Random Processes

Filtering of Random Processes

Signal Space Concepts

Gaussian Random Variables — Why we Care

- Gaussian random variables play a critical role in modeling many random phenomena.
 - By central limit theorem, Gaussian random variables arise from the superposition (sum) of many random phenomena.
 - Pertinent example: random movement of very many electrons in conducting material.
 - Result: thermal noise is well modeled as Gaussian.
 - Gaussian random variables are mathematically tractable.
 - In particular: any linear (more precisely, affine) transformation of Gaussians produces a Gaussian random variable.
- Noise added by channel is modeled as being Gaussian.
 - Channel noise is the most fundamental impairment in a communication system.

(4 同) (4 三) (4 三)

Gaussian Basics	Random Processes	Filtering of Random Processes	Signal Space Concepts
○●○ ○○○○○○ ○○○○	0000 0000000 000000 0000	00000 00 000000 00000	000 00000000000 0000000000000000000000

Gaussian Random Variables

A random variable X is said to be Gaussian (or Normal) if its pdf is of the form

$$p_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-m)^2}{2\sigma^2}\right)$$

- All properties of a Gaussian are determined by the two parameters *m* and σ^2 .
- Notation: $X \sim \mathcal{N}(m, \sigma^2)$.
- Moments:

$$\begin{aligned} \mathbf{E}[X] &= \int_{-\infty}^{\infty} x \cdot p_X(x) \, dx = m \\ \mathbf{E}[X^2] &= \int_{-\infty}^{\infty} x^2 \cdot p_X(x) \, dx = m^2 + \sigma^2. \end{aligned}$$

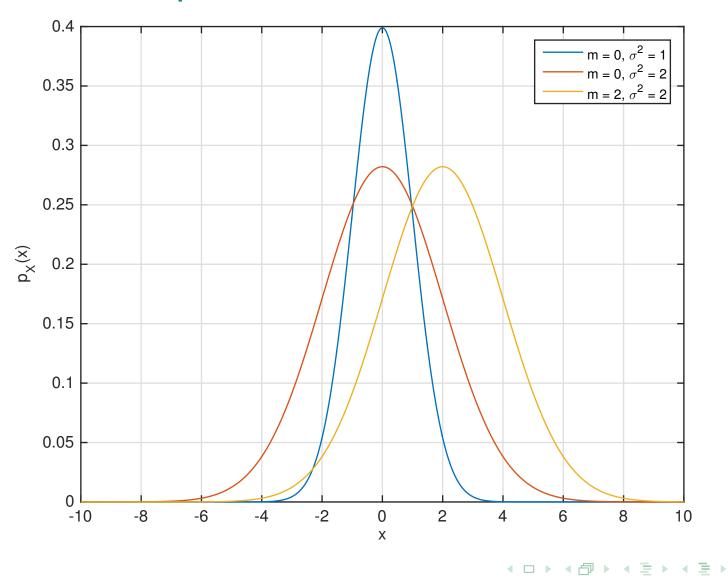
글 🕨 🖌 글 🕨

Gaussian Basics	
000	
000000	
0000	

Random Processes

Filtering of Random Processes

Plot of Gaussian pdf's



MASON

F

© 2018, B.-P. Paris

590

Gaussian Basics ••••• •••••• Random Processes

The Gaussian Error Integral — Q(x)

- We are often interested in Pr {X > x} for Gaussian random variables X.
- These probabilities cannot be computed in closed form since the integral over the Gaussian pdf does not have a closed form expression.
- Instead, these probabilities are expressed in terms of the Gaussian error integral

$$Q(x)=\int_x^\infty \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}\,dx.$$

GEORGE NIVERSITY

<ロ > < 同 > < 同 > < 三 > < 三 >

Random Processes 0000 00000000 0000000 0000 Filtering of Random Processes

Signal Space Concepts

The Gaussian Error Integral — Q(x)

