Random Processes

Filtering of Random Processes

Part II

Mathematical Prerequisites

© 2017, B.-P. Paris

ECE 630: Statistical Communication Theory

Random Processes 0000 00000000 0000000 0000000 0000 Filtering of Random Processes

Gaussian Random Variables — Why we Care

- Gaussian random variables play a critical role in modeling many random phenomena.
 - By central limit theorem, Gaussian random variables arise from the superposition (sum) of many random phenomena.
 - Pertinent example: random movement of very many electrons in conducting material.
 - Result: thermal noise is well modeled as Gaussian.
 - Gaussian random variables are mathematically tractable.
 - In particular: any linear (more precisely, affine) transformation of Gaussians produces a Gaussian random variable.
- Noise added by channel is modeled as being Gaussian.
 - Channel noise is the most fundamental impairment in a communication system.

aussian Basics	Random Processes	Filtering of Random Processes	Signal Space Concepts
DO	0000	00000	0000
0000	0000000	00	0000000000
000	000000	000000	000000000000000000000000000000000000000
	0000	00000	000000

Gaussian Random Variables

A random variable X is said to be Gaussian (or Normal) if its pdf is of the form

$$p_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-m)^2}{2\sigma^2}\right)$$

- All properties of a Gaussian are determined by the two parameters *m* and σ^2 .
- Notation: $X \sim \mathcal{N}(m, \sigma^2)$.
- Moments:

$$\begin{aligned} \mathbf{E}[X] &= \int_{-\infty}^{\infty} x \cdot p_X(x) \, dx = m \\ \mathbf{E}[X^2] &= \int_{-\infty}^{\infty} x^2 \cdot p_X(x) \, dx = m^2 + \sigma^2 \end{aligned}$$

Gi

Random Processes

000 0000000 000000 000

Filtering of Random Processes

Plot of Gaussian pdf's

© 2017, B.-P. Paris

Gaussian BasicsRandom ProcessesFiltering of Random ProcessesSignal Space Concepts000

The Gaussian Error Integral — Q(x)

- We are often interested in Pr {X > x} for Gaussian random variables X.
- These probabilities cannot be computed in closed form since the integral over the Gaussian pdf does not have a closed form expression.
- Instead, these probabilities are expressed in terms of the Gaussian error integral

$$Q(x) = \int_x^\infty \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx.$$

Random Processes

Filtering of Random Processes

The Gaussian Error Integral — Q(x)

• **Example:** Suppose $X \sim \mathcal{N}(1, 4)$, what is $Pr\{X > 5\}$?

$$\Pr\{X > 5\} = \int_{5}^{\infty} \frac{1}{\sqrt{2\pi \cdot 2^{2}}} e^{-\frac{(x-1)^{2}}{2 \cdot 2^{2}}} dx \quad \text{substitute } z = \frac{x-1}{2}$$
$$= \int_{2}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^{2}}{2}} dz = Q(2)$$

Random Processes

Filtering of Random Processes

Exercises

► Let X ~ N(-3, 4), find expressions in terms of Q(·) for the following probabilities:

1. Pr
$$\{X > 5\}$$
?
2. Pr $\{X < -1\}$?
3. Pr $\{X^2 + X > 2\}$?

Random Processes

Filtering of Random Processes

Bounds for the Q-function

- Since no closed form expression is available for Q(x), bounds and approximations to the Q-function are of interest.
- The following bounds are tight for large values of x:

$$\left(1-\frac{1}{x^2}\right)\frac{e^{-\frac{x^2}{2}}}{x\sqrt{2\pi}} \le Q(x) \le \frac{e^{-\frac{x^2}{2}}}{x\sqrt{2\pi}}$$

The following bound is not as quite as tight but very useful for analysis

$$Q(x)\leq \frac{1}{2}e^{-\frac{x^2}{2}}.$$

Note that all three bounds are dominated by the term $e^{-\frac{x^2}{2}}$; this term determines the asymptotic behaviour of Q(x).

