A Simple Example	Binary Hypothesis Testing	Optimal Receiver Frontend	<i>M</i> -ary Signal Sets	Message
00000	0000000		00	• 00
	00000000	000000000	00000000000	000000
			000000000000000000000000000000000000000	

Introduction

- We compare methods for transmitting a sequence of bits.
- We will see that the performance of these methods varies significantly.
- Main Result: It is possible to achieve error free communications as long as SNR is good enough and data rate is not too high.

글 🖌 🖌 글 🕨

Sequences

A Simple Example	
00000	
00000000	

inary Hypothesis Testin 00000000 00000000 00000000 Optimal Receiver Frontend

)0)0000000000000)00000000)0000000

Message Sequences

Problem Statement

Problem:

- ► *K* bits must be transmitted in *T* seconds.
- Available power is limited to P.
- Question: What method achieves the lowest probability of error?

<ロト < 同ト < 巨ト < 巨ト

Optimal Receiver Frontend

Message Sequences ○○ ○○ ○○ ○○ ○○ ○○

Parameters

Data Rate:

$$R = rac{\log_2 M}{T}$$
 (bits/s)

- T = symbol (baud) rate
- M = alphabet size
- implicit assumption: symbols are equally likely.

Power and energy:

$$P = \frac{1}{T} \int_0^T |\boldsymbol{s}(t)|^2 \, dt = \frac{E_s}{T}$$

- s(t) is of duration T.
- Note, bit energy is given by

$$E_b = \frac{E_s}{\log_2 M} = \frac{PT}{\log_2 M} = \frac{P}{R}$$

<ロト < 同ト < 巨ト < 巨ト

A Simple Example Binary Hypothesis Testing Optimal Receiver Frontend *M*-ary Signal Sets

al Sets Message Sequences

Bit-by-bit Signaling

- Transmit K bit as a sequence of "one-shot" BPSK signals.
- K = RT bits to be transmitted.
- Energy per bit E_b .
- Consider, signals of the form

$$s(t) = \sum_{k=0}^{K-1} \sqrt{E_b} s_k p(t - k/R)$$

In other words, the transmission is not received without error.

<ロト < 同ト < 巨ト < 巨ト

A Simple Example Binary Hypothesis Testing Optimal Receiver Frontend Optimal Sets Message Sequences

Error Probability for Bit-by-Bit Signaling

- We can consider the entire set of transmissions as a K-dimensional signal set.
 - ► Signals are at the vertices of a *K*-dimensional hypercube.

$$\Pr\{e\} = 1 - \left(1 - Q\left(\frac{2E_b}{N_0}\right)\right)^K$$
$$= 1 - \left(1 - Q\left(\frac{2P}{RN_0}\right)\right)^{RT}$$

- Note, for any E_b/N_0 and R, the error rate will always tend to 1 as $T \rightarrow \infty$.
 - Error-free transmission is *not* possible with bit-by-bit signaling.

▲□▶ ▲□▶ ▲□▶ ▲□▶

Binary Hypothesis Testing

Optimal Receiver Frontend

 Message Sequences

Block-Orthogonal Signaling

- Again,
 - K = RT bits are transmitted in T seconds.
 - Energy per bit E_b .

Signal set (Pulse-position modulation — PPM)

$$s_k(t) = \sqrt{E_s} p(t - kT/2^K)$$
 for $k = 0, 1, ..., 2^K - 1$.

where p(t) is of duration $T/2^{K}$ and $||p(t)||^{2} = 1$.

Alternative signal set (Frequency Shift Keying — FSK)

$$s_k(t) = \sqrt{\frac{2E_s}{T}} \cos(2\pi (f_c + k/T)t)$$
 for $k = 0, 1, ..., 2^K - 1$.

- Since the signal set consists of M = 2^K signals, each signal conveys K bits each signal occupies one dimension.
- Note that $E_s = KE_b$.

