A Simple Example	Binary Hypothesis Testing	Optimal Receiver Frontend	<i>M</i> -ary Signal Sets	Message Sequence ●oo ○○ ○○○○○○○ ○○○○○○○○○○

Introduction

- We compare methods for transmitting a sequence of bits.
- We will see that the performance of these methods varies significantly.
- New perspective:
 - Focus on messages, i.e., sequences of bits
 - Entire message must be received correctly
- Main Result: It is possible to achieve error free communications as long as SNR is good enough and data rate is not too high.

essage Sequence

Problem Statement

Problem:

- K bits must be transmitted in T seconds.
- Available power is limited to P.

Questions:

- What method achieves the lowest probability of error?
- Is error-free communications possible?

A Simple Example	Binary Hypothesis Testing	Optimal Receiver Frontend	M-ary Signal Sets	Message Sequence
0 00000 000000000	00000000 00000000 00000000	00 000000000000 00000000 0000000	00 00000000 0000000000 00000000 0000000	00 ● 00 000000 0000000000

Parameters

Data Rate:

$$R=rac{K}{T}$$
 (bits/s)

- entire transmission takes T seconds
- ► *K* bits are sent over *T* seconds
- implicit assumption: bits are equally likely.
- Power and energy: transmitted signal s(t) has power P and energy E

$$P = \frac{1}{T} \int_0^T |s(t)|^2 dt = \frac{E}{T}$$

- Entire transmitted signal s(t) is of duration T.
- Note, bit energy is given by

$$E_b = rac{E}{\kappa} = rac{PT}{\kappa} = rac{P}{R}.$$

A Simple Example	Binary Hypothesis Testing	Optimal Receiver Frontend	M-ary Signal Sets	Message Sequence
0 00000 00000000	00000000 00000000 00000000	00 000000000000 00000000 0000000	00 00000000 000000000 00000000 00000000	000 ●0 000000 000000000

Bit-by-bit Signaling

- Transmit K bit as a sequence of "one-shot" BPSK signals.
- \blacktriangleright *K* = *RT* bits to be transmitted.
- Energy per bit E_b $(E_b = \frac{E}{K})$.
- Consider, signals of the form

$$s(t) = \sum_{k=0}^{K-1} \sqrt{E_b} s_k p(t - k/R)$$

s_k ∈ {±1}
 p(*t*) is a pulse of duration 1/*R* = *T*/*K* and ||*p*(*t*)||² = 1.
 Question: What is the probability that any transmission error occurs?

In other words, the transmission is not received without error.

A Simple Example	Binary Hypothesis Testing	Optimal Receiver Frontend	M-ary Signal Sets	Message Sequence
0 00000 00000000	00000000 000000000 00000000	00 000000000000 00000000 0000000	00 00000000 0000000000 00000000	000 ⊙● 000000 000000000

Error Probability for Bit-by-Bit Signaling

We can consider the entire message as a single K-dimensional signal set.

Signals are at the vertices of a *K*-dimensional hypercube.

$$\Pr\{e\} = 1 - \left(1 - Q\left(\frac{2E_b}{N_0}\right)\right)^K$$
$$= 1 - \left(1 - Q\left(\frac{2P}{RN_0}\right)\right)^{RT}$$

- Note, for any finite P/N_0 and R, the error rate will always tend to 1 as $T \rightarrow \infty$.
 - Error-free transmission is *not* possible with bit-by-bit signaling.

A Simple Example	Binary Hypothesis Testing	Optimal Receiver Frontend	M-ary Signal Sets	Message Sequence
0 00000 00000000	0000000 00000000 0000000	00 000000000000 00000000 0000000	00 00000000 000000000 00000000 00000000	000 00 ●00000 000000000

Block-Orthogonal Signaling

- Again,
 - \blacktriangleright K = RT bits are transmitted in T seconds.
 - Energy per bit $E_b = \frac{P}{R}$.

Signal set (Pulse-position modulation — PPM)

$$s_k(t) = \sqrt{E}p(t - kT/2^K)$$
 for $k = 0, 1, ..., 2^K - 1$.

where p(t) is of duration $T/2^{K}$, $E = KE_{b}$, and $\|p(t)\|^{2} = 1$.