Random Processes

000 0000000 000000 000000 Filtering of Random Processes

Plot of Q(x) and Bounds

© 2017, B.-P. Paris

ECE 630: Statistical Communication Theory

ussian Basics	Random Processes	Filtering of Random Processes	Signal Space Concepts
С	0000	00000	0000
000	0000000	00	0000000000
00	000000	000000	0000000000000000
	0000	00000	000000

Gaussian Random Vectors

• A length N random vector \vec{X} is said to be Gaussian if its pdf is given by

$$p_{\vec{X}}(\vec{x}) = \frac{1}{(2\pi)^{N/2} |K|^{1/2}} \exp\left(-\frac{1}{2}(\vec{x} - \vec{m})^T K^{-1}(\vec{x} - \vec{m})\right).$$

• Notation:
$$\vec{X} \sim \mathcal{N}(\vec{m}, K)$$
.

Mean vector

$$\vec{m} = \mathbf{E}[\vec{X}] = \int_{-\infty}^{\infty} \vec{x} p_{\vec{X}}(\vec{x}) \, d\vec{x}$$

Covariance matrix

$$K = \mathbf{E}[(\vec{X} - \vec{m})(\vec{X} - \vec{m})^{T}] = \int_{-\infty}^{\infty} (\vec{x} - \vec{m})(\vec{x} - \vec{m})^{T} p_{\vec{X}}(\vec{x}) d\vec{x}.$$

• |K| denotes the determinant of K.

• K must be positive definite, i.e., $\vec{z}^T K \vec{z} > 0$ for all \vec{z} .

Gai

•0

aussian Basics	Random Processes	Filtering of Random Processes	Signal Space Concep
00	0000	00000	0000
0000	0000000	00	0000000000
•00	0000000 0000	000000 00000	000000000000000000000000000000000000000

Exercise: Important Special Case: N=2

Consider a length-2 Gaussian random vector with

$$\vec{m} = \vec{0}$$
 and $K = \sigma^2 \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$

- Find the pdf of \vec{X} .
- ► Answer:

$$p_{\vec{X}}(\vec{x}) = \frac{1}{2\pi\sigma^2\sqrt{1-\rho^2}} \exp\left(\frac{x_1^2 - 2\rho x_1 x_2 + x_2^2}{2\sigma^2(1-\rho^2)}\right)$$

Random Processes oooo oooooooo ooooooo oooooo Filtering of Random Processes

Signal Space Concepts

Important Properties of Gaussian Random Vectors

- 1. If the *N* Gaussian random variables X_n comprising the random vector \vec{X} are uncorrelated $(\text{Cov}[X_i, X_j] = 0$, for $i \neq j$), then they are statistically independent.
- 2. Any affine transformation of a Gaussian random vector is also a Gaussian random vector.
 - Let $\vec{X} \sim \mathcal{N}(\vec{m}, K)$
 - Affine transformation: $\vec{Y} = A\vec{X} + \vec{b}$
 - Then, $\vec{Y} \sim \mathcal{N}(A\vec{m} + \vec{b}, AKA^T)$

Random Processes

Filtering of Random Processes

Exercise: Generating Correlated Gaussian Random Variables

• Let
$$\vec{X} \sim \mathcal{N}(\vec{m}, K)$$
, with

$$\vec{m} = \vec{0}$$
 and $K = \sigma^2 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

• The elements of
$$\vec{X}$$
 are uncorrelated.

• Transform
$$\vec{Y} = A\vec{X}$$
, with

$$A = \left(\begin{array}{cc} \sqrt{1-\rho^2} & \rho \\ 0 & 1 \end{array}\right)$$

Find the pdf of \vec{Y} .

.

