Part I

Mathematical Prerequisites
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Gaussian Random Variables — Why we Care

» Gaussian random variables play a critical role in modeling
many random phenomena.

» By central limit theorem, Gaussian random variables arise

from the superposition (sum) of many random phenomena.

» Pertinent example: random movement of very many
electrons in conducting material.
» Result: thermal noise is well modeled as Gaussian.
» (Gaussian random variables are mathematically tractable.
» In particular: any linear (more precisely, affine)

transformation of Gaussians produces a Gaussian random
variable.

» Noise added by channel is modeled as being Gaussian.

» Channel noise is the most fundamental impairment in a
communication system.
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Gaussian Random Variables

» A random variable X is said to be Gaussian (or Normal) if
its pdf is of the form

px(x) = 1 exp <_(x—m)2> -

27102 202

» All properties of a Gaussian are determined by the two
parameters m and o?.

» Notation: X ~ A (m,c?).

» Moments:
EX] = [T x-px(x)dx=m
EX?] = [°_x%-px(x)dx =m?+ 0%
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Plot of Gaussian pdf’s

0.4

0.35

0.3

© 2017, B.-P. Paris

ECE 630: Statistical Communication Theory



Gaussian Basics
0000

The Gaussian Error Integral — Q(x)

» We are often interested in Pr{X > x} for Gaussian
random variables X.

» These probabilities cannot be computed in closed form
since the integral over the Gaussian pdf does not have a
closed form expression.

» Instead, these probabilities are expressed in terms of the
Gaussian error integral
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The Gaussian Error Integral — Q(x)

» Example: Suppose X ~ N (1,4), whatis Pr{X > 5}?

(x—1)2

— [ _1 ) i — x1
Pr{X >5} = f5oo Wezz 222 QX substitute z = =
= [ \/#Z—Ne_T dz = Q(2)
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Exercises

» Let X ~ N (—3,4), find expressions in terms of Q(-) for
the following probabilities:
1. Pr{X >5}7
2. Pr{X < —1}7
3. Pr{X?+ X >2}"?
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Bounds for the Q-function

» Since no closed form expression is available for Q(x),
bounds and approximations to the Q-function are of
interest.

» The following bounds are tight for large values of x:

X2

1\ ez
1 — < Q(x
( Xz) xX\Vemr ) < X\ 2
» The following bound is not as quite as tight but very useful
for analysis

< _—e 7.
Q(x) < 56 °
» Note that all three bounds are dominated by the term e~ P
this term determines the asymptotic behaviour of Q(x). NﬁEs"('iii
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Plot of Q(x) and Bounds
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Gaussian Random Vectors

» A length N random vector X is said to be Gaussian if its
pdf is given by

o) = s o (% ) K X))

(2m)"/?| K172
» Notation: X ~ N (m, K).
» Mean vector

h— E[X] = / %py (¥) dX.

—00

» Covariance matrix
K =E[(X—m)(X )] = [ (x—m)(x—m)py(%) dx

» |K| denotes the determinant of K. Zconce
> K must be positive definite, i.e., ZTKZ > 0forallz. o
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Exercise: Important Special Case: N=2

» Consider a length-2 Gaussian random vector with

ﬁv:ﬁandK:aZ(1 p).
o 1

» Find the pdf of X.
» Answer:

2 2
ey Xy — 20X1Xo + X5
Px(X) = 271024/ 1 — p? =P ( 202(1 — p?) )
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Important Properties of Gaussian Random Vectors

1. If the N Gaussian random variables X, comprising the
random vector X are uncorrelated (Cov[X;, X;| = 0, for
I # j), then they are statistically independent.
2. Any affine transformation of a Gaussian random vector is
also a Gaussian random vector.
> Let X ~ N (M, K)
> Affine transformation: Y = AX + b
> Then, Y ~ N (Am + b, AKAT)

ECE 630: Statistical Communication Theory

© 2017, B.-P. Paris



Gaussian Basics
000e®

Exercise: Generating Correlated Gaussian Random
Variables

> Let X ~ N (M, K), with

m=0and K = c? 10 .
0 1

» The elements of X are uncorrelated.
» Transform Y = AX, with

(1)

» Find the pdf of Y. Eoeonse
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Random Processes — Why we Care

» Random processes describe signals that change randomly
over time.

