Binary Hypothesis Testing

Optimal Receiver Frontend

M-ary Signal Sets

Message Sequences oo oo oooooo oooooo

Computing Probability of Symbol Error

- When decision boundaries intersect at right angles, then it is possible to compute the error probability exactly in closed form.
 - The result will be in terms of the Q-function.
 - This happens whenever the signal points form a rectangular grid in signal space.
 - Examples: QPSK and 16-QAM
- When decision regions are not rectangular, then closed form expressions are not available.
 - Computation requires integrals over the Q-function.
 - We will derive good bounds on the error rate for these cases.
 - For exact results, numerical integration is required.

A Simple Example Binary Hypothesis Testing Optimal Receiver Frontend Optimal Sets Message Sequences

Illustration: 2-dimensional Rectangle

- Assume that the *n*-th signal was transmitted and that the representation for this signal is $\vec{s}_n = (s_{n,0}, s_{n,1})'$.
- Assume that the decision region Γ_n is a rectangle

$$\Gamma_n = \{ \vec{r} = (r_0, r_1)' : s_{n,0} - a_1 < r_0 < s_{n,0} + a_2 \text{ and} \\ s_{n,1} - b_1 < r_1 < s_{n,1} + b_2 \}.$$

- Note: we have assumed that the sides of the rectangle are parallel to the axes in signal space.
- Since rotation and translation of signal space do not affect distances this can be done without affecting the error probability.
- **Question:** What is the conditional error probability, assuming that $s_n(t)$ was sent.

A Simple Example	Binary Hypothesis Testing	Optimal Receiver Frontend	M-ary Signal Sets	Message Sequences
00000	00000000 00000000 0000000	00 000000000000 0000000 0000000	00 0000000 000000000 00000000	000 00 000000 000000

Illustration: 2-dimensional Rectangle

▶ In terms of the random variables $R_k = \langle R_t, \Phi_k \rangle$, with k = 0, 1, an error occurs if

error event 1

$$(R_0 \leq s_{n,0} - a_1 \text{ or } R_0 \geq s_{n,0} + a_2)$$
 or
 $(R_1 \leq s_{n,1} - b_1 \text{ or } R_1 \geq s_{n,1} + b_2)$.
error event 2

- Note that the two error events are not mutually exclusive.
- ► Therefore, it is better to consider correct decisions instead, i.e., *R* ∈ Γ_n:

$$s_{n,0} - a_1 < R_0 < s_{n,0} + a_2$$
 and $s_{n,1} - b_1 < R_1 < s_{n,1} + b_2$

Binary Hypothesis Testing

Optimal Receiver Frontend

M-ary Signal Sets

Message Sequences

Illustration: 2-dimensional Rectangle

- We know that R_0 and R_1 are
 - independent because Φ_k are orthogonal
 - with means $s_{n,0}$ and $s_{n,1}$, respectively
 - variance $\frac{N_0}{2}$.
- Hence, the probability of a correct decision is

$$\begin{aligned} \Pr\{c|s_n\} &= \Pr\{-a_1 < N_0 < a_2\} \cdot \Pr\{-b_1 < N_1 < b_2\} \\ &= \int_{-a_1}^{a_2} p_{R_0|s_n}(r_0) \, dr_0 \cdot \int_{-b_1}^{b_2} p_{R_1|s_n}(r_1) \, dr_1 \\ &= (1 - Q\left(\frac{a_1}{\sqrt{N_0/2}}\right) - Q\left(\frac{a_2}{\sqrt{N_0/2}}\right)) \cdot \\ &\quad (1 - Q\left(\frac{b_1}{\sqrt{N_0/2}}\right) - Q\left(\frac{b_2}{\sqrt{N_0/2}}\right)). \end{aligned}$$

Binary Hypothesis Testing

Optimal Receiver Frontend

M-ary Signal Sets

Message Sequences oo oo oooooo ooooooo

Exercise: QPSK

Find the error rate for the signal set

 $s_n(t) = \sqrt{2E_s/T} \cos(2\pi f_c t + n \cdot \pi/2 + \pi/4)$, for n = 0, ..., 3.

