M-ary Signal Sets

Message Sequences oo oo oooooo oooooo

Exercise: QPSK

Find the error rate for the signal set

 $s_n(t) = \sqrt{2E_s/T} \cos(2\pi f_c t + n \cdot \pi/2 + \pi/4)$, for n = 0, ..., 3.

• **Answer:** (Recall $\eta_P = \frac{d_{\min}^2}{E_b} = 4$ for QPSK)

$$\Pr\{e\} = 2Q\left(\sqrt{\frac{E_s}{N_0}}\right) - Q^2\left(\sqrt{\frac{E_s}{N_0}}\right)$$
$$= 2Q\left(\sqrt{\frac{2E_b}{N_0}}\right) - Q^2\left(\sqrt{\frac{2E_b}{N_0}}\right)$$
$$= 2Q\left(\sqrt{\frac{\eta_P E_b}{2N_0}}\right) - Q^2\left(\sqrt{\frac{\eta_P E_b}{2N_0}}\right)$$

A Simple Example Binary Hypothesis Testing Optimal		Message Sequences
--	--	-------------------

Exercise: 16-QAM
(Recall
$$\eta_P = \frac{d_{ein}^2}{E_b} = \frac{8}{5}$$
 for 16-QAM)
• Find the error rate for the signal set
 $(a_I, a_Q \in \{-3, -1, 1, 3\})$
 $s_n(t) = \sqrt{2E_0/T}a_I \cdot \cos(2\pi f_c t) + \sqrt{2E_0/T}a_Q \cdot \sin(2\pi f_c t)$
• Answer: $(\eta_P = \frac{d_{ein}^2}{E_b} = 4)$
 $\Pr\{e\} = 3Q\left(\sqrt{\frac{2E_0}{N_0}}\right) - \frac{9}{4}Q^2\left(\sqrt{\frac{2E_0}{N_0}}\right)$
 $= 3Q\left(\sqrt{\frac{4E_b}{5N_0}}\right) - \frac{9}{4}Q^2\left(\sqrt{\frac{4E_b}{5N_0}}\right)$
 $= 3Q\left(\sqrt{\frac{\eta_P E_b}{2N_0}}\right) - \frac{9}{4}Q^2\left(\sqrt{\frac{\eta_P E_b}{2N_0}}\right).$

© 2018, B.-P. Paris

A Simple Example	
00000	
00000000	

Optimal Receiver Frontend

M-ary Signal Sets

00000000

Message Sequences

N-dimensional Hypercube

Find the error rate for the signal set with 2^N signals of the form (b_{k,n} ∈ {−1, 1}):

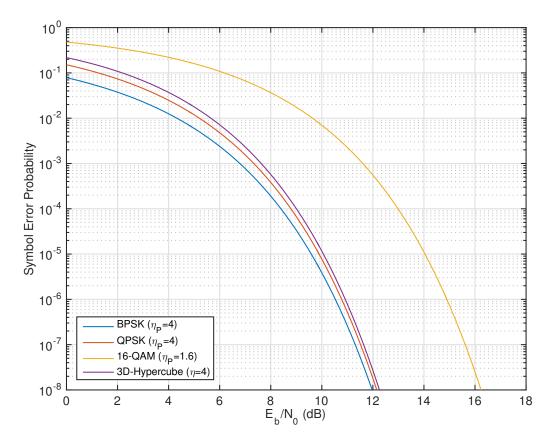
$$s_n(t) = \sum_{k=1}^N \sqrt{\frac{2E_s}{NT}} b_{k,n} \cos(2\pi nt/T), \text{ for } 0 \le t \le T$$

Answer:

$$\Pr\{e\} = 1 - \left(1 - Q\left(\sqrt{\frac{2E_s}{N \cdot N_0}}\right)\right)^N$$
$$= 1 - \left(1 - Q\left(\sqrt{\frac{2E_b}{N_0}}\right)\right)^N$$
$$= 1 - \left(1 - Q\left(\sqrt{\frac{\eta_P E_b}{2N_0}}\right)\right)^N \approx N \cdot Q\left(\sqrt{\frac{\eta_P E_b}{2N_0}}\right).$$

A Simple Example	Binary Hypothesis Testing	Optimal Receiver Frontend oo ooooooooooooooooooooooooooooooooo	<i>M</i> -ary Signal Sets ○○ ○○○○○○○○ ○○○○○○○○ ○○○○○○○○○○○○○○○	Message Sequences oo oo oooooo ooooooo

Comparison



 Better power efficiency η_P leads to better error performance (at high SNR).

