
A Simple Example Binary Hypothesis Testing Optimal Receiver Frontend M-ary Signal Sets Message Sequences

Computing Probability of Symbol Error

I When decision boundaries intersect at right angles, then it
is possible to compute the error probability exactly in
closed form.

I The result will be in terms of the Q-function.
I This happens whenever the signal points form a

rectangular grid in signal space.
I Examples: QPSK and 16-QAM

I When decision regions are not rectangular, then closed
form expressions are not available.

I Computation requires integrals over the Q-function.
I We will derive good bounds on the error rate for these

cases.
I For exact results, numerical integration is required.
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Illustration: 2-dimensional Rectangle
I Assume that the n-th signal was transmitted and that the

representation for this signal is~sn = (sn,0, sn,1)
0 .

I Assume that the decision region Gn is a rectangle

Gn = {~r = (r0, r1)
0

:sn,0 � a1 < r0 < sn,0 + a2 and
sn,1 � b1 < r1 < sn,1 + b2}.

I Note: we have assumed that the sides of the rectangle are
parallel to the axes in signal space.

I Since rotation and translation of signal space do not affect
distances this can be done without affecting the error
probability.

I Question: What is the conditional error probability,
assuming that sn(t) was sent.
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Illustration: 2-dimensional Rectangle
I In terms of the random variables Rk = hRt ,Fk i, with

k = 0, 1, an error occurs if

error event 1
z }| {

(R0  sn,0 � a1 or R0 � sn,0 + a2) or
(R1  sn,1 � b1 or R1 � sn,1 + b2)
| {z }

error event 2

.

I Note that the two error events are not mutually exclusive.
I Therefore, it is better to consider correct decisions instead,

i.e., ~R 2 Gn:

sn,0 � a1 < R0 < sn,0 + a2 and sn,1 � b1 < R1 < sn,1 + b2
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Illustration: 2-dimensional Rectangle
I We know that R0 and R1 are

I independent - because Fk are orthogonal
I with means sn,0 and sn,1, respectively
I variance N0

2 .
I Hence, the probability of a correct decision is

Pr{c|sn} =Pr{�a1 < N0 < a2} · Pr{�b1 < N1 < b2}
=
Z a2

�a1

pR0|sn(r0) dr0 ·
Z b2

�b1

pR1|sn(r1) dr1

=(1 � Q
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� Q
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◆

).
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Exercise: QPSK
I Find the error rate for the signal set

sn(t) =
p

2Es/T cos(2pfct +n ·p/2+p/4), for n = 0, . . . , 3.

I Answer: (Recall hP = d2
min
Eb

= 4 for QPSK)
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Exercise: 16-QAM
(Recall hP = d2

min
Eb

= 5
3 for 16-QAM)

I Find the error rate for the signal set
(aI , aQ 2 {�3,�1, 1, 3})

sn(t) =
p

2E0/TaI · cos(2pfct) +
p

2E0/TaQ · sin(2pfct)

I Answer: (hP = d2
min
Eb

= 4)
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N-dimensional Hypercube
I Find the error rate for the signal set with 2N signals of the

form (bk ,n 2 {�1, 1}):

sn(t) =
N

Â
k=1

r

2Es

NT
bk ,n cos(2pnt/T ), for 0  t  T

I Answer:

Pr{e} = 1 �
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Comparison
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I Better power efficiency hP leads to better error
performance (at high SNR).
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What if Decision Regions are not Rectangular?

I Example: For 8-PSK, the probability of a correct decision
is given by the following integral over the decision region
for s0(t)

Pr{c} =
Z •

0

1p
2pN0/2

exp(� (x �p
Es)2

2No/2
Z x tan(p/8)

�x tan(p/8)

1p
2pN0/2

exp(� y2

2N0/2
) dy

| {z }

=1�2Q( x tan(p/8)p
N0/2

)

dx

I This integral cannot be computed in closed form.
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Union Bound
I When decision boundaries do not intersect at right angles,

then the error probability cannot be computed in closed
form.

I An upper bound on the conditional probability of error
(assuming that sn was sent) is provided by:

Pr{e|sn}  Â
k 6=n

Pr{k~R �~skk < k~R �~snk|~sn}

= Â
k 6=n

Q
✓k~sk �~snk

2
p

N0/2

◆

.

I Note that this bound is computed from pairwise error
probabilities between sn and all other signals.

© 2017, B.-P. Paris ECE 630: Statistical Communication Theory 216



A Simple Example Binary Hypothesis Testing Optimal Receiver Frontend M-ary Signal Sets Message Sequences

Union Bound

I Then, the average probability of error can be bounded by

Pr{e} = Â
n

pn Â
k 6=n

Q
✓k~sk �~snkp

2N0

◆

.

I This bound is called the union bound; it approximates the
union of all possible error events by the sum of the
pairwise error probabilities.
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Example: QPSK
I For the QPSK signal set

sn(t) =
p

2Es/T cos(2pfct +n ·p/2+p/4), for n = 0, . . . , 3

the union bound is
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Pr{e} = 2Q

 

s

Es
N0

!

