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Passband Signals

» We have seen that many signal sets include both
sin(2rtf.t) and cos(27tf.t).
» Examples include PSK and QAM signal sets.
» Such signals are referred to as passband signals.

» Passband signals have frequency spectra concentrated
around a carrier frequency fe.

» This is in contrast to baseband signals with spectrum
centered at zero frequency.

» Baseband signals can be converted to passband signals
through up-conversion.

» Passband signals can be converted to baseband signals
through down-conversion.
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Up-Conversion

V2 cos(2mtf,t)

si(1)

Sq(t)

—V2sin(2mf,t)
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» The passband signal sp(t) is
constructed from two (digitally
modulated) baseband signals, s;(t)
and sq(t).

» Note that two signals can be
carried simultaneously!
» 5/(t) and sp(t) are the in-phase
(I) and quadrature (Q)
compenents of sp(1).
» This is a consequence of
s/(t) cos(2rtf.t) and
sq(t) sin(2rtf.t) being orthogonal
» when the carrier frequency f; is
much greater than the bandwidth

Of Sl(t) and SQ(t) bﬁﬁsonﬁs
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Exercise: Orthogonality of In-phase and Quadrature
Signals

» Show that s(t) cos(27tf;t) and sq(t) sin(27tf.t) are
orthogonal when f; > B, where B is the bandwidth of s;(t)
and sq(t).

» You can make your argument either in the time-domain or
the frequency domain.
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Baseband Equivalent Signals

» The passband signal sp(t) can be written as

sp(t) = V2s/(t) - cos(2ntfst) — V2sq(t) - sin(27tfst).

» If we define s(t) = s(t) + /- sg(t), then sp(t) can also be
expressed as

sp(t) = V2 -R{s(t)} - cos(2ntf,t) — V2 - 3{s(t)} - sin(2rfst)
— V2. R{s(t) - exp(j2rfst)}.

» The signal s(t):
» is called the baseband equivalent, or the complex envelope
of the passband signal sp(t).
> It contains the same information as sp(t). p
> Note that s(t) is complex-valued. MASON
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Polar Representation

» Sometimes it is useful to express the complex envelope
s(t) in polar coordinates:

s(t) = s/(t) +J - sa(l)
= e(t) -exp(jo(t))

with
o(t) = /(1) + (D)
tan (1) = i‘f((tt))
» Also,
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Exercise: Complex Envelope

» Find the complex envelope representation of the signal

Sp(t) = sinc(t/ T)cos(2rf:t + %).
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Exercise: Complex Envelope

» Find the complex envelope representation of the signal

Sp(t) = sinc(t/ T)cos(2rf:t + z).

4
» Answer:
(1) Al (t/T)
S p— S|nC
7z
— %(sinc(t/ T)+sinc(t/T)).
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lllustration: QPSK with f, =2/ T

» Passband signal (top):
segments of sinusoids
with different phases.

» Phase changes occur
at multiples of T.

» Baseband equivalent
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» Complex baseband signal shows symbols much more Massse

clearly than passband signal.
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lllustration: 16-QAM with f, =10/T

» Passband signal (top):
segments of sinusoids
with different phases.

» Phase and amplitude
changes occur at

multiples of T.

Amplitude
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o0l _|_ valued; magnitude and
phase are plotted.
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Frequency Domain

» The time-domain relationships between the passband
signal sp(t) and the complex envelope s(t) lead to
corresponding frequency-domain expressions.

» Note that
sp(t) = R{s(t) - V2exp(j2rf:t)}
= \/75 (s(t) - exp(j2mtfot) + s*(t) - exp(—j2mfet)) .

» Taking the Fourier transform of this expression:

Sp(f) = g (S(f— 1) + S*(—F—1£,)).

» Note that Sp(f) has the conjugate symmetry p
(Sp(f) = SH(—f)) that real-valued signals must have. ~ DIAS ON

© 2017, B.-P. Paris ECE 630: Statistical Communication Theory



Complex Envelope
0®0000000000

Frequency Domain
» In the frequency domain:

V2 .
Sp(f) = 5 (S(f—fo) + S (=~ fc)).
and, thus,
0 else.
Sp(f) S(f)
\\/E A
// A \\7 N
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Down-conversion

V2 cos(2mf,t)

» The down-conversion system is the
mirror image of the up-conversion

LPF

- Ry(t) system.

» The top-branch recovers the
in-phase signal s(t).
» The bottom branch recovers the

LPF

5 Ro(t) quadrature signal sq(t)

Rp(t) —0

—V/2sin(27f,t)

» See next slide for details.

© 2017, B.-P. Paris
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Down-Conversion

» Let the the passband signal sy (t) be input to
down-coverter:

sp(t) = V2(s)(t) cos(2mtfst) — sg(t) sin(27rfst))
> Multiplying sp(t) by V2 cos(27f.t) on the top branch yields
sp(t)-V2cos(27fst)

— 25/(t) cos?(2rtfyt) — 25q(t) sin(27f,t) cos(27f.t)
= 5/(t) + s/(t) cos(4rf.t) — sq(t) sin(4rft).

» The low-pass filter rejects the components at +-2f, and
retains s(t).

» A similar argument shows that the bottom branch yields

Sq(t). MASOR

UNITV
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Extending the Complex Envelope Perspective

» The baseband description of the transmitted signal is very
convenient:

» it is more compact than the passband signal as it does not
include the carrier component,

» while retaining all relevant information.
» However, we are also concerned what happens to the
signal as it propagates to the receiver.

» Question: Do baseband techniques extend to other parts
of a passband communications system?