Alternative signal set (Frequency Shift Keying — FSK)

$$s_k(t) = \sqrt{\frac{2E}{T}} \cos(2\pi (f_c + k/T)t)$$
 for $k = 0, 1, ..., 2^K - 1$.

- Signal set consists of $M = 2^{K}$ signals
 - each signal conveys K bits,
 - each signal occupies one of the K dimensions.

A Simple Example	Binary Hypothesis Testing	Optimal Receiver Frontend	M-ary Signal Sets	Message Sequence
0 00000 00000000	00000000 00000000 00000000	00 000000000000 00000000 0000000	00 0000000 000000000 00000000 00000000	000 00 000000 000000000

Union Bound

- The error probability for block-orthogonal signaling cannot be computed in closed form.
- At high and moderate SNR, the error probability is well approximated by the union bound.
 - Each signal has $M 1 = 2^{K} 1$ nearest neighbors.
 - The distance between neighbors is $d_{\min} = \sqrt{2E} = \sqrt{2KE_b}$.
- Union bound

$$\Pr\{e\} \le (2^{K} - 1)Q\left(\sqrt{\frac{KE_{b}}{N_{0}}}\right)$$
$$= (2^{RT} - 1)Q\left(\sqrt{\frac{PT}{N_{0}}}\right)$$

A Simple Example	Binary Hypothesis Testing	Optimal Receiver Frontend	M-ary Signal Sets	Message Sequence
0 00000 00000000	00000000 00000000 0000000	00 000000000000 00000000 0000000	00 0000000 000000000 00000000 00000000	000 00 000000 000000000

Bounding the Union Bound

► To gain further insight, we bound

$$Q(x) \leq \frac{1}{2} \exp(-x^2/2) \leq \exp(-x^2/2).$$

Then,

$$\Pr\{e\} \le (2^{RT} - 1)Q\left(\sqrt{\frac{PT}{N_0}}\right)$$
$$\le 2^{RT} \exp\left(-\frac{PT}{2N_0}\right)$$
$$= \exp\left(-T\left(\frac{P}{2N_0} - R\ln 2\right)\right).$$

• Hence, $\Pr\{e\} \to 0$ as $T \to \infty!$

• As long as
$$R < \frac{1}{\ln 2} \frac{P}{2N_0}$$
.

Error-free transmission is possible!

MASON UNIVERSITY

A Simple Example	Binary Hypothesis Testing	Optimal Receiver Frontend	<i>M</i> -ary Signal Sets	Message Sequence
0 00000 00000000	00000000 000000000 00000000	00 000000000000 00000000 0000000	00 00000000 0000000000 00000000 0000000	000 00 000000 000000000

Reality-Check: Bandwidth

• **Bit-by-bit Signaling:** Pulse-width: T/K = 1/R.

- Bandwidth is approximately equal to B = R.
- Also, number of dimensions K = RT.
- **Block-orthogonal:** Pulse width: $T/2^{K} = T/2^{RT}$.
 - ► Bandwidth is approximately equal to $B = 2^{RT} / T$.
 - Number of dimensions is $2^{K} = 2^{RT}$.
- Bandwidth for block-orthogonal signaling grows exponentially with the number of bits K.
 - Not practical for moderate to large blocks of bits.

A Simple Example o ooooo oooooooooo	Binary Hypothesis Testing	Optimal Receiver Frontend	<i>M</i> -ary Signal Sets oo oooooooo oooooooooooo	Message Sequence
	0000000	000000000000000000000000000000000000000	00000000000 0000000 000000000000000000	000000000000000000000000000000000000000

The Dimensionality Theorem

- The relationship between bandwidth B and the number of dimensions is summarized by the *dimensionality theorem*:
 - The number of dimensions D available over an interval od duration T is limited by the bandwidth B

$$D \leq B \cdot T$$

- The theorem implies:
 - A signal occupying D dimensions over T seconds requires bandwidth

$$B \ge \frac{D}{T}$$

A Simple Example	Binary Hypothesis Testing	Optimal Receiver Frontend	M-ary Signal Sets	Message Sequence
0 00000 00000000	00000000 000000000 00000000	00 000000000000 00000000 0000000	00 00000000 0000000000 00000000 0000000	000 00 000000 000000000

An Ideal Signal Set

- An ideal signal set combines the aspects of our two example signal sets:
 - \triangleright Pr{*e*}-behavior like block orthogonal signaling

 $\lim_{T\to\infty} \Pr\{e\} = 0.$

Bandwidth behavior like bit-by-bit signaling

$$B = \frac{D}{T} = \text{constant}.$$

• Thus,
$$D = BT \rightarrow \infty$$
 as $T \rightarrow \infty$.