A Simple Example	Binary Hypothesis Testing	Optimal Receiver Frontend	M-ary Signal Sets	Message Sequences
00000	0000000	00	00	000
000000000	000000000	000000000000000000000000000000000000000	00000000	00 000000
		0000000	0000000	0000000
			•00000000000000000	

What if Decision Regions are not Rectangular?

Example: For 8-PSK, the probability of a correct decision is given by the following integral over the decision region for s₀(t)

$$\Pr\{c\} = \int_0^\infty \frac{1}{\sqrt{2\pi N_0/2}} \exp\left(-\frac{(x - \sqrt{E_s})^2}{2N_0/2}\right)$$
$$\underbrace{\int_{-x\tan(\pi/8)}^{x\tan(\pi/8)} \frac{1}{\sqrt{2\pi N_0/2}} \exp\left(-\frac{y^2}{2N_0/2}\right) dy}_{=1-2Q\left(\frac{x\tan(\pi/8)}{\sqrt{N_0/2}}\right)}$$

This integral cannot be computed in closed form.

A Simple Example

Optimal Receiver Frontend

M-ary Signal Sets

Message Sequences

Union Bound

- When decision boundaries do not intersect at right angles, then the error probability cannot be computed in closed form.
- An upper bound on the conditional probability of error (assuming that s_n was sent) is provided by:

$$\Pr\{e|s_n\} \le \sum_{k \ne n} \Pr\{\|\vec{R} - \vec{s}_k\| < \|\vec{R} - \vec{s}_n\| | \vec{s}_n\} \\ = \sum_{k \ne n} Q\left(\frac{\|\vec{s}_k - \vec{s}_n\|}{2\sqrt{N_0/2}}\right).$$

Note that this bound is computed from *pairwise error* probabilities between s_n and all other signals.

A Simple Example	Binary Hypothesis Testing	Optimal Receiver Frontend oo ooooooooooooooooooooooooooooooooo	<i>M</i> -ary Signal Sets ○○ ○○○○○○○○ ○○○○○○○○ ○○○○○○○○○○○○	Message Sequences

Union Bound

Then, the average probability of error can be bounded by

$$\Pr\{\boldsymbol{e}\} = \sum_{n} \pi_{n} \sum_{k \neq n} Q\left(\frac{\|\vec{\boldsymbol{s}}_{k} - \vec{\boldsymbol{s}}_{n}\|}{\sqrt{2N_{0}}}\right)$$

This bound is called the union bound; it approximates the union of all possible error events by the sum of the pairwise error probabilities.

A Simple Example	Binary Hypothesis Testing	Optimal Receiver Frontend	M-ary Signal Sets	Message Sequences
00000	00000000	00 000000000000	00	000
	0000000	00000000 0000000	000000000000000000000000000000000000000	000000 0000000

Example: QPSK

For the QPSK signal set

$$s_n(t) = \sqrt{2E_s/T} \cos(2\pi f_c t + n \cdot \pi/2 + \pi/4)$$
, for $n = 0, ..., 3$

the union bound is

$$\Pr\{e\} \le 2Q\left(\sqrt{\frac{E_s}{N_0}}\right) + Q\left(\sqrt{\frac{2E_s}{N_0}}\right)$$

Recall that the exact probability of error is

$$\Pr\{e\} = 2Q\left(\sqrt{\frac{E_s}{N_0}}\right) - Q^2\left(\sqrt{\frac{E_s}{N_0}}\right)$$

A Simple Example 00000 00000000

M-ary Signal Sets

Message Sequences ooo ooooooo oooooooooo

"Intelligent" Union Bound

- The union bound is easily tightened by recognizing that only immediate neighbors of s_n must be included in the bound on the conditional error probability.
- Define the the neighbor set N_{ML}(s_n) of s_n as the set of signals s_k that share a decision boundary with signal s_n.
- Then, the conditional error probability is bounded by

$$\Pr\{e|s_n\} \le \sum_{k \in N_{ML}(s_n)} \Pr\{\|\vec{R} - \vec{s}_k\| < \|\vec{R} - \vec{s}_n\| | \vec{s}_n\} \\ = \sum_{k \in N_{ML}(s_n)} Q\left(\frac{\|\vec{s}_k - \vec{s}_n\|}{2\sqrt{N_0/2}}\right).$$