• **Example:** Suppose $X \sim \mathcal{N}(1, 4)$, what is $Pr \{X > 5\}$?

$$\Pr\{X > 5\} = \int_{5}^{\infty} \frac{1}{\sqrt{2\pi \cdot 2^{2}}} e^{-\frac{(x-1)^{2}}{2 \cdot 2^{2}}} dx \quad \text{substitute } z = \frac{x-1}{2}$$
$$= \int_{2}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^{2}}{2}} dz = Q(2)$$

E

◆□▶ ◆□▶ ◆豆▶ ◆豆▶

SQ P

Gaussian Basics	Random Processes	Filtering of Random Processes	Signal Space Concepts
000 00000 0000	0000 0000000 0000000 0000	00000 00 000000 00000	000 00000000000 0000000000000000000000

► Let X ~ N(-3, 4), find expressions in terms of Q(·) for the following probabilities:

1. Pr
$$\{X > 5\}$$
?
2. Pr $\{X < -1\}$?
3. Pr $\{X^2 + X > 2\}$?

E

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

SOR

Random Processes

Filtering of Random Processes

Signal Space Concepts

Bounds for the Q-function

- Since no closed form expression is available for Q(x), bounds and approximations to the Q-function are of interest.
- The following bounds are tight for large values of x:

$$\left(1-\frac{1}{x^2}\right)\frac{e^{-\frac{x^2}{2}}}{x\sqrt{2\pi}} \leq Q(x) \leq \frac{e^{-\frac{x^2}{2}}}{x\sqrt{2\pi}}.$$

The following bound is not as quite as tight but very useful for analysis

$$Q(x)\leq \frac{1}{2}e^{-\frac{x^2}{2}}.$$

► Note that all three bounds are dominated by the term $e^{-\frac{x^2}{2}}$ this term determines the asymptotic behaviour of Q(x).

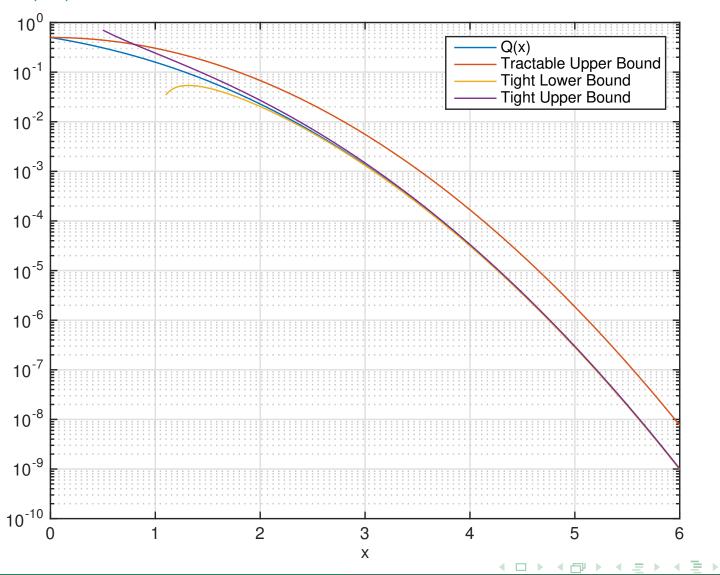
SOR

Gaussian Basics ○○○ ○○○○●○ ○○○○

Random Processes

000 0000000 000000 000 Filtering of Random Processes

Plot of Q(x) and Bounds



Gaussian Basics	Random Processes	Filtering of Random Processes	Signal Space Concepts
000 00000● 0000	0000 0000000 000000 0000	00000 00 000000 00000	000 00000000000 0000000000000000000000