Question: Does such a signal set exist?

A Simple Example	Binary Hypothesis Testing	Optimal Receiver Frontend	M-ary Signal Sets	Message Sequence
0 00000 00000000	00000000 00000000 00000000	00 000000000000 00000000 0000000	00 00000000 000000000 00000000 00000000	000 00 000000 •00000000

Towards Channel Capacity

Given:

- bandwidth $B = \frac{D}{T}$, where T is the duration of the transmission.
- power P
- ▶ Noise power spectral density $\frac{N_0}{2}$
- Question: What is the highest data rate R that allows error-free transmission with the above constraints?
 - ► We are transmitting *RT* bits
 - Therefore, we need $M = 2^{RT}$ signals.

A Simple Example	Binary Hypothesis Testing	Optimal Receiver Frontend	<i>M</i> -ary Signal Sets oo oooooooo oooooooooooooooooooooooo	Message Sequence
		000000	00000000 00000000000000000000000000000	

Signal Set

• Our signal set consists of $M = 2^{RT}$ signals of the form

$$s_n(t) = \sum_{k=0}^{D-1} X_{n,k} p(t - kT/D)$$

where

- p(t) are pulses of duration T/D, i.e., of bandwidth B = D/T.
- ► Also, $||p(t)||^2 = 1$.
- Each signal $s_n(t)$ is defined by a length-*D* vector $\vec{X_n} = \{X\}_{n,k}$.
- We are looking to find $M = 2^{RT}$ length-*D* vectors \vec{X} that lead to good error properties.
- Note that the signals p(t kT/D) form an orthonormal basis with *D* dimensions.

A Simple Example	Binary Hypothesis Testing	Optimal Receiver Frontend	M-ary Signal Sets	Message Sequ
0 00000 000000000	00000000 000000000 00000000	00 000000000000 00000000 0000000	00 00000000 0000000000 00000000 0000000	000 00 000000 00000000000000

Receiver Frontend

- The receiver frontend consists of a matched filter for p(t) followed by a sampler at times kT/D.
 - ► I.e., the frontend projects the received signal onto the orthonormal basis functions p(t kT/D).
- The vector \vec{R} of matched filter outputs has elements

$$R_k = \langle R_t, p(t-kT/D) \rangle$$
 $k = 0, 1, \ldots, D-1$

- Conditional on $s_n(t)$ was sent, $\vec{R} \sim N(\vec{X}_n, \frac{N_o}{2}I)$.
- The optimum receiver selects the signal s_n that's closest to \vec{R} .

A Simple Example	Binary Hypothesis Testing	Optimal Receiver Frontend	M-ary Signal Sets	Message Sequence
0 00000 00000000	0000000 00000000 0000000	00 000000000000 00000000 0000000	00 00000000 0000000000 00000000 0000000	000 00 000000 00000000

Conditional Error Probability

- ▶ When, the signal $s_n(t)$ was sent then $\vec{R} \sim N(\vec{X}_n, \frac{N_o}{2}I)$.
- As the number of dimensions *D* increases, the vector \vec{R} lies within a *D*-dimensional sphere with center \vec{X}_k and radius

 $\sqrt{D\frac{N_0}{2}}$ with very high probability: $1 - e^{-D}$, i.e., $P_e = e^{-D}$.

Important: We allow the radius of the decoding spheres to grow with the number of dimensions D.

▶ This ensures that $P_e \rightarrow 0$ as $D = BT \rightarrow \infty$.

- We call the spheres of radius $\sqrt{D\frac{N_0}{2}}$ around each signal point *decoding spheres*.
 - The decoding spheres will be part of the decision regions for each point.