A Simple Example	Binary Hypothesis Testing 00000000 00000000 00000000	Optimal Receiver Frontend oo ooooooooooooooooooooooooooooooooo	<i>M</i> -ary Signal Sets ○○ ○○○○○○○○ ○○○○○○○○ ○○○○○○○○○○○○○○○	Message Sequences ooo ooooooo oooooooooo

"Intelligent" Union Bound

Then, the average probability of error can be bounded by

$$\Pr\{e\} \leq \sum_{n} \pi_{n} \sum_{k \in N_{ML}(s_{n})} Q\left(\frac{\|\vec{s}_{k} - \vec{s}_{n}\|}{\sqrt{2N_{0}}}\right).$$

- We refer to this bound as the intelligent union bound.
 - It still relies on pairwise error probabilities.
 - It excludes many terms in the union bound; thus, it is tighter.

A Simple Example	Binary Hypothesis Testing	Optimal Receiver Frontend	M-ary Signal Sets	Message Sequ
00000	0000000	00	00	000
00000000	00000000	000000000000	0000000	00
	0000000	00000000	0000000000	000000
		000000	0000000	000000
				~ ~

Example: QPSK

For the QPSK signal set

$$s_n(t) = \sqrt{2E_s/T} \cos(2\pi f_c t + n \cdot \pi/2 + \pi/4)$$
, for $n = 0, ..., 3$

the intelligent union bound includes only the immediate neighbors of each signal:

$$\Pr\{e\} \le 2Q\left(\sqrt{\frac{E_s}{N_0}}\right)$$

Recall that the exact probability of error is

$$\Pr\{e\} = 2Q\left(\sqrt{\frac{E_s}{N_0}}\right) - Q^2\left(\sqrt{\frac{E_s}{N_0}}\right)$$

uences

A Simple Example Binary Hypothesis Testing Optimal Receiver Frontend Optimal Receiver Frontend M-ary Signal Sets Message Sequences

Example: 16-QAM

- ► For the 16-QAM signal set, there are
 - 4 signals s_i that share a decision boundary with 4 neighbors; bound on conditional error probability: $\Pr\{e|s_i\} = 4Q(\sqrt{\frac{2E_0}{N_0}}).$
 - ► 8 signals s_c that share a decision boundary with 3 neighbors; bound on conditional error probability: $D_{c}(a|a_{c}) = 2Q(\sqrt{2E_{0}})$

$$\Pr{\{\boldsymbol{e}|\boldsymbol{s_{c}}\}=3Q(\sqrt{\frac{2E_{0}}{N_{0}}})}.$$

4 signals s_o that share a decision boundary with 2 neighbors; bound on conditional error probability:

$$\Pr\{e|s_o\} = 2Q(\sqrt{\frac{2E_0}{N_0}}).$$

The resulting intelligent union bound is

$$\Pr\{e\} \le 3Q\left(\sqrt{\frac{2E_0}{N_0}}\right) = 3Q\left(\sqrt{\frac{4E_b}{5N_0}}\right)$$

A Simple Example	Binary Hypothesis Testing ০০০০০০০০ ০০০০০০০০ ০০০০০০০০	Optimal Receiver Frontend oo ooooooooooooooooooooooooooooooooo	<i>M</i> -ary Signal Sets	Message Sequences ooo oo ooooooo ooooooo
			000000000000000000000000000000000000000	

Example: 16-QAM

The resulting intelligent union bound is

$$\Pr\{e\} \leq 3Q\left(\sqrt{\frac{4E_b}{5N_0}}\right).$$

Recall that the exact probability of error is

$$\Pr\{e\} = 3Q\left(\sqrt{\frac{4E_b}{5N_0}}\right) - \frac{9}{4}Q^2\left(\sqrt{\frac{4E_b}{5N_0}}\right)$$

A Simple Example	Binary Hypothesis Testing	Optimal Receiver Frontend	M-ary Signal Sets	Message Sequences
00000	0000000	00	00	000
00000000	000000000 00000000	000000000000000000000000000000000000000	00000000 0000000000	00 000000
		000000	0000000	000000