» Compare: deterministic signals can be described by a
mathematical expression that describes the signal exactly
for all time.

» Example: x(t) = 3cos(2nrft + t/4) with f; = 1GHz.

» We will encounter three types of random processes in
communication systems:

1. (nearly) deterministic signal with a random parameter —
Example: sinusoid with random phase.

2. signals constructed from a sequence of random variables
— Example: digitally modulated signals with random
symbols

3. noise-like signals

» Objective: Develop a framework to describe and analyze
random signals encountered in the receiverofa ~  1ASON
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Random Process — Formal Definition

» Random processes can be defined completely analogous
to random variables over a probability triple space
(O, F, P).

» Definition: A random process is a mapping from each
element w of the sample space (2 to a function of time
(i.e., a signal).

» Notation: X;(w) — we will frequently omit w to simplify
notation.

» Observations:

» We will be interested in both real and complex valued
random processes.
» Note, for a given random outcome wyq, X;(wp) is a
deterministic signal.
> Note, for a fixed time &y, X; (w) is a random variable. Masos
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Sample Functions and Ensemble

» For a given random outcome wyq, X;(wp) is a deterministic
signal.

» Each signal that that can be produced by a our random
process is called a sample function of the random process.

» The collection of all sample functions of a random process
is called the ensemble of the process.

» Example: Let ©(w) be a random variable with four equally
likely, possible values Q2 = {0, Z, 7, 3X' }. Define the
random process X;(w) = cos(2mtfyt + O(w)).

The ensemble of this random process consists of the four
sample functions:

Xt(a)1) = COS(ZTL’fOt) Xt(wg) = —Sin(27'(fot)
Xt(CU3) = —COS(27'Cf0t) Xt(w4) = sin(27rf0t) bﬁesoms
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Probability Distribution of a Random Process

» For a given time instant ¢, X;(w) is a random variable.
» Since it is a random variable, it has a pdf (or pmf in the
discrete case).
> We denote this pdf as px, (x).
» The statistical properties of a random process are
specified completely if the joint pdf

qu ..... th (X1 1 Xn)

is available forallnand t;,, i=1,...,n.

» This much information is often not available.
» Joint pdfs with many sampling instances can be

cumbersome.
» We will shortly see a more concise summary of the P
statistics for a random process. MAsss
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Random Process with Random Parameters

» A deterministic signal that depends on a random
parameter is a random process.

» Note, the sample functions of such random processes do
not “look” random.

» Running Examples:

» Example (discrete phase): Let ®(w) be a random variable
with four equally likely, possible values Q = {0, %, rr, 3 }.
Define the random process X;(w) = cos(2ntfyt + O(w)).

» Example (continuous phase): same as above but phase
®(w) is uniformly distributed between 0 and 27,

O(w) ~ U|0, 27).

» For both of these processes, the complete statistical
description of the random process can be found.
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Example: Discrete Phase Process

» Discrete Phase Process: Let ©(w) be a random variable

with four equally likely, possible values Q = {0, Z, , 37 }.

Define the random process X;(w) = cos(2nfyt + O(w)).

» Find the first-order density py,(x) for this process.

» Find the second-order density Px., X, (X1, Xo) for this
process.
» Note, since the phase values are discrete the above pdfs

must be expressed with the help of é-functions.
» Alternatively, one can derive a probability mass function.
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Solution: Discrete Phase Process

» First-order density function:

px,(X) = %(5(X — cos(2rtfyt)) + 6(x + sin(2mfyt) )+

5(X + COS(Zﬂfot)) + 5(X — Sin(27l'f0t)))

» Second-order density function:

1
pXt1Xt2 (X1,X2) = Z(5 X1 — COS(27‘L’f0t1 ) 5(X2 — COS(27Tf0t2 )‘|‘

+
0 ( Xy +COS(27‘L’f0t1 ) 5(X2 —|—COS(27Tf0t2

( ) -
d(x1 + sin(27thyty)) - 6(xo + sin(27tfytn)
( ) -
5(X1 —Sin(27'lff0t1)) y

~ o

(5(X2 — Siﬂ(Zﬂfotg)

© 2017, B.-P. Paris ECE 630: Statistical Communication Theory



Random Processes
00080000

Example: Continuous Phase Process

» Continuous Phase Process: Let ©(w) be a random
variable that is uniformly distributed between 0 and 27,
O(w) ~ [0, 27m). Define the random process
Xi(w) = cos(2rtfyt + O(w)).