Exercise: Chernoff Bound

- For a random variable X, the Chernoff Bound provides a tight upper bound on the probability Pr {X > x}.
- The Chernoff bound is given by

$$\Pr\left\{X > x\right\} \le \min_{t > 0} \frac{\mathsf{E}[e^{tX}]}{e^{tx}}$$

• Let $X \sim \mathcal{N}(0, 1)$; use the Chernoff bound to show that

$$\Pr{\{X > x\}} = Q(x) \le e^{-x^2/2}$$

Gaussian Basics	Random Processes	Filtering of Random Processes	Signal Space Concepts
000 000000 ●000	0000 0000000 000000 0000	00000 00 000000 00000	000 00000000000 0000000000000000000000

Gaussian Random Vectors

• A length N random vector \vec{X} is said to be Gaussian if its pdf is given by

$$p_{\vec{X}}(\vec{x}) = \frac{1}{(2\pi)^{N/2} |K|^{1/2}} \exp\left(-\frac{1}{2} (\vec{x} - \vec{m})^T K^{-1} (\vec{x} - \vec{m})\right).$$

• Notation:
$$\vec{X} \sim \mathcal{N}(\vec{m}, K)$$
.

Mean vector

$$\vec{m} = \mathbf{E}[\vec{X}] = \int_{-\infty}^{\infty} \vec{x} p_{\vec{X}}(\vec{x}) \, d\vec{x}.$$

Covariance matrix

$$K = \mathbf{E}[(\vec{X} - \vec{m})(\vec{X} - \vec{m})^{T}] = \int_{-\infty}^{\infty} (\vec{x} - \vec{m})(\vec{x} - \vec{m})^{T} p_{\vec{X}}(\vec{x}) \, d\vec{x}.$$

- |K| denotes the determinant of K.
- K must be positive definite, i.e., $\vec{z}^T K \vec{z} > 0$ for all \vec{z} .

Gaussian Basics Random Processes Filtering of Random Processes Signal Space Concepts 0000

Exercise: Important Special Case: N=2

Consider a length-2 Gaussian random vector with

$$\vec{m} = \vec{0}$$
 and $K = \sigma^2 \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$ with $|\rho| \leq 1$.

Find the pdf of \vec{X} .

Exercise: Important Special Case: N=2

Consider a length-2 Gaussian random vector with

$$\vec{m} = \vec{0}$$
 and $K = \sigma^2 \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$ with $|\rho| \leq 1$.

- Find the pdf of \vec{X} .
- Answer:

$$p_{\vec{X}}(\vec{x}) = \frac{1}{2\pi\sigma^2\sqrt{1-\rho^2}} \exp\left(\frac{x_1^2 - 2\rho x_1 x_2 + x_2^2}{2\sigma^2(1-\rho^2)}\right)$$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶

Random Processes 0000 00000000 0000000 000000 Filtering of Random Processes

Signal Space Concepts

Important Properties of Gaussian Random Vectors

- 1. If the *N* Gaussian random variables X_n comprising the random vector \vec{X} are uncorrelated $(\text{Cov}[X_i, X_j] = 0$, for $i \neq j$), then they are statistically independent.
- 2. Any affine transformation of a Gaussian random vector is also a Gaussian random vector.
 - Let $\vec{X} \sim \mathcal{N}(\vec{m}, K)$
 - Affine transformation: $\vec{Y} = A\vec{X} + \vec{b}$
 - Then, $\vec{Y} \sim \mathcal{N}(A\vec{m} + \vec{b}, AKA^T)$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

10 C

Gaussian Basics	Random Processes	Filtering of Random Processes	Signal Space Concepts
000 00000 0000	0000 0000000 000000 0000	00000 00 000000 00000	000 00000000000 0000000000000000000000

Exercise: Generating Correlated Gaussian Random Variables

• Let $\vec{X} \sim \mathcal{N}(\vec{m}, K)$, with

$$\vec{m} = \vec{0}$$
 and $K = \sigma^2 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

• The elements of \vec{X} are uncorrelated.

• Transform $\vec{Y} = A\vec{X}$, with

$$\mathbf{A} = \left(\begin{array}{cc} \sqrt{1-\rho^2} & \rho \\ 0 & 1 \end{array} \right)$$

Find the pdf of \vec{Y} .