Random Processes

Filtering of Random Processes

Random Processes — Why we Care

- Random processes describe signals that change randomly over time.
 - Compare: deterministic signals can be described by a mathematical expression that describes the signal exactly for all time.
 - Example: $x(t) = 3\cos(2\pi f_c t + \pi/4)$ with $f_c = 1$ GHz.
- We will encounter three types of random processes in communication systems:
 - 1. (nearly) deterministic signal with a random parameter Example: sinusoid with random phase.
 - 2. signals constructed from a sequence of random variables
 - Example: digitally modulated signals with random symbols
 - 3. noise-like signals
- Objective: Develop a framework to describe and analyze random signals encountered in the receiver of a

Random Processes

Filtering of Random Processes

Random Process — Formal Definition

- Random processes can be defined completely analogous to random variables over a probability triple space (Ω, F, P).
- Definition: A random process is a mapping from each element ω of the sample space Ω to a function of time (i.e., a signal).
- Notation: $X_t(\omega)$ we will frequently omit ω to simplify notation.
- Observations:
 - We will be interested in both real and complex valued random processes.
 - Note, for a given random outcome ω_0 , $X_t(\omega_0)$ is a *deterministic* signal.
 - Note, for a fixed time t_0 , $X_{t_0}(\omega)$ is a random variable.

Random Processes

Filtering of Random Processes

Sample Functions and Ensemble

- For a given random outcome ω_0 , $X_t(\omega_0)$ is a deterministic signal.
 - Each signal that that can be produced by a our random process is called a sample function of the random process.
- The collection of all sample functions of a random process is called the ensemble of the process.
- **Example:** Let $\Theta(\omega)$ be a random variable with four equally likely, possible values $\Omega = \{0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}\}$. Define the random process $X_t(\omega) = \cos(2\pi f_0 t + \Theta(\omega))$. The ensemble of this random process consists of the four sample functions:

$$\begin{aligned} X_t(\omega_1) &= \cos(2\pi f_0 t) & X_t(\omega_2) &= -\sin(2\pi f_0 t) \\ X_t(\omega_3) &= -\cos(2\pi f_0 t) & X_t(\omega_4) &= \sin(2\pi f_0 t) \end{aligned}$$

Random Processes

Filtering of Random Processes

Probability Distribution of a Random Process

- For a given time instant *t*, $X_t(\omega)$ is a random variable.
- Since it is a random variable, it has a pdf (or pmf in the discrete case).
 - We denote this pdf as $p_{X_t}(x)$.
- The statistical properties of a random process are specified completely if the joint pdf

$$p_{X_{t_1},...,X_{t_n}}(x_1,...,x_n)$$

is available for all *n* and t_i , i = 1, ..., n.

- This much information is often not available.
- Joint pdfs with many sampling instances can be cumbersome.
- We will shortly see a more concise summary of the statistics for a random process.

Random Processes

Filtering of Random Processes

Signal Space Concepts

Random Process with Random Parameters

- A deterministic signal that depends on a random parameter is a random process.
 - Note, the sample functions of such random processes do not "look" random.
- Running Examples:
 - **Example (discrete phase):** Let $\Theta(\omega)$ be a random variable with four equally likely, possible values $\Omega = \{0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}\}$. Define the random process $X_t(\omega) = \cos(2\pi f_0 t + \Theta(\omega))$.

Example (continuous phase): same as above but phase
 Θ(ω) is uniformly distributed between 0 and 2π,
 Θ(ω) ~ U[0, 2π).

For both of these processes, the complete statistical description of the random process can be found.

Random Processes

Filtering of Random Processes

Example: Discrete Phase Process

- **Discrete Phase Process:** Let $\Theta(\omega)$ be a random variable with four equally likely, possible values $\Omega = \{0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}\}$. Define the random process $X_t(\omega) = \cos(2\pi f_0 t + \Theta(\omega))$.
- Find the first-order density $p_{X_t}(x)$ for this process.
- Find the second-order density p_{Xt1} X_{t2} (x1, x2) for this process.
 - Note, since the phase values are discrete the above pdfs must be expressed with the help of δ-functions.
 - Alternatively, one can derive a probability mass function.

