Complex Envelope
@00

Passband Signals

» We have seen that many signal sets include both
sin(27tf;t) and cos(27tf,t).
» Examples include PSK and QAM signal sets.
» Such signals are referred to as passband signals.
» Passband signals have frequency spectra concentrated
around a carrier frequency f.
» This is in contrast to baseband signals with spectrum
centered at zero frequency.
» Baseband signals can be converted to passband signals

through up-conversion.

» Passband signals can be converted to baseband signals
through down-conversion.
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Up-Conversion

» The passband signal sp(t) is
V2cos(27tfot) constructed from two (digitally
modulated) baseband signals, s(f)
s(t) and sq(t).
» Note that two signals can be
carried simultaneously!

sp(t) > s(t) and sp(t) are the in-phase
(I) and quadrature (Q)
compenents of sy ().

» This is a consequence of
Sa() s(t) cos(2rtfst) and
sq(t) sin(27tf,t) being orthogonal
» when the carrier frequency f; is
much greater than the bandwidth

—\/§sin(27'(fct) of 5/(t) and sq(t). Masss
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Exercise: Orthogonality of In-phase and Quadrature
Signals

» Show that s/(f) cos(27tf;t) and sq(t)sin(27tf.t) are
orthogonal when f; > B, where B is the bandwidth of s;(t)
and sq(t).

» You can make your argument either in the time-domain or
the frequency domain.
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Baseband Equivalent Signals

» The passband signal sp(t) can be written as
sp(t) = V2s(t) - cos(27tfst) — vV/25q(t) - sin(27fyt).

> If we define s(t) = s;(f) + /- sq(t), then sp(t) can also be
expressed as

sp(t) = V2 - R{s(t)} - cos(2mfst) — V2 - I{s(t)} - sin(27fst)
— V2. R{s(t) - exp(j2rfst)}.

» The signal s(t):
» is called the baseband equivalent, or the complex envelope
of the passband signal sp(t).

» It contains the same information as sp(t). P
> Note that s(t) is complex-valued. Massse
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Polar Representation

» Sometimes it is useful to express the complex envelope
s(t) in polar coordinates:

s(t) = si(t) +J- sa(t)
= e(t) - exp(jO(t))

with
o(t) = /(1) + (D)
tan 0(t) = SS(/Q((Z‘?
» Also,
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Exercise: Complex Envelope

» Find the complex envelope representation of the signal

Sp(t) = sinc(t/ T) cos(27fyt + 7).

4
» Answer:
g/t
s(t) = 7 sinc(t/T)
_ %(sinc(t/ T) + jsinc(t/ T)).
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lllustration: QPSK with f, =2/T

» Passband signal (top):

K s R segments of sinusoids
ol | with different phases.
lé 0 » Phase changes occur
<05 at multiples of T.
o | YU VYV VY » Baseband equivalent
A signal (bottom) is
, | 200 | complex valued;
A _ 150 | | magnitude and phase
3 £ o - are plotted.
g s L | » Magnitude is constant
051 Tl ! (rectangular pulses).
% 5 0 %% 5 — 10
Time/T Time/T Z
» Complex baseband signal shows symbols much more MASON
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lllustration: 16-QAM with . =10/ T

» Passband signal (top):

° segments of sinusoids
» with different phases.
= WNWW > Phase and amplitude
<2 changes occur at

: A T i ' multiples of T.

oo e 07 27" Baseband signal

5 : 200 : (bOttOm) IS Complex

Al 00} _|_ valued; magnitude and

phase are plotted.

Magnitude
)] w
Phase (degrees)
=
o o

0 5 10 0 5 10 Z
Time/T Time/T mES“‘GE
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Frequency Domain

» The time-domain relationships between the passband
signal s,(t) and the complex envelope s(t) lead to

corresponding frequency-domain expressions.
» Note that

sp(t) = R{s(t) - V2exp(j2rfst)}

— g (s(t) - exp(j2rtfct) + s*(t) - exp(—j27fct)) .

