation between input and ouput signals is:

RXY (t , u) = E[XtYu ] = E[Xt

Z

h(u � s)Xs ds

=
Z

h(u � s)E[XtXs] ds

=
Z

h(u � s)RX (t , s) ds

I For a wss input process

RXY (t , u) =
Z

h(u � s)RX (t , s) ds =
Z

h(n)RX (t , u � n) dn

=
Z

h(n)RX (t � u + n) dn = RXY (t � u)

I Input and output are jointly stationary.
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Autocorelation of Output
I The autocorrelation of Yt is given by

RY (t , u) = E[YtYu ] = E[
Z

h(t � s)Xs ds
Z

h(u � n)Xn dn]

=
Z Z

h(t � s)h(u � n)RX (s, n) ds dn

I For a wss input process:

RY (t , u) =
Z Z

h(t � s)h(u � n)RX (s, n) ds dn

=
Z Z

h(l)h(l � g)RX (t � l, u � l + g) dl dg

=
Z Z

h(l)h(l � g)RX (t � u � g) dl dg = RY (t � u)

I Define Rh(g) =
R

h(l)h(l � g) dl = h(l) ⇤ h(�l).
I Then, RY (t) =

R

Rh(g)RX (t � g) dg = Rh(t) ⇤ RX (t)
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Exercise: Filtered White Noise Process
I Let the white Gaussian noise process Xt be input to a filter

with impulse response

h(t) = e�atu(t) =

(

e�at for t � 0
0 for t < 0

I Compute the second order description of the output
process Yt .

I Answers:
I Mean: mY = 0
I Autocorrelation:

RY (t) =
N0
2

e�a|t|

2a
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