Introduction

v

We compare methods for transmitting a sequence of bits.
We will see that the performance of these methods varies
significantly.

» New perspective:

» Focus on messages, i.e., sequences of bits

» Entire message must be received correctly

» Main Result: It is possible to achieve error free
communications as long as SNR is good enough and data
rate is not too high.
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Problem Statement

» Problem:

» K bits must be transmitted in T seconds.
> Available power is limited to P.

» Questions:

» What method achieves the lowest probability of error?
» Is error-free communications possible?

© 2018, B.-P. Paris ECE 630: Statistical Communication Theory




Message Sequence
coe

Parameters
» Data Rate:

R = (bits/s)

| X

> entire transmission takes T seconds
» K bits are sent over T seconds
» implicit assumption: bits are equally likely.
» Power and energy: transmitted signal s(t) has power P
and energy E

1 T E
P_T/O s(t)[2dt = =

> Entire transmitted signal s(t) is of duration T.
» Note, bit energy is given by
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Bit-by-bit Signaling
» Transmit K bit as a sequence of “one-shot” BPSK signals.
» K = RT bits to be transmitted.
> Energy per bit E, (Ep = £).
» Consider, signals of the form

s() = Y V/Epseplt—k/R)
k=0

> s € {£1}
> p(t) is a pulse of duration 1/R = T/K and ||p(t)[|? = 1.
» Question: What is the probability that any transmission
error occurs?

» |n other words, the transmission is not received without

/GEORGE
error. MaAS
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Error Probability for Bit-by-Bit Signaling

» We can consider the entire message as a single
K-dimensional signal set.

» Signals are at the vertices of a K-dimensional hypercube.

e —1-(1_0(?E))"
i1 (1-o())
=1 (1-9(ag))

» Note, for any finite P/ Ny and R, the error rate will always
tendto1as 7 — co.

» Error-free transmission is not possible with bit-by-bit
signaling.
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Block-Orthogonal Signaling

» Again,
» K = RT bits are transmitted in T seconds.
> Energy per bit E, = £.
» Signal set (Pulse-position modulation — PPM)

sc(t) =VEp(t—kT/2X) fork=0,1,...,25 -1,

where p(t) is of duration T/2X, E = KE}, and

()% = 1.
» Alternative signal set (Frequency Shift Keying — FSK)

Sk(t) = \/$cos(2n(fc+k/T)t) fork=0,1,..., 2K 1.

» Signal set consists of M = 2K signals
» each signal conveys K bits, -
» each signal occupies one of the K dimensions. MAS
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Union Bound

» The error probability for block-orthogonal signaling cannot
be computed in closed form.

» At high and moderate SNR, the error probability is well
approximated by the union bound.

» Each signal has M — 1 = 2% — 1 nearest neighbors.
» The distance between neighbors is dyin = V2E = /2KE,.

» Union bound

Pr{ie} < (2K —1)Q ( T())

PT
= (2fT — 1)0( M)
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Bounding the Union Bound
» To gain further insight, we bound

1
Q(x) < éexp(—xz/Z) < exp(—x2/2).
» Then,
Prie} < (2°T —1)Q ( E)
No
PT

< oRT _ -

S 270 exp( 2No)

— exp(—T(= — RIn2))

— exp N, .
» Hence, Pr{e} - 0as T — oo!

» Aslongas R < #ﬁ Masase
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» Error-free transmission is possible!
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Reality-Check: Bandwidth

» Bit-by-bit Signaling: Pulse-width: T/K =1/R.
» Bandwidth is approximately equal to B = R.
» Also, number of dimensions K = RT.

» Block-orthogonal: Pulse width: T/2K = T /27T,

» Bandwidth is approximately equal to B =2RT/T.
» Number of dimensions is 2X = 21T

» Bandwidth for block-orthogonal signaling grows
exponentially with the number of bits K.

» Not practical for moderate to large blocks of bits.
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The Dimensionality Theorem

» The relationship between bandwidth B and the number of
dimensions is summarized by the dimensionality theorem:

» The number of dimensions D available over an interval od
duration T is limited by the bandwidth B

D<B-T

» The theorem implies:

» A signal occupying D dimensions over T seconds requires

bandwidth
D

> =
B_T

© 2018, B.-P. Paris ECE 630: Statistical Communication Theory




Message Sequence

OoO0000e

An |deal Signal Set

» An ideal signal set combines the aspects of our two
example signal sets:

> Pr{e}-behavior like block orthogonal signaling

lim Pr{e} =0.