» Taking the Fourier transform of this expression:

Sp(f) = Y2 (S(f— 1) + §' (1~ £)).

> Note that Sp(f) has the conjugate symmetry P
(Sp(f) = Si(—f)) that real-valued signals must have. MASON
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Frequency Domain
» In the frequency domain:

2
Sp(f) = Y2 (S(f— 1) + §' (1~ £)).
and, thus,
S(f) = V2-Sp(f+ 1) forf+7£, >0
0 else.
Sp(f) S(f)
V2 A
LA N\
L S~
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Down-conversion

V2 cos(27tft) » The down-conversion system is the

mirror image of the up-conversion
LPF - Ri(t) system.

» The top-branch recovers the

Rp(t) —9 in-phase signal s(t).

» The bottom branch recovers the
LPF b Ra(t) quadrature signal sq(t)

» See next slide for details.

—+/2sin(27tfet)
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Down-Conversion

> Let the the passband signal sy(t) be input to
down-coverter:

sp(t) = V2(s(t) cos(27tfst) — sq(t) sin(27fst))
> Multiplying sp(t) by v/2 cos(27tf,t) on the top branch yields
sp(t)-v'2 cos(27f,t)
= 25/(t) cos® (2rf,t) — 25q(t) sin(27tfst) cos(2mf,t)
= 5/(t) + si(t) cos(4rtfst) — sq(t) sin(4rfst).

» The low-pass filter rejects the components at +-21, and
retains s;(t).
» A similar argument shows that the bottom branch yields
/(iEORGE
sa(t). MASOR
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Extending the Complex Envelope Perspective

» The baseband description of the transmitted signal is very
convenient:

» it is more compact than the passband signal as it does not
include the carrier component,
» while retaining all relevant information.

» However, we are also concerned what happens to the
signal as it propagates to the receiver.

» Question: Do baseband techniques extend to other parts
of a passband communications system?

> Filtering of the passband signal
> Noise added to the passband signal
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Complete Passband System

V2 cos(27fst) V2 cos(2rtfst)

LPF ——

LPF 0

—+/2sin(27tfst) —+/2sin(27tfst)

» Question: Can the pass band filtering (hp(t)) be described
in baseband terms?

z,
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Passband Filtering
» For the passband signals sp(t) and Rp(t)
re(t) = sp(t) = hp(t) (convolution)

» Define a baseband equivalent impulse (complex) response
h(t).

» The relationship between the passband and baseband
equivalent impulse response is

hp(t) = R{h(t) - V2exp(j2nfet)}

» Then, the baseband equivalent signals s(t) and
r(t) = n(t) + jrqo(t) are related through

s+ h(b)  S(HH(T)
r(t) = 7 < R(f) = 7 )
> Note the division by v/2! MASON
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Passband and Baseband Frequency Response
» In the frequency domain

SHp(f+1,) for f+f
H(f)_{\/_P(‘l—c) orf+1f>0

0 else.
V2 .
Hp(f) = > (H(f = fc) + H (= = 1¢))
Hp(f) H(f)
1 tV2A
7// A \\ S
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Exercise: Multipath Channel

» A multi-path channel has (pass-band) impulse response

hp(t) = Eak . 5(t — Tk).
Kk

Find the baseband equivalent impulse response h(t)
(assuming carrier frequency f;) and the response to the
input signal s,(f) = cos(27tf.t).
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Passband White Noise

» Let (real-valued) white Gaussian
noise Np(t) of spectral height 22 be
iInput to the down-converter.

» Then, each of the two branches
produces indepent, white noise
processes N,(t) and Nq(t) with
spectral height 2e.

» This can be interpreted as (circular)
complex noise of spectral height Nj.