Nearest Neighbor Approximation

- At high SNR, the error probability is dominated by terms that involve the shortest distance d_{min} between any pair of nodes.
 - The corresponding error probability is proportional to $Q(\sqrt{\frac{d_{\min}}{2N_0}})$.
- For each signal s_n , we count the number N_n of neighbors at distance d_{\min} .
- Then, the error probability at high SNR can be approximated as

$$\Pr\{e\} \approx \frac{1}{M} \sum_{n=0}^{M-1} N_n Q(\sqrt{\frac{d_{\min}^2}{2N_0}}) = \bar{N}_{\min} Q(\sqrt{\frac{d_{\min}^2}{2N_0}})$$

A Simple Example

nary Hypothesis Testing 2000000 2000000 2000000 Optimal Receiver Frontend 00 000000000000 00000000 0000000 *M*-ary Signal Sets

00000000

Message Sequences

Example: 16-QAM

- In 16-QAM, the distance between adjacent signals is $d_{\min} = 2\sqrt{E_0}$; also, $E_b = \frac{5}{2}E_0$.
- ► There are:
 - 4 signals with 4 nearest neighbors
 - 8 signals with 3 nearest neighbors
 - 4 signals with 2 nearest neighbors
- The average number of neighbors is $\bar{N}_{min} = 3$.
- The error probability is approximately,

$$\Pr\{e\} \approx 3Q\left(\sqrt{\frac{2E_0}{N_0}}\right) = 3Q\left(\sqrt{\frac{4E_b}{5N_0}}\right)$$

same as the intelligent union bound.

A Simple Example	Binary Hypothesis Testing	Optimal Receiver Frontend oo ooooooooooooooooooooooooooooooooo	<i>M</i> -ary Signal Sets	Message Sequences

Example: 8-PSK

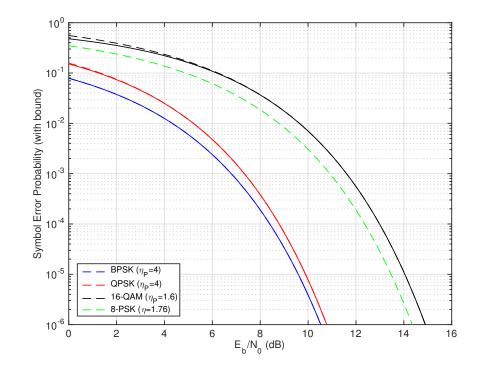
- For 8-PSK, each signal has 2 nearest neighbors at distance $d_{\min} = \sqrt{(2 \sqrt{2})E_s}$; also, $E_b = \frac{E_s}{3}$.
- Hence, both the intelligent union bound and the nearest neighbor approximation yield

$$\Pr\{e\} \approx 2Q\left(\sqrt{\frac{(2-\sqrt{2})E_s}{2N_0}}\right) = 2Q\left(\sqrt{\frac{3(2-\sqrt{2})E_b}{2N_0}}\right)$$

• Since, $E_b = 3E_s$.

A Simple Example	Binary Hypothesis Testing 00000000 000000000 00000000	Optimal Receiver Frontend oo ooooooooooooooooooooooooooooooooo	<i>M</i> -ary Signal Sets	Message Sequences

Comparison



Solid: exact Pe, dashed: approximation. For 8PSK, only approximation is shown.

- The intelligent union bound is very tight for all cases considered here.
 - It also coincides with the nearest neighbor approximation

A Simple Example Binary Hypothesis Testing Optimal Receiver Frontend Optimal Receiver Frontend Optimal Receiver Frontend Optimal Receiver Frontend Optimal Sets O

General Approximation for Probability of Symbol Error

From the above examples, we can conclude that a good, general approximation for the probability of error is given by

$$\Pr\{e\} \approx \bar{N}_{\min}Q\left(\frac{d_{\min}}{\sqrt{2N_0}}\right) = \bar{N}_{\min}Q\left(\sqrt{\frac{\eta_P E_b}{2N_0}}\right).$$

- signal-to-noise ratio (SNR) E_b/N_0 and
- geometry of the signal constellation via the average number of neighbors \bar{N}_{min} and the power efficiency η_P .