• **Answer:** (Recall $\eta_P = \frac{d_{\min}^2}{E_b} = 4$ for QPSK)

$$Pr\{e\} = 2Q\left(\sqrt{\frac{E_s}{N_0}}\right) - Q^2\left(\sqrt{\frac{E_s}{N_0}}\right)$$
$$= 2Q\left(\sqrt{\frac{2E_b}{N_0}}\right) - Q^2\left(\sqrt{\frac{2E_b}{N_0}}\right)$$
$$= 2Q\left(\sqrt{\frac{\eta_P E_b}{2N_0}}\right) - Q^2\left(\sqrt{\frac{\eta_P E_b}{2N_0}}\right)$$

A Simple Example Binary Hypothesis Testing Optimal Receiver Frontend Optimal Sets Nessage Sequences

Exercise: 16-QAM
(Recall
$$\eta_P = \frac{d_{E_b}^2}{E_b} = \frac{5}{3}$$
 for 16-QAM)
• Find the error rate for the signal set
 $(a_l, a_Q \in \{-3, -1, 1, 3\})$
 $s_n(t) = \sqrt{2E_0/T}a_l \cdot \cos(2\pi f_c t) + \sqrt{2E_0/T}a_Q \cdot \sin(2\pi f_c t)$
• Answer: $(\eta_P = \frac{d_{E_b}^2}{E_b} = 4)$
 $\Pr\{e\} = 3Q\left(\sqrt{\frac{2E_0}{N_0}}\right) - \frac{9}{4}Q^2\left(\sqrt{\frac{2E_0}{N_0}}\right)$
 $= 3Q\left(\sqrt{\frac{4E_b}{5N_0}}\right) - \frac{9}{4}Q^2\left(\sqrt{\frac{4E_b}{5N_0}}\right)$
 $= 3Q\left(\sqrt{\frac{\eta_P E_b}{2N_0}}\right) - \frac{9}{4}Q^2\left(\sqrt{\frac{\eta_P E_b}{2N_0}}\right).$

Binary Hypothesis Testir

Optimal Receiver Frontend

M-ary Signal Sets

Message Sequences oo oo oooooo ooooooo

N-dimensional Hypercube

Find the error rate for the signal set with 2^N signals of the form (b_{k,n} ∈ {−1, 1}):

$$s_n(t) = \sum_{k=1}^N \sqrt{\frac{2E_s}{NT}} b_{k,n} \cos(2\pi nt/T), \text{ for } 0 \le t \le T$$

Answer:

$$\Pr\{e\} = 1 - \left(1 - Q\left(\sqrt{\frac{2E_s}{N \cdot N_0}}\right)\right)^N$$
$$= 1 - \left(1 - Q\left(\sqrt{\frac{2E_b}{N_0}}\right)\right)^N$$
$$= 1 - \left(1 - Q\left(\sqrt{\frac{\eta_P E_b}{2N_0}}\right)\right)^N \approx N \cdot Q\left(\sqrt{\frac{\eta_P E_b}{2N_0}}\right).$$

A Simple Example	Binary Hypothesis Testing	Optimal Receiver Frontend	M-ary Signal Sets	Message Sequences
00000	0000000 00000000 0000000	00 000000000000 0000000 0000000	00 00000000 000000000 000000000000000	000 00 000000 0000000

Comparison

 Better power efficiency η_P leads to better error performance (at high SNR).

A Simple Example	Binary Hypothesis Testing	Optimal Receiver Frontend	M-ary Signal Sets	Message Sequences
00000	0000000	00	00	000
00000000	000000000	000000000000000000000000000000000000000	00000000	00 000000
		000000		000000

What if Decision Regions are not Rectangular?

Example: For 8-PSK, the probability of a correct decision is given by the following integral over the decision region for s₀(t)

$$\Pr\{c\} = \int_{0}^{\infty} \frac{1}{\sqrt{2\pi N_{0}/2}} \exp(-\frac{(x - \sqrt{E_{s}})^{2}}{2N_{0}/2}$$
$$\underbrace{\int_{-x\tan(\pi/8)}^{x\tan(\pi/8)} \frac{1}{\sqrt{2\pi N_{0}/2}} \exp(-\frac{y^{2}}{2N_{0}/2}) \, dy}_{=1-2Q(\frac{x\tan(\pi/8)}{\sqrt{N_{0}/2}})}$$

This integral cannot be computed in closed form.

