
Complex Envelope Spectrum of Digitally Modulated Signals

Passband Signals

I We have seen that many signal sets include both
sin(2pfct) and cos(2pfct).

I Examples include PSK and QAM signal sets.
I Such signals are referred to as passband signals.

I Passband signals have frequency spectra concentrated
around a carrier frequency fc .

I This is in contrast to baseband signals with spectrum
centered at zero frequency.

I Baseband signals can be converted to passband signals
through up-conversion.

I Passband signals can be converted to baseband signals
through down-conversion.
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Up-Conversion
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I The passband signal sP(t) is
constructed from two (digitally
modulated) baseband signals, sI(t)
and sQ(t).

I Note that two signals can be
carried simultaneously!

I sI(t) and sQ(t) are the in-phase
(I) and quadrature (Q)
compenents of sp(t).

I This is a consequence of
sI(t) cos(2pfct) and
sQ(t) sin(2pfct) being orthogonal

I when the carrier frequency fc is
much greater than the bandwidth
of sI(t) and sQ(t).
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Exercise: Orthogonality of In-phase and Quadrature
Signals

I Show that sI(t) cos(2pfct) and sQ(t) sin(2pfct) are
orthogonal when fc � B, where B is the bandwidth of sI(t)
and sQ(t).

I You can make your argument either in the time-domain or
the frequency domain.
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Baseband Equivalent Signals
I The passband signal sP(t) can be written as

sP(t) =
p

2sI(t) · cos(2pfct)�
p

2sQ(t) · sin(2pfct).

I If we define s(t) = sI(t) + j · sQ(t), then sP(t) can also be
expressed as

sP(t) =
p

2 ·<{s(t)} · cos(2pfct)�
p

2 ·={s(t)} · sin(2pfct)

=
p

2 ·<{s(t) · exp(j2pfct)}.

I The signal s(t):
I is called the baseband equivalent, or the complex envelope

of the passband signal sP(t).
I It contains the same information as sP(t).
I Note that s(t) is complex-valued.
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Polar Representation
I Sometimes it is useful to express the complex envelope

s(t) in polar coordinates:

s(t) = sI(t) + j · sQ(t)
= e(t) · exp(jq(t))

with

e(t) =
q

s2
I (t) + s2

Q(t)

tan q(t) =
sQ(t)
sI(t)

I Also,

sI(t) = e(t) · cos(q(t))
sQ(t) = e(t) · sin(q(t))
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Exercise: Complex Envelope

I Find the complex envelope representation of the signal

sp(t) = sinc(t/T ) cos(2pfct +
p

4
).

I
Answer:

s(t) =
ejp/4
p

2
sinc(t/T )

=
1
2
(sinc(t/T ) + jsinc(t/T )).
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Illustration: QPSK with fc = 2/T
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I Passband signal (top):
segments of sinusoids
with different phases.

I Phase changes occur
at multiples of T .

I Baseband equivalent
signal (bottom) is
complex valued;
magnitude and phase
are plotted.

I Magnitude is constant
(rectangular pulses).

I Complex baseband signal shows symbols much more
clearly than passband signal.
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Illustration: 16-QAM with fc = 10/T
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I Passband signal (top):
segments of sinusoids
with different phases.

I Phase and amplitude
changes occur at
multiples of T .

I Baseband signal
(bottom) is complex
valued; magnitude and
phase are plotted.
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Frequency Domain
I The time-domain relationships between the passband

signal sp(t) and the complex envelope s(t) lead to
corresponding frequency-domain expressions.

I Note that

sp(t) = <{s(t) ·
p

2 exp(j2pfct)}

=

p
2

2
(s(t) · exp(j2pfct) + s⇤(t) · exp(�j2pfct)) .

I Taking the Fourier transform of this expression:

SP(f ) =

p
2

2
(S(f � fc) + S⇤(�f � fc)) .

I Note that SP(f ) has the conjugate symmetry
(SP(f ) = S⇤

P(�f )) that real-valued signals must have.
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Frequency Domain
I In the frequency domain:

SP(f ) =

p
2

2
(S(f � fc) + S⇤(�f � fc)) .

and, thus,

S(f ) =

( p
2 · SP(f + fc) for f + fc > 0

0 else.

f

SP(f )

�fc fc

A

f

S(f )

�fc fc

p
2 · A
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Down-conversion
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I The down-conversion system is the
mirror image of the up-conversion
system.

I The top-branch recovers the
in-phase signal sI(t).

I The bottom branch recovers the
quadrature signal sQ(t)

I See next slide for details.
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Down-Conversion
I Let the the passband signal sp(t) be input to

down-coverter:

sP(t) =
p

2(sI(t) cos(2pfct)� sQ(t) sin(2pfct))

I Multiplying sP(t) by
p

2 cos(2pfct) on the top branch yields

sP(t)·
p

2 cos(2pfct)

= 2sI(t) cos2(2pfct)� 2sQ(t) sin(2pfct) cos(2pfct)
= sI(t) + sI(t) cos(4pfct)� sQ(t) sin(4pfct).

I The low-pass filter rejects the components at ±2fc and
retains sI(t).

I A similar argument shows that the bottom branch yields
sQ(t).
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Extending the Complex Envelope Perspective

I The baseband description of the transmitted signal is very
convenient:

I it is more compact than the passband signal as it does not
include the carrier component,

I while retaining all relevant information.
I However, we are also concerned what happens to the

signal as it propagates to the receiver.
I

Question: Do baseband techniques extend to other parts
of a passband communications system?

