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Introduction

» We compare methods for transmitting a sequence of bits.

» We will see that the performance of these methods varies
significantly.
» Main Result: It is possible to achieve error free

communications as long as SNR is good enough and data
rate is not too high.
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Problem Statement

» Problem:
» K bits must be transmitted in T seconds.
» Available power is limited to P.

» Question: What method achieves the lowest probability of
error?
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Parameters
» Data Rate:

R:m%M (bits/s)

» T =symbol (baud) rate

» M = alphabet size

» implicit assumption: symbols are equally likely.
» Power and energy:

1 T E
P_T/O s(t)[2 dt = =

» s(t) is of duration T.
» Note, bit energy is given by
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Bit-by-bit Signaling
» Transmit K bit as a sequence of “one-shot” BPSK signals.
» K = RT bits to be transmitted.

» Energy per bit E,.
» Consider, signals of the form

K1
s(t)=Y_ vEpskp(t—k/R)
k=0

> Sk € {£1}
» p(t) is a pulse of duration 1/R = T/K and ||p(1)]|? = 1.

» Question: What is the probability that any transmission
error occurs?

» In other words, the transmission is not received without

/GEORGE
error. I’fAS
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Error Probability for Bit-by-Bit Signaling

» We can consider the entire set of transmissions as a
K-dimensional signal set.

» Signals are at the vertices of a K-dimensional hypercube.

Prie} =1— (1 —Q(ZWE:))K
- (-o(3%)"

» Note, for any E,/ Ny and R, the error rate will always tend
tolas I — oo.

» Error-free transmission is not possible with bit-by-bit
signaling.
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Block-Orthogonal Signaling
» Again,
» K = RT bits are transmitted in T seconds.
» Energy per bit E,.

» Signal set (Pulse-position modulation — PPM)
sk(t) = VEsp(t— kT/25) fork=0,1,..., 2K 1.

where p(t) is of duration 7/2X and ||p(t)]|? = 1.
» Alternative signal set (Frequency Shift Keying — FSK)

si(t) = |/ 222 cos(2n(fo +k/T)t) fork=0,1,...,2K 1

» Since the signal set consists of M = 2K signals, each
signal conveys K bits — each signal occupies one
dimension. p
» Note that Es = KE,.. MASGN
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Union Bound

» The error probability for block-orthogonal signaling cannot
be computed in closed form.

» At high and moderate SNR, the error probability is well
approximated by the union bound.

» Each signal has M — 1 = 2K — 1 nearest neighbors.
» The distance between neighbors is dyin = V2Es = 2KEp.

» Union bound

Pr{e} < (2f —1)Q < @>

PT
= (2fT — 1)0( m)
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Bounding the Union Bound
» To gain further insight, we bound
1

Q(x) < §exp(—x2/2).

» Then,

Pr{e} < 2FT —1)Q ( Z—Z)

AT PT
S 2 eXp(_Z—NO)
= exp(—T(i — RIn2)).
2N,
» Hence, Pr{e} - 0as T — od!
> Aslongas R < ﬁﬁ Misas

IIIIIIIIII

» Error-free transmission is possible!
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Reality-Check: Bandwidth

» Bit-by-bit Signaling: Pulse-width: T/K =1/R.
» Bandwidth is approximately equal to B = R.
» Also, number of dimensions K = RT.

» Block-orthogonal: Pulse width: T/2K = T /2T,

» Bandwidth is approximately equal to B = 2R7 /T.
» Number of dimensions is 2X = 2AT,

» Bandwidth for block-orthogonal signaling grows
exponentially with the number of bits K.

» Not practical for moderate to large blocks of bits.
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The Dimensionality Theorem

» The relationship between bandwidth B and the number of
dimensions is summarized by the dimensionality theorem:

» The number of dimensions D available over an interval od
duration T is limited by the bandwidth B

D<B-T

» The theorem implies:

» A signal occupying D dimensions over T seconds requires

bandwidth
D

>
B_T
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An |deal Signal Set

» An ideal signal set combines the aspects of our two
example signal sets:

» Pr{e}-behavior like block orthogonal signaling

im Pr{e} = 0.

T—o00

» Bandwidth behavior like bit-by-bit signaling

D
B = T = constant.

» Thus, D =BT =— o0 as T — oo.
» Question: Does such a signal set exist?

IIIIIIIIII
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Towards Channel Capacity

» Given:

> bandwidth B = 2, where T is the duration of the
transmission.
» power P

» Noise power spectral density %
» Question: What is the highest data rate R that allows
error-free transmission with the above constraints?

» We are transmitting RT bits
» Therefore, we need M = 277 signals.
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Signal Set
» Our signal set consists of M = 277 signals of the form

D—1
sn(t) = Y Xpkp(t— kT /D)
k=0

where
» p(t) are pulses of duration T/D, i.e., of bandwidth
B=D/T.

> Also, [|p(8)]|° = 1.
» Each signal sy(t) is defined by a vector X, = {X}, .
» We are looking to find M = 287 length-D vectors X that
lead to good error properties.

» Note that the signals p(t — kT /D) form an orthonormal -
basis. M2

IIIIIIIIII
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Receiver Frontend

» The receiver frontend consists of a matched filter for p(t)
followed by a sampler at times kT /D.

» l.e., the frontend projects the received signal onto the
orthonormal basis functions p(t — kT /D).

» The vector R of matched filter outputs has elements
Re = (Rup(t—kT/D)) k=0,1.....D—1

» Conditional on si(t) was sent, R ~ N(Xx, %e1).

» The optimum receiver selects that signal that’s closest to
R.
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Conditional Error Probability

» When, the signal s, (t) was sent then B ~ N(X, S /).

» As the number of dimensions D increases, the vector R
lies within a sphere with center Xi and radius |/ D0 with
very high probability (1 — e~ P).

» Important: We allow the radius of the decoding spheres to

grow with the number of dimensions D.
» This ensures that P, — 0as D — oo.

» We call the spheres of radius /D% around each signal
point decoding spheres.

» The decoding spheres will be part of the decision regions
for each point.

IIIIIIIIII
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Power Constraint

» The signal power must satisfy

_ 2
= / t) dt = T Z X2 < P.
» Therefore,
D—1
Y Xk < PT.
k=0

» Insight: The observed signals must lie in a large sphere of
radius \/PT + D%,

» Question: How many decoding spheres can we have and
still meet the power constraint? Misase
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Capacity

D
» Each decoding sphere has volume Kp(y/D%) .

» The volume of the sphere containing the observed signals

D
s Kp(y/ PT + D)
» Kp is a constant that depends only on the number of
dimensions D.

» The number of decoding spheres that fit into the the power
sphere is (upper) bounded by the ratio of the volumes

D
Ko <\/PT + D%)
D
Kp ( \/ D%) Dﬁgom
N
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Capacity

» Since the number of signals M = 27T equals the number
of decoding spheres, it follows that error free
communications is possible (in the limit as D — oo) if

(\/PT + DNT;) ’
5

PT B

DN0/2) =3 log, (1 +

or

D
R < —log,(1+

2T BNO/Z)'

» Note, if we allow complex valued signals, then p
R < Blogo(1 + g )- MASON
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