A Simple Example	Binary Hypothesis Testing	Optimal Receiver Frontend	M-ary Signal Sets	Message Sequence
0 00000 000000000	00000000 000000000 00000000	00 000000000000 00000000 0000000	00 00000000 0000000000 00000000 0000000	000 00 000000 000000000

Power Constraint

• The power for signal $s_n(t)$ must satisfy

$$\frac{1}{T}\int_0^T s_n^2(t) dt = \frac{1}{T}\sum_{k=0}^{D-1} |X_{n,k}|^2 = \frac{1}{T} \|\vec{X}_n\|^2 \le P.$$

• Therefore,
$$\|\vec{X}_n\|^2 \leq PT$$

- Insights:
 - The transmitted signals lie in a sphere of radius \sqrt{PT} .
 - The observed signals must lie in a large sphere of radius $\sqrt{PT + D\frac{N_0}{2}}$.

Question: How many decoding spheres can we have and still meet the power constraint?

	lessage Sequence
00000000000000000	

Capacity

- Each decoding sphere has volume $K_D(\sqrt{D\frac{N_0}{2}})^{\prime}$.
- The volume of the sphere containing the observed signals is $K_D(\sqrt{PT + D\frac{N_0}{2}})^D$
 - ► K_D is a constant that depends only on the number of dimensions D, e.g., $K_3 = \frac{4\pi}{3}$.
- The number of decoding spheres that fit into the the power sphere is (upper) bounded by the ratio of the volumes

$$\frac{K_D\left(\sqrt{PT+D\frac{N_0}{2}}\right)^D}{K_D\left(\sqrt{D\frac{N_0}{2}}\right)^D}$$

A Simple Example o ooooo oooooooooo	Binary Hypothesis Testing	Optimal Receiver Frontend	00 00000000 0000000000	Message Sequence
		000000	00000000 00000000000000000000000000000	0000000000

Capacity

Since the number of signals $M = 2^{RT}$ equals the number of decoding spheres, it follows that error free communications is possible (in the limit as $D = BT \rightarrow \infty$) if

$$M = 2^{RT} < \frac{\left(\sqrt{PT + D\frac{N_0}{2}}\right)^D}{\left(\sqrt{D\frac{N_0}{2}}\right)^D}$$

or

$$R < \frac{D}{2T}\log_2(1 + \frac{PT}{DN_0/2}) = \frac{B}{2}\log_2(1 + \frac{P}{BN_0/2}).$$

Note, if we allow *complex valued* signals, then $R < B \log_2(1 + \frac{P}{BN_0})$.

A Simple Example	Binary Hypothesis Testing	Optimal Receiver Frontend	M-ary Signal Sets	Message Sequence
0 00000 00000000	00000000 00000000 00000000	00 000000000000 00000000 0000000	00 00000000 0000000000 00000000 0000000	000 00 000000 000000000000000000000000

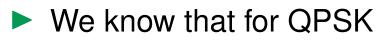
Illustration: 2-bit Messages

Consider two different ways of transmitting two bits:

- QPSK
- rate 2/3 block code and BPSK modulation
- Compare the probability of at least one bit error
 - constant $\frac{E_b}{N_0}$.

A Simple Example	Binary Hypothesis Testing	Optimal Receiver Frontend	M-ary Signal Sets	Message Sequence
0 00000 000000000	00000000 000000000 00000000	00 000000000000 00000000 0000000	00 00000000 0000000000 00000000 0000000	000 00 000000 00000000000000000000000

QPSK



- energy efficiency $\eta_u = 4$
- (symbol) error rate

$$\mathsf{P}_{e} \leq 2\mathsf{Q}\left(\sqrt{rac{2E_{b}}{N_{0}}}
ight)$$

	A Simple Example o ooooo oooooooooo	Binary Hypothesis Testing	Optimal Receiver Frontend	00 00000000 0000000000 000000000	Message Sequence
--	---	---------------------------	---------------------------	---	------------------

Benefit of a Simple Code

The block code maps two bits to sequence of three BPSK symbols as follows:

00 :{1, 1, 1} 10 :{-1, 1, -1}

$$01: \{1, -1, -1\}$$

 $11: \{-1, -1, 1\}$

For this signal set:

- energy efficiency $\eta_c = \frac{16}{3}$
- (symbol) error rate

$$P_e \leq 3Q\left(\sqrt{\frac{8E_b}{3N_0}}
ight)$$

Coding gain:

$$\frac{\eta_c}{\eta_u} = \frac{16/3}{4} = \frac{4}{3} \approx 1 \text{dB}$$