I Filtering of the passband signal
I Noise added to the passband signal
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Complete Passband System
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I Question: Can the pass band filtering (hP(t)) be described
in baseband terms?
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Passband Filtering
I For the passband signals sP(t) and RP(t)

rP(t) = sP(t) ⇤ hP(t) (convolution)
I Define a baseband equivalent impulse (complex) response

h(t).
I The relationship between the passband and baseband

equivalent impulse response is

hP(t) = <{h(t) ·
p

2 exp(j2pfct)}
I Then, the baseband equivalent signals s(t) and

r (t) = rI(t) + jrQ(t) are related through

r (t) =
s(t) ⇤ h(t)p

2
$ R(f ) =

S(f )H(f )p
2

.

I Note the division by
p

2!
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Passband and Baseband Frequency Response
I In the frequency domain

H(f ) =

( p
2HP(f + fc) for f + fc > 0

0 else.

Hp(f ) =

p
2

2
(H(f � fc) + H⇤(�f � fc))

f

HP(f )

�fc fc

A

f

H(f )

�fc fc

p
2A
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Exercise: Multipath Channel

I A multi-path channel has (pass-band) impulse response

hP(t) = Â
k

ak · d(t � tk ).

Find the baseband equivalent impulse response h(t)
(assuming carrier frequency fc) and the response to the
input signal sp(t) = cos(2pfct).
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Passband White Noise
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I Let (real-valued) white Gaussian
noise NP(t) of spectral height N0

2 be
input to the down-converter.

I Then, each of the two branches
produces indepent, white noise
processes NI(t) and NQ(t) with
spectral height N0

2 .
I This can be interpreted as (circular)

complex noise of spectral height N0.
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Complete Passband System
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I Complete pass-band system with channel (filter) and
passband noise.
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Baseband Equivalent System

h(t)p
2

+

N(t)

s(t) R(t)

I The passband system can be interpreted as follows to yield
an equivalent system that employs only baseband signals:

I baseband equivalent transmitted signal:
s(t) = sI(t) + j · sQ(t).

I baseband equivalent channel with complex valued impulse
response: h(t).

I baseband equivalent received signal:
R(t) = RI(t) + j · RQ(t).

I complex valued, additive Gaussian noise: N(t) with
spectral height N0.
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Generalizing The Optimum Receiver

I We have derived all relationships for the optimum receiver
for real-valued signals.

I When we use complex envelope techniques, some of our
expressions must be adjusted.

I Generalizing inner product and norm
I Generalizing the matched filter (receiver frontend)
I Adapting the signal space perspective
I Generalizing the probability of error expressions
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Inner Products and Norms

I The inner product between two complex signals x(t) and
y(t) must be defined as

hx(t), y(t)i =
Z

x(t) · y⇤(t) dt .

I This is needed to ensure that the resulting squared norm is
positive and real

kx(t)k2 = hx(t), x(t)i =
Z

|x(t)|2 dt
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Inner Products and Norms
I Norms are equal for passband and equivalent baseband

signals.
I Let

xp(t) =<{x(t)
p

2 exp(j2pfct)}
yp(t) =<{y(t)

p
2 exp(j2pfct)}

I Then,

hxp(t), yp(t)i = <{hx(t), y(t)}
= hxI(t), yI(t)i+ hxQ(t), yQ(t)i

I The first equation implies

kxP(t)k2 = kx(t)k2

I Remark: the factor
p

2 in xp(t) = <{x(t)
p

2 exp(j2pfc t)}
ensures this equality.
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Receiver Frontend

I Let the baseband equivalent, received signal be
R(t) = RI(t) + jRQ(t).

I Then the optimum receiver frontend for the complex signal
s(t) = sI(t) + jsQ(t) will compute

R = hRP(t), sP(t)i = <{hR(t), s(t)i}
= hRI(t), sI(t)i+ hRQ(t), sQ(t)i

I The I and Q channel are first matched filtered individually
and then added together.
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Signal Space
I Assume that passband signals have the form

sP(t) = bIp(t)
p

2E cos(2pfct)� bQp(t)
p

2E sin(2pfct)

for 0  t  T .
I where p(t) is a unit energy pulse waveform.

I Orthonormal basis functions are

F0 =
p

2p(t) cos(2pfct) and F1 =
p

2p(t) sin(2pfct)

I The corresponding baseband signals are

sP(t) = bIp(t)
p

E + jbQp(t)
p

E

I with basis functions

F0 = p(t) and F1 = jp(t)
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Probability of Error
I Expressions for the probability of error are unchanged as

long as the above changes to inner product and norm are
incorporated.

I Specifically, expressions involving the distance between
signals are unchanged

Q
✓
ksn � smkp

2N0

◆
.

I Expressions involving inner products with a suboptimal
signal g(t) are modified to

Q
✓
<{hsn � sm, g(t)i}p

2N0kg(t)k

◆
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Summary

I The baseband equivalent channel model is much simpler
than the passband model.

I Up and down conversion are eliminated.
I Expressions for signals do not contain carrier terms.

I The baseband equivalent signals are more tractable and
easier to model (e.g., for simulation).

I Since they are low-pass signals, they are easily sampled.
I No information is lost when using baseband equivalent

signals, instead of passband signals.
I Standard, linear system equations hold (nearly)
I

Conclusion: Use baseband equivalent signals and
systems.
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