Gaussian	Basics
000	
00000	
0000	

Random Processes

Filtering of Random Processes

Solution: Discrete Phase Process

First-order density function:

$$p_{X_t}(x) = \frac{1}{4} \left(\delta(x - \cos(2\pi f_0 t)) + \delta(x + \sin(2\pi f_0 t)) + \delta(x + \cos(2\pi f_0 t)) + \delta(x - \sin(2\pi f_0 t)) \right)$$

Second-order density function:

$$p_{X_{t_1}X_{t_2}}(x_1, x_2) = \frac{1}{4} (\delta(x_1 - \cos(2\pi f_0 t_1)) \cdot \delta(x_2 - \cos(2\pi f_0 t_2)) + \\ \delta(x_1 + \sin(2\pi f_0 t_1)) \cdot \delta(x_2 + \sin(2\pi f_0 t_2)) + \\ \delta(x_1 + \cos(2\pi f_0 t_1)) \cdot \delta(x_2 + \cos(2\pi f_0 t_2)) + \\ \delta(x_1 - \sin(2\pi f_0 t_1)) \cdot \delta(x_2 - \sin(2\pi f_0 t_2)))$$

Random Processes

Filtering of Random Processes

Example: Continuous Phase Process

- Continuous Phase Process: Let $\Theta(\omega)$ be a random variable that is uniformly distributed between 0 and 2π , $\Theta(\omega) \sim [0, 2\pi)$. Define the random process $X_t(\omega) = \cos(2\pi f_0 t + \Theta(\omega))$.
- Find the first-order density $p_{X_t}(x)$ for this process.
- Find the second-order density p_{Xt1} X_{t2} (x1, x2) for this process.

issian Basics	Random Processes	Filtering of Random Processes	Signal Space Concept
C	0000	00000	0000
000	0000000	00	0000000000
00	000000	000000	000000000000000000000000000000000000000
	0000	00000	000000

Solution: Continuous Phase Process

First-order density:

$$p_{X_t}(x) = rac{1}{\pi\sqrt{1-x^2}}$$
 for $|x| \le 1$.

Notice that $p_{X_t}(x)$ does **not** depend on *t*.

Second-order density:

$$p_{X_{t_1}X_{t_2}}(x_1, x_2) = \frac{1}{\pi\sqrt{1 - x_2^2}} \cdot \left[\frac{1}{2} \cdot \frac{\delta(x_1 - \cos(2\pi f_0(t_1 - t_2) + \arccos(x_2))) + \delta(x_1 - \cos(2\pi f_0(t_1 - t_2) - \arccos(x_2)))}{\delta(x_1 - \cos(2\pi f_0(t_1 - t_2) - \arccos(x_2)))}\right]$$

Random Processes

Filtering of Random Processes

Random Processes Constructed from Sequence of Random Experiments

- Model for digitally modulated signals.
- Example:
 - Let $X_k(\omega)$ denote the outcome of the *k*-th toss of a coin:

 $X_k(\omega) = \begin{cases} 1 & \text{if heads on } k\text{-th toss} \\ -1 & \text{if tails on } k\text{-th toss.} \end{cases}$

• Let p(t) denote a pulse of duration T, e.g.,

$$o(t) = \begin{cases} 1 & \text{for } 0 \le t \le T \\ 0 & \text{else.} \end{cases}$$

• Define the random process X_t

$$X_t(\omega) = \sum_k X_k(\omega) p(t - nT)$$

aussian Basics	Random Processes	Filtering of Random Processes	Signal Space Concepts
00 0000	0000 00000000		0000
000	0000000	00000 00000	000000000000000000000000000000000000000

Probability Distribution

- Assume that heads and tails are equally likely.
- Then the first-order density for the above random process is

$$p_{X_t}(x) = \frac{1}{2}(\delta(x-1) + \delta(x+1)).$$

The second-order density is:

$$p_{X_{t_1}X_{t_2}}(x_1, x_2) = \begin{cases} \delta(x_1 - x_2)p_{X_{t_1}}(x_1) & \text{if } nT \le t_1, t_2 \le (n+1)T \\ p_{X_{t_1}}(x_1)p_{X_{t_2}}(x_2) & \text{else.} \end{cases}$$

These expression become more complicated when p(t) is not a rectangular pulse.

