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Introduction

I We compare methods for transmitting a sequence of bits.
I We will see that the performance of these methods varies

significantly.
I Main Result: It is possible to achieve error free

communications as long as SNR is good enough and data
rate is not too high.
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Problem Statement

I Problem:
I K bits must be transmitted in T seconds.
I Available power is limited to P.

I Question: What method achieves the lowest probability of
error?
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Parameters
I Data Rate:

R =
log2 M

T
(bits/s)

I T = symbol (baud) rate
I M = alphabet size
I implicit assumption: symbols are equally likely.

I Power and energy:

P =
1
T

Z T

0
|s(t)|2 dt =

Es

T

I s(t) is of duration T .
I Note, bit energy is given by

Eb =
Es

log2 M
=

PT
log2 M

=
P
R
.
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Bit-by-bit Signaling
I Transmit K bit as a sequence of “one-shot” BPSK signals.
I K = RT bits to be transmitted.
I Energy per bit Eb.
I Consider, signals of the form

s(t) =
K�1

Â
k=0

p

Ebskp(t � k/R)

I sk 2 {±1}
I p(t) is a pulse of duration 1/R = T /K and kp(t)k2 = 1.

I Question: What is the probability that any transmission
error occurs?

I In other words, the transmission is not received without
error.
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Error Probability for Bit-by-Bit Signaling

I We can consider the entire set of transmissions as a
K -dimensional signal set.

I Signals are at the vertices of a K -dimensional hypercube.

Pr{e} = 1 �
✓

1 � Q
✓

2Eb

N0

◆◆K

= 1 �
✓

1 � Q
✓

2P
RN0

◆◆RT

I Note, for any Eb/N0 and R, the error rate will always tend
to 1 as T ⇢ •.

I Error-free transmission is not possible with bit-by-bit
signaling.
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Block-Orthogonal Signaling
I Again,

I K = RT bits are transmitted in T seconds.
I Energy per bit Eb.

I Signal set (Pulse-position modulation — PPM)

sk (t) =
p

Esp(t � kT /2K ) for k = 0, 1, . . . , 2K � 1.

where p(t) is of duration T /2K and kp(t)k2 = 1.
I Alternative signal set (Frequency Shift Keying — FSK)

sk (t) =
r

2Es

T
cos(2p(fc + k/T )t) for k = 0, 1, . . . , 2K � 1.

I Since the signal set consists of M = 2K signals, each
signal conveys K bits — each signal occupies one
dimension.

I Note that Es = KEb.
© 2017, B.-P. Paris ECE 630: Statistical Communication Theory 129



A Simple Example Binary Hypothesis Testing Optimal Receiver Frontend M-ary Signal Sets Message Sequences

Union Bound
I The error probability for block-orthogonal signaling cannot

be computed in closed form.
I At high and moderate SNR, the error probability is well

approximated by the union bound.
I Each signal has M � 1 = 2K � 1 nearest neighbors.
I The distance between neighbors is dmin =

p
2Es =

p
2KEb.

I Union bound

Pr{e}  (2K � 1)Q

 

s

KEb

N0

!

= (2RT � 1)Q

 

s

PT
N0

!
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Bounding the Union Bound
I To gain further insight, we bound

Q(x)  1
2

exp(�x2/2).

I Then,

Pr{e}  (2RT � 1)Q

 

s

PT
N0

!

. 2RT exp(� PT
2N0

)

= exp(�T (
P

2N0
� R ln 2)).

I Hence, Pr{e} ! 0 as T ! •!
I As long as R < 1

ln 2
P

2N0
.

I Error-free transmission is possible!
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Reality-Check: Bandwidth

I Bit-by-bit Signaling: Pulse-width: T /K = 1/R.
I Bandwidth is approximately equal to B = R.
I Also, number of dimensions K = RT .

I Block-orthogonal: Pulse width: T /2K = T /2RT .
I Bandwidth is approximately equal to B = 2RT /T .
I Number of dimensions is 2K = 2RT .

I Bandwidth for block-orthogonal signaling grows
exponentially with the number of bits K .

