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Gaussian Random Variables — Why we Care

I Gaussian random variables play a critical role in modeling
many random phenomena.

I By central limit theorem, Gaussian random variables arise
from the superposition (sum) of many random phenomena.

I Pertinent example: random movement of very many
electrons in conducting material.

I Result: thermal noise is well modeled as Gaussian.
I Gaussian random variables are mathematically tractable.

I In particular: any linear (more precisely, affine)
transformation of Gaussians produces a Gaussian random
variable.

I Noise added by channel is modeled as being Gaussian.
I Channel noise is the most fundamental impairment in a

communication system.
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Gaussian Random Variables
I A random variable X is said to be Gaussian (or Normal) if

its pdf is of the form

pX (x) =
1

p

2ps2
exp

 
�
(x � m)2

2s2

!
.

I All properties of a Gaussian are determined by the two
parameters m and s2.

I Notation: X ⇠ N (m, s2).
I Moments:

E[X ] =
R •
�• x · pX (x) dx = m

E[X 2] =
R •
�• x2

· pX (x) dx = m2 + s2.
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Plot of Gaussian pdf’s
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The Gaussian Error Integral — Q(x)

I We are often interested in Pr {X > x} for Gaussian
random variables X .

I These probabilities cannot be computed in closed form
since the integral over the Gaussian pdf does not have a
closed form expression.

I Instead, these probabilities are expressed in terms of the
Gaussian error integral

Q(x) =
Z •

x

1
p

2p
e
�

x2
2 dx .
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The Gaussian Error Integral — Q(x)

I Example: Suppose X ⇠ N (1, 4), what is Pr {X > 5}?

Pr {X > 5} =
R •

5
1

p

2p·22 e
�

(x�1)2

2·22 dx substitute z = x�1
2

=
R •

2
1

p
2p

e�
z2
2 dz = Q(2)
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Exercises

I Let X ⇠ N (�3, 4), find expressions in terms of Q(·) for
the following probabilities:

1. Pr {X > 5}?
2. Pr {X < �1}?
3. Pr

�
X 2 + X > 2

 
?
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Bounds for the Q-function
I Since no closed form expression is available for Q(x),

bounds and approximations to the Q-function are of
interest.

I The following bounds are tight for large values of x :

✓
1 �

1
x2

◆
e�

x2
2

x
p

2p
 Q(x) 

e�
x2
2

x
p

2p
.

I The following bound is not as quite as tight but very useful
for analysis

Q(x) 
1
2

e
�

x2
2 .

I Note that all three bounds are dominated by the term e�
x2
2 ;

this term determines the asymptotic behaviour of Q(x).
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Plot of Q(x) and Bounds
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Exercise: Chernoff Bound

I For a random variable X , the Chernoff Bound provides a
tight upper bound on the probability Pr {X > x}.

I The Chernoff bound is given by

Pr {X > x}  min
t>0

E[etX ]
etx

.

I Let X ⇠ N (0, 1); use the Chernoff bound to show that

Pr {X > x} = Q(x)  e
�x2/2
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Gaussian Random Vectors
I A length N random vector ~X is said to be Gaussian if its

pdf is given by

p~X (~x) =
1

(2p)N/2
|K |1/2

exp

✓
�

1
2
(~x � ~m)T

K
�1(~x � ~m)

◆
.

I Notation: ~X ⇠ N (~m,K ).
I Mean vector

~m = E[~X ] =
Z •

�•
~xp~X (~x) d~x .

I Covariance matrix

K = E[(~X � ~m)(~X � ~m)
T

] =
Z •

�•
(~x � ~m)(~x � ~m)T

p~X (~x) d~x .

I |K | denotes the determinant of K .
I K must be positive definite, i.e.,~zT K~z > 0 for all~z.
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Exercise: Important Special Case: N=2

I Consider a length-2 Gaussian random vector with

~m =~0 and K = s2

 
1 r

r 1

!
with |r|  1.

I Find the pdf of ~X .

I Answer:

p~X (~x) =
1

2ps2
p

1 � r2
exp

 
x2

1 � 2rx1x2 + x2
2

2s2(1 � r2)

!
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Important Properties of Gaussian Random Vectors

1. If the N Gaussian random variables Xn comprising the
random vector ~X are uncorrelated (Cov[Xi ,Xj ] = 0, for
i 6= j), then they are statistically independent.

2. Any affine transformation of a Gaussian random vector is
also a Gaussian random vector.

I Let ~X ⇠ N (~m,K )
I Affine transformation: ~Y = A~X +~b
I Then, ~Y ⇠ N (A~m +~b,AKAT )
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Exercise: Generating Correlated Gaussian Random
Variables

I Let ~X ⇠ N (~m,K ), with

~m =~0 and K = s2

 
1 0
0 1

!
.

I The elements of ~X are uncorrelated.
I Transform ~Y = A~X , with

A =

 p
1 � r2 r

0 1

!

I Find the pdf of ~Y .
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