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Part II

Mathematical Prerequisites
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Gaussian Random Variables — Why we Care

I Gaussian random variables play a critical role in modeling
many random phenomena.

I By central limit theorem, Gaussian random variables arise
from the superposition (sum) of many random phenomena.

I Pertinent example: random movement of very many
electrons in conducting material.

I Result: thermal noise is well modeled as Gaussian.
I Gaussian random variables are mathematically tractable.

I In particular: any linear (more precisely, affine)
transformation of Gaussians produces a Gaussian random
variable.

I Noise added by channel is modeled as being Gaussian.
I Channel noise is the most fundamental impairment in a

communication system.
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Gaussian Random Variables
I A random variable X is said to be Gaussian (or Normal) if

its pdf is of the form

pX (x) =
1p

2ps2
exp

 

� (x � m)2

2s2

!

.

I All properties of a Gaussian are determined by the two
parameters m and s2.

I Notation: X ⇠ N (m, s2).
I Moments:

E[X ] =
R •
�• x · pX (x) dx = m

E[X 2] =
R •
�• x2 · pX (x) dx = m2 + s2.
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Plot of Gaussian pdf’s
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The Gaussian Error Integral — Q(x)

I We are often interested in Pr {X > x} for Gaussian
random variables X .

I These probabilities cannot be computed in closed form
since the integral over the Gaussian pdf does not have a
closed form expression.

I Instead, these probabilities are expressed in terms of the
Gaussian error integral

Q(x) =
Z •

x

1p
2p

e� x2
2 dx .
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The Gaussian Error Integral — Q(x)

I Example: Suppose X ⇠ N (1, 4), what is Pr {X > 5}?

Pr {X > 5} =
R •

5
1p

2p·22 e� (x�1)2

2·22 dx substitute z = x�1
2

=
R •

2
1p
2p

e� z2
2 dz = Q(2)
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Exercises

I Let X ⇠ N (�3, 4), find expressions in terms of Q(·) for
the following probabilities:

1. Pr {X > 5}?
2. Pr {X < �1}?
3. Pr

�

X 2 + X > 2
 

?
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Bounds for the Q-function
I Since no closed form expression is available for Q(x),

bounds and approximations to the Q-function are of
interest.

I The following bounds are tight for large values of x :
✓

1 � 1
x2

◆

e� x2
2

x
p

2p
 Q(x)  e� x2

2

x
p

2p
.

I The following bound is not as quite as tight but very useful
for analysis

Q(x)  1
2

e� x2
2 .

I Note that all three bounds are dominated by the term e� x2
2 ;

this term determines the asymptotic behaviour of Q(x).
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Plot of Q(x) and Bounds
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Gaussian Random Vectors
I A length N random vector ~X is said to be Gaussian if its

pdf is given by

p~X (~x) =
1

(2p)N/2|K |1/2
exp

✓

�1
2
(~x � ~m)T K�1(~x � ~m)

◆

.

I Notation: ~X ⇠ N (~m,K ).
I Mean vector

~m = E[~X ] =
Z •

�•
~xp~X (~x) d~x .

I Covariance matrix

K = E[(~X � ~m)(~X � ~m)
T
] =

Z •

�•
(~x � ~m)(~x � ~m)T p~X (~x) d~x .

I |K | denotes the determinant of K .
I K must be positive definite, i.e.,~zT K~z > 0 for all~z.

© 2017, B.-P. Paris ECE 630: Statistical Communication Theory 29



Gaussian Basics Random Processes Filtering of Random Processes Signal Space Concepts

Exercise: Important Special Case: N=2

I Consider a length-2 Gaussian random vector with

~m =~0 and K = s2

 

1 r

r 1

!

.

I Find the pdf of ~X .
I Answer:

p~X (~x) =
1

2ps2
p

1 � r2
exp

 

x2
1 � 2rx1x2 + x2

2
2s2(1 � r2)

!
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Important Properties of Gaussian Random Vectors

1. If the N Gaussian random variables Xn comprising the
random vector ~X are uncorrelated (Cov[Xi ,Xj ] = 0, for
i 6= j), then they are statistically independent.

2. Any affine transformation of a Gaussian random vector is
also a Gaussian random vector.

I Let ~X ⇠ N (~m,K )
I Affine transformation: ~Y = A~X +~b
I Then, ~Y ⇠ N (A~m +~b,AKAT )
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Exercise: Generating Correlated Gaussian Random
Variables

I Let ~X ⇠ N (~m,K ), with

~m =~0 and K = s2

 

1 0
0 1

!