T—o0

» Bandwidth behavior like bit-by-bit signaling

D
B=_— = .
T constant

» Thus, D =BT —wccas T — o.

» Question: Does such a signal set exist?
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Towards Channel Capacity

» Given:

> bandwidth B = 2, where T is the duration of the
transmission.
> power P

» Noise power spectral density %
» Question: What is the highest data rate R that allows
error-free transmission with the above constraints?

» We are transmitting RT bits
» Therefore, we need M = 277 signals.
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Signal Set
» Our signal set consists of M = 2R signals of the form
D—1
sn(t) = Y Xnkp(t — kT /D)
k=0
where
» p(t) are pulses of duration T/D, i.e., of bandwidth
B=D/T.
> Also, |[p(t)]|? = 1.
> Each signal sp(t) is defined by a length-D vector
Xn = {X}n,k'

» We are looking to find M = 287 length-D vectors X that
lead to good error properties.

» Note that the signals p(f — kT /D) form an orthonormal -
basis with D dimensions. MASOR
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Receiver Frontend

» The receiver frontend consists of a matched filter for p(t)
followed by a sampler at times kT /D.

> l.e., the frontend projects the received signal onto the
orthonormal basis functions p(t — kT /D).

» The vector R of matched filter outputs has elements
Re = (Rip(t— kT/D)) k=01,...,D—1

> Conditional on s,(t) was sent, R ~ N(X,, Ze1).

» The optimum receiver selects the signal s, that’s closest to
R.
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Conditional Error Probability

> When, the signal sp(t) was sent then B ~ N(X,, Ze /).

» As the number of dimensions D increases, tbe vector R lies
within a D-dimensional sphere with center X and radius

D™ with very high probability: 1 — P, i.e., Po = e P.

» Important: We allow the radius of the decoding spheres to
grow with the number of dimensions D.
» This ensuresthat P - 0as D = BT — oo.

> We call the spheres of radius /D™ around each signal
point decoding spheres.

» The decoding spheres will be part of the decision regions
for each point.
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Power Constraint

» The power for signal s,(t) must satisfy
L @Wdt= 1 % Xoul? = 1%l < P
Ton _Tk:o n,k—Tn >~ .

> Therefore, || X,||2 < PT
» Insights:

» The transmitted signals lie in a sphere of radius v PT.
» The observed signals must lie in a large sphere of radius

\/ PT + D%0.
» Question: How many decoding spheres can we have and
still meet the power constraint?
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Capacity
D
> Each decoding sphere has volume Kp(y/D™2) .

» The volume of the sphere containing the observed signals

D
s Kp(\/ PT + D)

» Kp is a constant that depends only on the number of

dimensions D, e.g., K3 = “f.

» The number of decoding spheres that fit into the the power
sphere is (upper) bounded by the ratio of the volumes
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» Since the number of signals M = 2R7 equals the number
of decoding spheres, it follows that error free
communications is possible (in the limitas D = BT — oo) |f

(\/PT+ D%;) ’
(o3

PT . B P
R < 27_Iog2(1 + DN0/2) §|0g2(1 + BNO/Z)'

M = 2AT ~

or

» Note, if we allow complex valued signals, then
R < Bloga(1+ 5 )-
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lllustration: 2-bit Messages

» Consider two different ways of transmitting two bits:

» QPSK
» rate 2/3 block code and BPSK modulation

» Compare the probability of at least one bit error
» constant ,’f_,—g
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QPSK

» We know that for QPSK

> energy efficiency , = 4
» (symbol) error rate
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Benefit of a Simple Code

» The block code maps two bits to sequence of three BPSK
symbols as follows:

00 :{1,1,1} 01:{1,—-1,—1}
10 :{—1,1, -1} 11:{—1,-1,1}

» For this signal set:
> energy efficiency 7o = 2
» (symbol) error rate

» Coding gain:
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