V2 cos(2rfst)

LPF —~ N(t)

LPF » Nq(t)

Np(t) —

—+/2sin(27tfet)
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Complete Passband System

V2 cos(2rfst) V2 cos(27fst)

LPF ¢

LPF —+—

— hp(t) ®

—+/2sin(27tft) —+/2sin(27ft)

> Complete pass-band system with channel (filter) and P
passband noise. Mz
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© 2018, B.-P. Paris ECE 630: Statistical Communication Theory




Complex Envelope
00000000000e

Baseband Equivalent System

s(t)

h(t)
V2

» The passband system can be interpreted as follows to yield
an equivalent system that employs only baseband signals:
» baseband equivalent transmitted signal:
s(t) = s/(t) +J- sq(l).
» baseband equivalent channel with complex valued impulse
response: h(t).
» baseband equivalent received signal:
R(t) = Ri(t) +j- Ra(t).
» complex valued, additive Gaussian noise: N(t) with
spectral height No. — JAAON
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Generalizing The Optimum Receiver

» We have derived all relationships for the optimum receiver
for real-valued signals.

» When we use complex envelope techniques, some of our
expressions must be adjusted.

» Generalizing inner product and norm

» Generalizing the matched filter (receiver frontend)
» Adapting the signal space perspective

» Generalizing the probability of error expressions
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Inner Products and Norms

» The inner product between two complex signals x(t) and
y(t) must be defined as

(x(0),y(0) = [ x(t)-y*(t) ot

» This is needed to ensure that the resulting squared norm is
positive and real
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Inner Products and Norms
» Norms are equal for passband and equivalent baseband

signals.
> Let
Xp (1) =R{x(t)V2exp(j2rf.t)}
yo(t) =R{y(t)V2exp(j27fst)}
» Then,

(Xo(1), yp(1)) = R{x(1), (1)) }
= (Xi(1), yi(1)) + (Xa(t). ya(t))
» The first equation implies

Ixe(6)]1 = [Ix(1)]I°

> Remark: the factor v2in xp(t) = R{x(t)v2exp(j2nfet)}
ensures this equality. MAS
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Receiver Frontend

» Let the baseband equivalent, received signal be
R(t) = Ry(t) + jRa(1).

» Then the optimum receiver frontend for the complex signal
s(t) = s(t) + jsq(t) will compute

(Rp(t), sp(t)) = R{(A(1),s(t))}
(Ri(t), si(t)) + (Ra(t), sq(t))

R

» The | and Q channel are first matched filtered individually
and then added together.
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Signal Space

» Assume that passband signals have the form

sp(t) = bip(t)V2E cos(27tfst) — bop(t)V2E sin(27fst)

forO <t<T.
> where p(t) is a unit energy pulse waveform.

» QOrthonormal basis functions are

Py = V2p(t) cos(2rtfst) and Dy = V/2p(t)sin(2mfyt)
» The corresponding baseband signals are
s(t) = bip(t)V'E + jbop(t)V E
» with basis functions

dp = p(t) and &1 = jp(t) Masass
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Probability of Error

» Expressions for the probability of error are unchanged as
long as the above changes to inner product and norm are
iIncorporated.

» Specifically, expressions involving the distance between
signals are unchanged

Q (HSn — SmH>
Vv 2Ny |
» Expressions involving inner products with a suboptimal
signal g(t) are modified to

R{(Sn— Sm (1))}
Q( V2Nlla ()] >
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Summary

» The baseband equivalent channel model is much simpler
than the passband model.

» Up and down conversion are eliminated.
» Expressions for signals do not contain carrier terms.

» The baseband equivalent signals are more tractable and
easier to model (e.g., for simulation).

» Since they are low-pass signals, they are easily sampled.

» No information is lost when using baseband equivalent
signals, instead of passband signals.

» Standard, linear system equations hold (nearly)
» Conclusion: Use baseband equivalent signals and
systems.
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Introduction

» For our discussion of optimal receivers, we have focused
on

» the transmission of single symbols and

» the signal space properties of symbol constellations.

» We recognized the critical importance of distance between
constellation points.

» The precise shape of the transmitted waveforms plays a
secondary role when it comes to error rates.

» However, the spectral properties of transmitted signals
depends strongly on the shape of signals.
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