.

I The elements of ~X are uncorrelated.
I Transform ~Y = A~X , with

A =

 

p

1 � r2 r

0 1

!

I Find the pdf of ~Y .

© 2017, B.-P. Paris ECE 630: Statistical Communication Theory 32



Gaussian Basics Random Processes Filtering of Random Processes Signal Space Concepts

Random Processes — Why we Care
I Random processes describe signals that change randomly

over time.
I Compare: deterministic signals can be described by a

mathematical expression that describes the signal exactly
for all time.

I Example: x(t) = 3 cos(2pfct + p/4) with fc = 1GHz.
I We will encounter three types of random processes in

communication systems:
1. (nearly) deterministic signal with a random parameter —

Example: sinusoid with random phase.
2. signals constructed from a sequence of random variables

— Example: digitally modulated signals with random
symbols

3. noise-like signals
I Objective: Develop a framework to describe and analyze

random signals encountered in the receiver of a
communication system.© 2017, B.-P. Paris ECE 630: Statistical Communication Theory 33
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Random Process — Formal Definition
I Random processes can be defined completely analogous

to random variables over a probability triple space
(W,F ,P).

I Definition: A random process is a mapping from each
element w of the sample space W to a function of time
(i.e., a signal).

I Notation: Xt (w) — we will frequently omit w to simplify
notation.

I Observations:
I We will be interested in both real and complex valued

random processes.
I Note, for a given random outcome w0, Xt (w0) is a

deterministic signal.
I Note, for a fixed time t0, Xt0(w) is a random variable.
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Sample Functions and Ensemble
I For a given random outcome w0, Xt (w0) is a deterministic

signal.
I Each signal that that can be produced by a our random

process is called a sample function of the random process.
I The collection of all sample functions of a random process

is called the ensemble of the process.
I Example: Let Q(w) be a random variable with four equally

likely, possible values W = {0, p
2 ,p, 3p

2 }. Define the
random process Xt (w) = cos(2pf0t + Q(w)).
The ensemble of this random process consists of the four
sample functions:

Xt (w1) = cos(2pf0t) Xt (w2) = � sin(2pf0t)
Xt (w3) = � cos(2pf0t) Xt (w4) = sin(2pf0t)
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Probability Distribution of a Random Process
I For a given time instant t , Xt (w) is a random variable.
I Since it is a random variable, it has a pdf (or pmf in the

discrete case).
I We denote this pdf as pXt (x).

I The statistical properties of a random process are
specified completely if the joint pdf

pXt1 ,...,Xtn
(x1, . . . , xn)

is available for all n and ti , i = 1, . . . , n.
I This much information is often not available.
I Joint pdfs with many sampling instances can be

cumbersome.
I We will shortly see a more concise summary of the

statistics for a random process.
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Random Process with Random Parameters

I A deterministic signal that depends on a random
parameter is a random process.

I Note, the sample functions of such random processes do
not “look” random.

I Running Examples:
I Example (discrete phase): Let Q(w) be a random variable

with four equally likely, possible values W = {0, p
2 ,p, 3p

2 }.
Define the random process Xt (w) = cos(2pf0t + Q(w)).

I Example (continuous phase): same as above but phase
Q(w) is uniformly distributed between 0 and 2p,
Q(w) ⇠ U [0, 2p).

I For both of these processes, the complete statistical
description of the random process can be found.
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Example: Discrete Phase Process

I Discrete Phase Process: Let Q(w) be a random variable
with four equally likely, possible values W = {0, p

2 ,p, 3p
2 }.

Define the random process Xt (w) = cos(2pf0t + Q(w)).
I Find the first-order density pXt (x) for this process.
I Find the second-order density pXt1 Xt2

(x1, x2) for this
process.

I Note, since the phase values are discrete the above pdfs
must be expressed with the help of d-functions.

I Alternatively, one can derive a probability mass function.
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Solution: Discrete Phase Process
I First-order density function:

pXt (x) =
1
4
(d(x � cos(2pf0t)) + d(x + sin(2pf0t))+

d(x + cos(2pf0t)) + d(x � sin(2pf0t)))

I Second-order density function:

pXt1 Xt2
(x1, x2) =

1
4
(d(x1 � cos(2pf0t1)) · d(x2 � cos(2pf0t2))+

d(x1 + sin(2pf0t1)) · d(x2 + sin(2pf0t2))+
d(x1 + cos(2pf0t1)) · d(x2 + cos(2pf0t2))+
d(x1 � sin(2pf0t1)) · d(x2 � sin(2pf0t2)))
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Example: Continuous Phase Process

I Continuous Phase Process: Let Q(w) be a random
variable that is uniformly distributed between 0 and 2p,
Q(w) ⇠ [0, 2p). Define the random process
Xt (w) = cos(2pf0t + Q(w)).