I Not practical for moderate to large blocks of bits.
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The Dimensionality Theorem

I The relationship between bandwidth B and the number of
dimensions is summarized by the dimensionality theorem:

I The number of dimensions D available over an interval od
duration T is limited by the bandwidth B

D  B · T

I The theorem implies:
I A signal occupying D dimensions over T seconds requires

bandwidth
B � D

T
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An Ideal Signal Set

I An ideal signal set combines the aspects of our two
example signal sets:

I Pr{e}-behavior like block orthogonal signaling

lim
T!•

Pr{e} = 0.

I Bandwidth behavior like bit-by-bit signaling

B =
D
T

= constant.

I Thus, D = BT =! • as T ! •.

I Question: Does such a signal set exist?
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Towards Channel Capacity

I Given:
I bandwidth B = D

T , where T is the duration of the
transmission.

I power P
I Noise power spectral density N0

2
I Question: What is the highest data rate R that allows

error-free transmission with the above constraints?
I We are transmitting RT bits
I Therefore, we need M = 2RT signals.
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Signal Set
I Our signal set consists of M = 2RT signals of the form

sn(t) =
D�1

Â
k=0

Xn,kp(t � kT /D)

where
I p(t) are pulses of duration T /D, i.e., of bandwidth

B = D/T .
I Also, kp(t)k2 = 1.

I Each signal sn(t) is defined by a vector ~Xn = {X}n,k .
I We are looking to find M = 2RT length-D vectors ~X that

lead to good error properties.
I Note that the signals p(t � kT /D) form an orthonormal

basis.
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Receiver Frontend

I The receiver frontend consists of a matched filter for p(t)
followed by a sampler at times kT /D.

I I.e., the frontend projects the received signal onto the
orthonormal basis functions p(t � kT /D).

I The vector ~R of matched filter outputs has elements

Rk = hRt , p(t � kT /D)i k = 0, 1, . . . ,D � 1

I Conditional on sk (t) was sent, ~R ⇠ N( ~Xk ,
No
2 I).

I The optimum receiver selects that signal that’s closest to
~R.
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Conditional Error Probability

I When, the signal sk (t) was sent then ~R ⇠ N( ~Xk ,
No
2 I).

I As the number of dimensions D increases, the vector ~R
lies within a sphere with center ~Xk and radius

q

D N0
2 with

very high probability (1 � e�D).
I Important: We allow the radius of the decoding spheres to

grow with the number of dimensions D.
I This ensures that Pe ! 0 as D ! •.

I We call the spheres of radius
q

D N0
2 around each signal

point decoding spheres.
I The decoding spheres will be part of the decision regions

for each point.

© 2017, B.-P. Paris ECE 630: Statistical Communication Theory 138



A Simple Example Binary Hypothesis Testing Optimal Receiver Frontend M-ary Signal Sets Message Sequences

Power Constraint
I The signal power must satisfy

1
T

Z T

0
s2(t) dt =

1
T

D�1

Â
k=0

|Xk |2  P.

I Therefore,
D�1

Â
k=0

|Xk |2  PT .

I Insight: The observed signals must lie in a large sphere of
radius

q

PT + D N0
2 .

I Question: How many decoding spheres can we have and
still meet the power constraint?
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Capacity
I Each decoding sphere has volume KD(

q

D N0
2 )

D
.

I The volume of the sphere containing the observed signals

is KD(
q

PT + D N0
2 )

D

I KD is a constant that depends only on the number of
dimensions D.

I The number of decoding spheres that fit into the the power
sphere is (upper) bounded by the ratio of the volumes

KD

✓

q

PT + D N0
2

◆D

KD

✓

q

D N0
2

◆D
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Capacity
I Since the number of signals M = 2RT equals the number

of decoding spheres, it follows that error free
communications is possible (in the limit as D ! •) if

M = 2RT 

✓

q

PT + D N0
2

◆D

✓

q

D N0
2

◆D

or

R <
D
2T

log2(1 +
PT

DN0/2
) =

B
2

log2(1 +
P

BN0/2
).

I Note, if we allow complex valued signals, then
R < B log2(1 + P

BN0
).
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