Random Processes

00000000 0000000 0000 Filtering of Random Processes

Probability Density of Random Processs Defined Directly

- Sometimes the *n*-th order probability distribution of the random process is given.
 - Most important example: Gaussian Random Process
 - Statistical model for noise.
 - **Definition:** The random process X_t is Gaussian if the vector \vec{X} of samples taken at times t_1, \ldots, t_n

$$ec{X} = \left(egin{array}{c} X_{t_1} \ ec{\cdot} \ X_{t_n} \end{array}
ight)$$

is a Gaussian random vector for all t_1, \ldots, t_n .

Random Processes

Filtering of Random Processes

Second Order Description of Random Processes

- Characterization of random processes in terms of *n*-th order densities is
 - frequently not available
 - mathematically cumbersome
- A more tractable, practical alternative description is provided by the second order description for a random process.
- Definition: The second order description of a random process consists of the
 - mean function and the
 - autocorrelation function

of the process.

- Note, the second order description can be computed from the (second-order) joint density.
 - The converse is not true at a minimum the distribution must be specified (e.g., Gaussian).

andom Processes	Flitering of Kandom Processes	Signal Space Concep
000	00000	0000
000000	00	0000000000
00000	000000	0000000000000
000	00000	000000
	000000 000000 00000	000 00000 00000 00 00000 00 00000 00 00000 00000 00000 00000

Mean Function

- The second order description of a process relies on the mean and autocorrelation functions — these are defined as follows
- **Definition:** The mean of a random process is defined as:

$$\mathbf{E}[X_t] = m_X(t) = \int_{-\infty}^{\infty} x \cdot p_{X_t}(x) \, dx$$

- Note, that the mean of a random process is a deterministic signal.
- The mean is computed from the first oder density function.

Random Processes

Filtering of Random Processes

Autocorrelation Function

Definition: The autocorrelation function of a random process is defined as:

$$R_X(t, u) = \mathbf{E}[X_t X_u] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy \cdot p_{X_t, X_u}(x, y) \, dx \, dy$$

Autocorrelation is computed from second order density

Random Processes

00000000 0000000 000000 Filtering of Random Processes

Autocovariance Function

Closely related: autocovariance function:

$$C_X(t, u) = \mathbf{E}[(X_t - m_X(t))(X_u - m_X(u))]$$

= $R_X(t, u) - m_X(t)m_X(u)$

Random Processes

Filtering of Random Processes

Exercise: Discrete Phase Example

- Find the second-order description for the discrete phase random process.
 - **Discrete Phase Process:** Let $\Theta(\omega)$ be a random variable with four equally likely, possible values $\Omega = \{0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}\}$. Define the random process $X_t(\omega) = \cos(2\pi f_0 t + \Theta(\omega))$.

Answer:

- Mean: $m_X(t) = 0$.
- Autocorrelation function:

$$R_X(t, u) = \frac{1}{2}\cos(2\pi f_0(t-u)).$$

Random Processes

Filtering of Random Processes

Exercise: Continuous Phase Example

- Find the second-order description for the continuous phase random process.
 - Continuous Phase Process: Let Θ(ω) be a random variable that is uniformly distributed between 0 and 2π, Θ(ω) ~ [0, 2π). Define the random process X_t(ω) = cos(2πf₀t + Θ(ω)).

Answer:

- Mean: $m_X(t) = 0$.
- Autocorrelation function:

$$R_X(t, u) = \frac{1}{2}\cos(2\pi f_0(t-u)).$$