I Find the first-order density pXt (x) for this process.
I Find the second-order density pXt1 Xt2

(x1, x2) for this
process.
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Solution: Continuous Phase Process
I First-order density:

pXt (x) =
1

p
p

1 � x2
for |x |  1.

Notice that pXt (x) does not depend on t .
I Second-order density:

pXt1 Xt2
(x1, x2) =

1

p
q

1 � x2
2

· [1
2
·

d(x1 � cos(2pf0(t1 � t2) + arccos(x2)))+

d(x1 � cos(2pf0(t1 � t2)� arccos(x2)))]
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Random Processes Constructed from Sequence of
Random Experiments

I Model for digitally modulated signals.
I Example:

I Let Xk (w) denote the outcome of the k -th toss of a coin:

Xk (w) =

(

1 if heads on k -th toss
�1 if tails on k -th toss.

I Let p(t) denote a pulse of duration T , e.g.,

p(t) =

(

1 for 0  t  T
0 else.

I Define the random process Xt

Xt (w) = Â
k

Xk (w)p(t � nT )
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Probability Distribution

I Assume that heads and tails are equally likely.
I Then the first-order density for the above random process

is
pXt (x) =

1
2
(d(x � 1) + d(x + 1)).

I The second-order density is:

pXt1 Xt2
(x1, x2) =

(

d(x1 � x2)pXt1
(x1) if nT  t1, t2  (n + 1)T

pXt1
(x1)pXt2

(x2) else.

I These expression become more complicated when p(t) is
not a rectangular pulse.
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Probability Density of Random Processs Defined
Directly

I Sometimes the n-th order probability distribution of the
random process is given.

I Most important example: Gaussian Random Process
I Statistical model for noise.

I Definition: The random process Xt is Gaussian if the
vector ~X of samples taken at times t1, . . . , tn

~X =

0

B

B

@

Xt1
...

Xtn

1

C

C

A

is a Gaussian random vector for all t1, . . . , tn.
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Second Order Description of Random Processes
I Characterization of random processes in terms of n-th

order densities is
I frequently not available
I mathematically cumbersome

I A more tractable, practical alternative description is
provided by the second order description for a random
process.

I Definition: The second order description of a random
process consists of the

I mean function and the
I autocorrelation function

of the process.
I Note, the second order description can be computed from

the (second-order) joint density.
I The converse is not true — at a minimum the distribution

must be specified (e.g., Gaussian).
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Mean Function

I The second order description of a process relies on the
mean and autocorrelation functions — these are defined
as follows

I Definition: The mean of a random process is defined as:

E[Xt ] = mX (t) =
Z •

�•
x · pXt (x) dx

I Note, that the mean of a random process is a deterministic
signal.

I The mean is computed from the first oder density function.
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Autocorrelation Function

I Definition: The autocorrelation function of a random
process is defined as:

RX (t , u) = E[XtXu ] =
Z •

�•

Z •

�•
xy · pXt ,Xu (x , y) dx dy

I Autocorrelation is computed from second order density
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Autocovariance Function

I Closely related: autocovariance function:

CX (t , u) = E[(Xt � mX (t))(Xu � mX (u))]
= RX (t , u)� mX (t)mX (u)
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Exercise: Discrete Phase Example

I Find the second-order description for the discrete phase
random process.

I Discrete Phase Process: Let Q(w) be a random variable
with four equally likely, possible values W = {0, p

2 ,p, 3p
2 }.

Define the random process Xt (w) = cos(2pf0t + Q(w)).
I Answer:

I Mean: mX (t) = 0.
I Autocorrelation function:

RX (t , u) =
1
2

cos(2pf0(t � u)).
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Exercise: Continuous Phase Example

I Find the second-order description for the continuous phase
random process.

I Continuous Phase Process: Let Q(w) be a random
variable that is uniformly distributed between 0 and 2p,
Q(w) ⇠ [0, 2p). Define the random process
Xt (w) = cos(2pf0t + Q(w)).

I Answer:
I Mean: mX (t) = 0.
I Autocorrelation function:

RX (t , u) =
1
2

cos(2pf0(t � u)).
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