» Find the first-order density py,(x) for this process.

> Find the second-order density px, x, (X1, x2) for this
process.
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Solution: Continuous Phase Process

» First-order density:

1
X)) =
P = A=

Notice that px,(x) does not depend on t.
» Second-order density:

for x| < 1.

1

1
Px. x,. (X1, X2) = =
e Ty 1 — X3 2

d(xq —cos(2mfy(ty — ) + arccos(xz)) )+
d(xy — cos(2mtfy(ty — t) — arccos(xz)))]
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Random Processes Constructed from Sequence of
Random Experiments

» Model for digitally modulated signals.
» Example:
» Let X (w) denote the outcome of the k-th toss of a coin:

1 if heads on k-th toss
—1 if tails on k-th toss.

Xk (w) = {
» Let p(t) denote a pulse of duration T, e.g.,

(1) = 1 for0<t<T
PU=1 0 else.

» Define the random process X;
Xi(w) = ¥ X(w)p(t — nT)
k
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Probability Distribution

» Assume that heads and tails are equally likely.

» Then the first-order density for the above random process
IS

px(X) = 5 (3(x — 1) +8(x +1).

» The second-order density is:

5(X-| —Xg)p)(t1 (X1) fnlT <t b< (n+ 1)T

Px;, X, (X1, X2) =
X (X1 22) { px, (X1)px, (X2)  else.

» These expression become more complicated when p(t) is
not a rectangular pulse.
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Probability Density of Random Processs Defined
Directly

» Sometimes the n-th order probability distribution of the
random process is given.

» Most important example: Gaussian Random Process
» Statistical model for noise.

» Definition: The random process X; is Gaussian if the

vector X of samples taken at times ti, .. ., t,
Xt,
X=1 :
X,
Is a Gaussian random vector for all ¢4, ..., In.
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Second Order Description of Random Processes

» Characterization of random processes in terms of n-th
order densities Is
» frequently not available
» mathematically cumbersome

» A more tractable, practical alternative description is
provided by the second order description for a random

process.
» Definition: The second order description of a random
process consists of the
» mean function and the
» autocorrelation function
of the process.
» Note, the second order description can be computed from
the (second-order) joint density.
» The converse is not true — at a minimum the distribution D’fms
must be specified (e.g., Gaussian). e o
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Mean Function

» The second order description of a process relies on the
mean and autocorrelation functions — these are defined
as follows

» Definition: The mean of a random process is defined as:

oo

E[X,] = mx(t) :/ X - px, (X) dx

—00

» Note, that the mean of a random process is a deterministic
signal.
» The mean is computed from the first oder density function.
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Autocorrelation Function

» Definition: The autocorrelation function of a random
process is defined as:

Rx(t, u) = E[Xi Xy / / Xy - Px,,x, (X, y) dx dy

» Autocorrelation is computed from second order density
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Autocovariance Function

» Closely related: autocovariance function:

Cx(t, u) = E[(X: — mx(t))(Xy — mx(u))]
= Rx(t,u) — mx(t)mx(u)
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Exercise: Discrete Phase Example

» Find the second-order description for the discrete phase
random process.

» Discrete Phase Process: Let ©(w) be a random variable
with four equally likely, possible values Q = {0, Z, rr, 3L }.
Define the random process X:(w) = cos(2ntfyt + O(w)).

» Answer:
» Mean: my(t) = 0.
» Autocorrelation function:

Ry (t u) = %cos(ano(t _ ).
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Exercise: Continuous Phase Example

» Find the second-order description for the continuous phase
random process.

» Continuous Phase Process: Let ©(w) be a random
variable that is uniformly distributed between 0 and 2,
O(w) ~ [0,27m). Define the random process
Xi(w) = cos(2rtfyt + O(w)).
» Answer:
» Mean: my(t) = 0.
» Autocorrelation function:

Rx(t,u) = %cos(ano(t— u)).
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