<ロト < 同ト < 三ト < 三ト

Binary Hypothesis Testing

Optimal Receiver Frontend

Message Sequences

Union Bound

- The error probability for block-orthogonal signaling cannot be computed in closed form.
- At high and moderate SNR, the error probability is well approximated by the union bound.
 - Each signal has $M 1 = 2^{K} 1$ nearest neighbors.
 - The distance between neighbors is $d_{\min} = \sqrt{2E_s} = \sqrt{2KE_b}$.
- Union bound

$$\Pr\{e\} \le (2^{K} - 1)Q\left(\sqrt{\frac{KE_{b}}{N_{0}}}\right)$$
$$= (2^{RT} - 1)Q\left(\sqrt{\frac{PT}{N_{0}}}\right)$$

<ロト < 同ト < 巨ト < 三ト

Binary Hypothesis Testing

Optimal Receiver Frontend

Message Sequences

Bounding the Union Bound

► To gain further insight, we bound

$$Q(x) \leq \frac{1}{2} \exp(-x^2/2).$$

► Then,

$$\begin{aligned} \mathsf{Pr}\{e\} &\leq (2^{RT} - 1)Q\left(\sqrt{\frac{PT}{N_0}}\right) \\ &\lesssim 2^{RT}\exp(-\frac{PT}{2N_0}) \\ &= \exp(-T(\frac{P}{2N_0} - R\ln 2)) \end{aligned}$$

- Hence, $\Pr\{e\} \to 0$ as $T \to \infty$!
 - As long as $R < \frac{1}{\ln 2} \frac{P}{2N_0}$.

Error-free transmission is possible!

© 2017, B.-P. Paris

(二)、(四)、(三)、(三)、

SQ (A

131

Binary Hypothesis Testing

 Message Sequences

Reality-Check: Bandwidth

- **Bit-by-bit Signaling:** Pulse-width: T/K = 1/R.
 - Bandwidth is approximately equal to B = R.
 - Also, number of dimensions K = RT.
- ► Block-orthogonal: Pulse width: $T/2^{K} = T/2^{RT}$.
 - Bandwidth is approximately equal to $B = 2^{RT} / T$.
 - Number of dimensions is $2^{K} = 2^{RT}$.
- Bandwidth for block-orthogonal signaling grows exponentially with the number of bits K.
 - Not practical for moderate to large blocks of bits.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Binary Hypothesis Testing

 Message Sequences

The Dimensionality Theorem

- The relationship between bandwidth B and the number of dimensions is summarized by the *dimensionality theorem*:
 - The number of dimensions D available over an interval od duration T is limited by the bandwidth B

$$D \leq B \cdot T$$

- The theorem implies:
 - A signal occupying D dimensions over T seconds requires bandwidth

$$B \geq \frac{D}{T}$$

< ロ > < 同 > < 三 > < 三 >

Binary Hypothesis Testing

Optimal Receiver Frontend

Message Sequences

An Ideal Signal Set

- An ideal signal set combines the aspects of our two example signal sets:
 - $Pr{e}$ -behavior like block orthogonal signaling

 $\lim_{T\to\infty} \Pr\{e\} = 0.$

Bandwidth behavior like bit-by-bit signaling

$$B = \frac{D}{T} = \text{constant.}$$

• Thus,
$$D = BT = \rightarrow \infty$$
 as $T \rightarrow \infty$.

Question: Does such a signal set exist?

Binary Hypothesis Testing

Optimal Receiver Frontend

 Message Sequences

Towards Channel Capacity

Given:

- bandwidth $B = \frac{D}{T}$, where T is the duration of the transmission.
- power P
- Noise power spectral density $\frac{N_0}{2}$
- Question: What is the highest data rate R that allows error-free transmission with the above constraints?
 - We are transmitting RT bits
 - Therefore, we need $M = 2^{RT}$ signals.

<ロト < 同ト < 巨ト < 三ト

A Simple Example	Binary Hypothesis Testing	Optimal Receiver Frontend	<i>M</i> -ary Signal Sets	Message Sequences
		000000	00000000 000000000000000000000000000000	000000

Signal Set

• Our signal set consists of $M = 2^{RT}$ signals of the form

$$s_n(t) = \sum_{k=0}^{D-1} X_{n,k} p(t - kT/D)$$

where

- p(t) are pulses of duration T/D, i.e., of bandwidth B = D/T.
- Also, $\|p(t)\|^2 = 1$.

• Each signal $s_n(t)$ is defined by a vector $\vec{X}_n = \{X\}_{n,k}$.