� Q2

 

s

Es
N0

!

.

© 2017, B.-P. Paris ECE 630: Statistical Communication Theory 218



A Simple Example Binary Hypothesis Testing Optimal Receiver Frontend M-ary Signal Sets Message Sequences

"Intelligent" Union Bound

I The union bound is easily tightened by recognizing that
only immediate neighbors of sn must be included in the
bound on the conditional error probability.

I Define the the neighbor set NML(sn) of sn as the set of
signals sk that share a decision boundary with signal sn.

I Then, the conditional error probability is bounded by

Pr{e|sn}  Â
k2NML(sn)

Pr{k~R �~skk < k~R �~snk|~sn}

= Â
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"Intelligent" Union Bound

I Then, the average probability of error can be bounded by

Pr{e}  Â
n

pn Â
k2NML(sn)

Q
✓k~sk �~snkp

2N0

◆

.

I We refer to this bound as the intelligent union bound.
I It still relies on pairwise error probabilities.
I It excludes many terms in the union bound; thus, it is tighter.
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Example: QPSK
I For the QPSK signal set

sn(t) =
p

2Es/T cos(2pfct +n ·p/2+p/4), for n = 0, . . . , 3

the intelligent union bound includes only the immediate
neighbors of each signal:
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I Recall that the exact probability of error is
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Example: 16-QAM
I For the 16-QAM signal set, there are

I 4 signals si that share a decision boundary with 4
neighbors; bound on conditional error probability:
Pr{e|si} = 4Q(

q

2E0
N0

).
I 8 signals sc that share a decision boundary with 3

neighbors; bound on conditional error probability:
Pr{e|sc} = 3Q(

q

2E0
N0

).
I 4 signals so that share a decision boundary with 2

neighbors; bound on conditional error probability:
Pr{e|so} = 2Q(

q

2E0
N0

).
I The resulting intelligent union bound is
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Example: 16-QAM

I The resulting intelligent union bound is
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Nearest Neighbor Approximation
I At high SNR, the error probability is dominated by terms

that involve the shortest distance dmin between any pair of
nodes.

I The corresponding error probability is proportional to
Q(
q

dmin
2N0

).

I For each signal sn, we count the number Nn of neighbors
at distance dmin.

I Then, the error probability at high SNR can be
approximated as

Pr{e} ⇡ 1
M

M�1

Â
n=1

NnQ(

s

dmin
2N0

) = N̄minQ(

s

dmin
2N0

).
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Example: 16-QAM
I In 16-QAM, the distance between adjacent signals is

dmin = 2
p

Es.
I There are:

I 4 signals with 4 nearest neighbors
I 8 signals with 3 nearest neighbors
I 4 signals with 2 nearest neighbors

I The average number of neighbors is N̄min = 3.
I The error probability is approximately,

Pr{e} ⇡ 3Q
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.

I same as the intelligent union bound.
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Example: 8-PSK

I For 8-PSK, each signal has 2 nearest neighbors at

distance dmin =
q

(2 �p
2)Es.

I Hence, both the intelligent union bound and the nearest
neighbor approximation yield

Pr{e} ⇡ 2Q
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A

I Since, Eb = 3Es.
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Comparison
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I The intelligent union bound is very tight for all cases
considered here.

I It also coincides with the nearest neighbor approximation
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General Approximation for Probability of Symbol Error

I From the above examples, we can conclude that a good,
general approximation for the probability of error is given by

Pr{e} ⇡ N̄minQ
✓

dminp
2N0

◆

= N̄minQ

 

s

hPEb

2N0

!

.

I Probability of error depends on
I signal-to-noise ratio (SNR) Eb/N0 and
I geometry of the signal constellation via the average number

of neighbors N̄min and the power efficiency hP .
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Bit Errors

I So far, we have focused on symbol errors; however,
ultimately we are concerned about bit errors.

I There are many ways to map groups of log2(M) bits to the
M signals in a constellation.

I Example QPSK: Which mapping is better?

QPSK Phase Mapping 1 Mapping 2
p/4 00 00

3p/4 01 01
5p/4 10 11
7p/4 11 10
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Bit Errors

I Example QPSK:

QPSK Phase Mapping 1 Mapping 2
p/4 00 00

3p/4 01 01
5p/4 10 11
7p/4 11 10

I Note, that for Mapping 2 nearest neighbors differ in exactly
one bit position.

I That implies, that the most common symbol errors will
induce only one bit error.

I That is not true for Mapping 1.
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Gray Coding
I A mapping of log2(M) bits to M signals is called Gray

Coding if
I The bit patterns that are assigned to nearest neighbors in

the constelation
I differ in exactly one bit position.

I With Gray coding, the most likely symbol errors induce
exactly one bit error.

I Note that there are log2(M) bits for each symbol.
I Hence, with Gray coding the bit error probability is well

approximated by

Pr{bit error} ⇡ N̄min
log2(M)
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