» Filtering of the passband signal
» Noise added to the passband signal

© 2017, B.-P. Paris ECE 630: Statistical Communication Theory
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Complete Passband System

V2 cos(2mf,t) V2 cos(2mf,t)

LPF ——+——

o—> hp(t) —0

LPF —+——

» Question: Can the pass band filtering (hp(t)) be described P
in baseband terms? MASON
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Passband Filtering
» For the passband signals sp(t) and Rp(t)
re(t) = sp(t) = hp(t) (convolution)

» Define a baseband equivalent impulse (complex) response
h(t).

» The relationship between the passband and baseband
equivalent impulse response is

hp(t) = R{h(t) - V2exp(j2rtt.t)}

» Then, the baseband equivalent signals s(t) and
r(t) = r(t) + jrg(t) are related through

> Note the divisionby v2!l  JASON
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Passband and Baseband Frequency Response
» In the frequency domain

H(f):{ V2Hp(f+ 1) forf+f >0

0 else.
Hp(1) = 2 (H(F — )+ H*(~1 — )
Hp(f) H(f)
\ ) TV2A
> A .
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Exercise: Multipath Channel

» A multi-path channel has (pass-band) impulse response

hp(t) =) ak-6(t — ).
k

Find the baseband equivalent impulse response h(t)
(assuming carrier frequency f;) and the response to the
input signal s,(t) = cos(27tf:t).
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Passband White Noise

V2 cos(2mf,t)

» Let (real-valued) white Gaussian
noise Np(t) of spectral height 20 be
Input to the down-converter.

LPF

- N(t)

» Then, each of the two branches
produces indepent, white noise
processes N,(t) and Nq(t) with
spectral height 22

LPF

x4 NQ(t)

» This can be interpreted as (circular)

Np(t) —0

—V2sin(2rf.t)

complex noise of spectral height Nj.

© 2017, B.-P. Paris
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Complete Passband System

V2 cos(2mf,t) V2 cos(2mf,t)
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LPF ——e—

LPF ——e—

— hp(t) ®

» Complete pass-band system with channel (filter) and
passband noise. MASGN
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Baseband Equivalent System

s(t)

h(t)
V2

» The passband system can be interpreted as follows to yield
an equivalent system that employs only baseband signals:
» baseband equivalent transmitted signal:
s(t) = si(t) +J- sq(t).
» baseband equivalent channel with complex valued impulse
response: h(t).
» baseband equivalent received signal:
R(t) = R(t) +J- Ra(t).
» complex valued, additive Gaussian noise: N(t) with
spectral height Np. AR
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Generalizing The Optimum Receiver

» We have derived all relationships for the optimum receiver
for real-valued signals.

» When we use complex envelope techniques, some of our
expressions must be adjusted.

» Generalizing inner product and norm

» Generalizing the matched filter (receiver frontend)
» Adapting the signal space perspective

» Generalizing the probability of error expressions

© 2017, B.-P. Paris ECE 630: Statistical Communication Theory
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Inner Products and Norms

» The inner product between two complex signals x(t) and
y(t) must be defined as

» This is needed to ensure that the resulting squared norm is
positive and real

© 2017, B.-P. Paris ECE 630: Statistical Communication Theory
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Inner Products and Norms
» Norms are equal for passband and equivalent baseband

signals.
» Let
X (1) =R{x(t)V2exp(j2rfst)}
yp(t) =R{y(t)V2exp(j2nf;t)}
» Then,

(Xp(1), yp(t)) = R{(x(1), y (1)}
= (Xi(1), yi(1)) + {xa(t), ya(t))
» The first equation implies

Ixe(8)]1 = [Ix(1)]2

> Remark: the factor /2 in x,(t) = R{x(t)vV2exp(j2rfet)} A
ensures thisequality. — GAAE
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Receiver Frontend

» Let the baseband equivalent, received signal be
R(t) = Ri(t) + jRa(1).

» Then the optimum receiver frontend for the complex signal
s(t) = si(t) + jsq(t) will compute

(Rp(1).sp(t)) = R{(R(1),s(1))}
(A1), 5/(1)) 4 (Ra(t), sa(t))

R

» The | and Q channel are first matched filtered individually
and then added together.
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Signal Space
» Assume that passband signals have the form
sp(t) = bjp(t)V2E cos(2rtfst) — bgp(t)V2E sin(27tft)

forO<t<T.
» where p(t) is a unit energy pulse waveform.

» Orthonormal basis functions are
®y = V2p(t)cos(2nfyt) and Py = V2p(t) sin(27fst)
» The corresponding baseband signals are
sp(t) = bp(t)V E + jbop(t)VE
» with basis functions

®o = p(t) and Py = jp(1) MASON
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Probability of Error

» Expressions for the probability of error are unchanged as
long as the above changes to inner product and norm are
iIncorporated.

» Specifically, expressions involving the distance between
signals are unchanged

Q (HSn — 5m”)
V2N, |
» Expressions involving inner products with a suboptimal
signal g(t) are modified to

R{(Sn— Sm (1))
Q( NANEG] )
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Summary

» The baseband equivalent channel model is much simpler
than the passband model.

» Up and down conversion are eliminated.
» Expressions for signals do not contain carrier terms.

» The baseband equivalent signals are more tractable and
easier to model (e.g., for simulation).

» Since they are low-pass signals, they are easily sampled.

» No information is lost when using baseband equivalent
signals, instead of passband signals.

» Standard, linear system equations hold (nearly)

» Conclusion: Use baseband equivalent signals and
systems.
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