- We are looking to find $M = 2^{RT}$ length-*D* vectors \vec{X} that lead to good error properties.
- Note that the signals p(t kT/D) form an orthonormal basis.

Binary Hypothesis Testing

Optimal Receiver Frontend

M-ary Signal Sets

Message Sequences

Receiver Frontend

- The receiver frontend consists of a matched filter for p(t) followed by a sampler at times kT/D.
 - I.e., the frontend projects the received signal onto the orthonormal basis functions p(t kT/D).

• The vector \vec{R} of matched filter outputs has elements

$$R_k = \langle R_t, p(t - kT/D) \rangle$$
 $k = 0, 1, \dots, D-1$

- Conditional on $s_k(t)$ was sent, $\vec{R} \sim N(\vec{X_k}, \frac{N_o}{2}I)$.
- The optimum receiver selects that signal that's closest to \vec{R} .

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Binary Hypothesis Testing

Optimal Receiver Frontend

 Message Sequences

Conditional Error Probability

- When, the signal $s_k(t)$ was sent then $\vec{R} \sim N(\vec{X}_k, \frac{N_o}{2}I)$.
- As the number of dimensions *D* increases, the vector \vec{R} lies within a sphere with center \vec{X}_k and radius $\sqrt{D\frac{N_0}{2}}$ with very high probability $(1 e^{-D})$.
 - Important: We allow the radius of the decoding spheres to grow with the number of dimensions D.

• This ensures that $P_e \rightarrow 0$ as $D \rightarrow \infty$.

- We call the spheres of radius $\sqrt{D\frac{N_0}{2}}$ around each signal point *decoding spheres*.
 - The decoding spheres will be part of the decision regions for each point.

▲□▶ ▲□▶ ▲□▶ ▲□▶

A Simple Example	Binary Hypothesis Testing	Optimal Receiver Frontend	M-ary Signal Sets	Message Sequences
00000 000000000	00000000 00000000 00000000	00 000000000000 00000000	00 00000000 0000000000	000 00 000000
		000000	000000000000000000000000000000000000000	0000000

Power Constraint

The signal power must satisfy

$$\frac{1}{T}\int_0^T s^2(t) dt = \frac{1}{T}\sum_{k=0}^{D-1} |X_k|^2 \le P.$$

► Therefore,

$$\sum_{k=0}^{D-1} |X_k|^2 \leq PT.$$

- Insight: The observed signals must lie in a large sphere of radius $\sqrt{PT + D\frac{N_0}{2}}$.
- Question: How many decoding spheres can we have and still meet the power constraint?

Ξ.

Binary Hypothesis Testing

Optimal Receiver Frontend

 Message Sequences

Capacity

- Each decoding sphere has volume $K_D(\sqrt{D\frac{N_0}{2}})^{D}$.
- The volume of the sphere containing the observed signals is $K_D(\sqrt{PT + D\frac{N_0}{2}})^D$
 - *K_D* is a constant that depends only on the number of dimensions *D*.
- The number of decoding spheres that fit into the power sphere is (upper) bounded by the ratio of the volumes

$$\frac{K_D\left(\sqrt{PT+D\frac{N_0}{2}}\right)^D}{K_D\left(\sqrt{D\frac{N_0}{2}}\right)^D}$$

< ロ > < 同 > < 三 > < 三 >

A Simple Example	Binary Hypothesis Testing	Optimal Receiver Frontend	<i>M</i> -ary Signal Sets	Message Sequences
		000000	00000000	000000

Capacity

Since the number of signals M = 2^{RT} equals the number of decoding spheres, it follows that error free communications is possible (in the limit as D → ∞) if

$$M = 2^{RT} \le \frac{\left(\sqrt{PT + D\frac{N_0}{2}}\right)^D}{\left(\sqrt{D\frac{N_0}{2}}\right)^D}$$

or

$$R < \frac{D}{2T}\log_2(1 + \frac{PT}{DN_0/2}) = \frac{B}{2}\log_2(1 + \frac{P}{BN_0/2}).$$

• Note, if we allow *complex valued* signals, then $R < B \log_2(1 + \frac{P}{BN_0})$.