Binary Hypothesis Testing

Optimal Receiver Frontend

M-ary Signal Sets

Message Sequences

Union Bound

- When decision boundaries do not intersect at right angles, then the error probability cannot be computed in closed form.
- An upper bound on the conditional probability of error (assuming that s_n was sent) is provided by:

$$\Pr\{e|s_n\} \le \sum_{k \ne n} \Pr\{\|\vec{R} - \vec{s}_k\| < \|\vec{R} - \vec{s}_n\| | \vec{s}_n\} \\ = \sum_{k \ne n} Q\left(\frac{\|\vec{s}_k - \vec{s}_n\|}{2\sqrt{N_0/2}}\right).$$

Note that this bound is computed from *pairwise error* probabilities between s_n and all other signals.

A Simple Example	Binary Hypothesis Testing	Optimal Receiver Frontend	<i>M</i> -ary Signal Sets ○○ ○○○○○○○○ ○○○○○○○○ ○○○○○○○○○○○○	Message Sequences 000 000000 000000 000000

Union Bound

Then, the average probability of error can be bounded by

$$\Pr\{e\} = \sum_{n} \pi_{n} \sum_{k \neq n} Q\left(\frac{\|\vec{s}_{k} - \vec{s}_{n}\|}{\sqrt{2N_{0}}}\right)$$

This bound is called the union bound; it approximates the union of all possible error events by the sum of the pairwise error probabilities.

nple Example Binary Hypc

Binary Hypothesis Testing

Optimal Receiver Frontend

M-ary Signal Sets

Message Sequences

Example: QPSK

For the QPSK signal set

 $s_n(t) = \sqrt{2E_s/T} \cos(2\pi f_c t + n \cdot \pi/2 + \pi/4)$, for n = 0, ..., 3

the union bound is

$$\Pr\{e\} \leq 2Q\left(\sqrt{\frac{E_s}{N_0}}\right) + Q\left(\sqrt{\frac{2E_s}{N_0}}\right).$$

Recall that the exact probability of error is

$$\Pr\{e\} = 2Q\left(\sqrt{\frac{E_s}{N_0}}\right) - Q^2\left(\sqrt{\frac{E_s}{N_0}}\right)$$

A Simple Example ooooo ooooooooo Binary Hypothesis Testing

Optimal Receiver Frontend

M-ary Signal Sets

Message Sequences oo oo oooooo ooooooo

"Intelligent" Union Bound

- The union bound is easily tightened by recognizing that only immediate neighbors of s_n must be included in the bound on the conditional error probability.
- Define the the neighbor set N_{ML}(s_n) of s_n as the set of signals s_k that share a decision boundary with signal s_n.
- Then, the conditional error probability is bounded by

$$\Pr\{e|s_n\} \le \sum_{k \in N_{ML}(s_n)} \Pr\{\|\vec{R} - \vec{s}_k\| < \|\vec{R} - \vec{s}_n\| | \vec{s}_n\} \\ = \sum_{k \in N_{ML}(s_n)} Q\left(\frac{\|\vec{s}_k - \vec{s}_n\|}{2\sqrt{N_0/2}}\right).$$

A Simple Example	Binary Hypothesis Testing 00000000 00000000 00000000	Optimal Receiver Frontend oo ooooooooooooooooooooooooooooooooo	<i>M</i> -ary Signal Sets	Message Sequences oo oo oooooo ooooooo

"Intelligent" Union Bound

Then, the average probability of error can be bounded by

$$\Pr\{e\} \leq \sum_{n} \pi_{n} \sum_{k \in N_{ML}(s_{n})} Q\left(\frac{\|\vec{s}_{k} - \vec{s}_{n}\|}{\sqrt{2N_{0}}}\right).$$

- We refer to this bound as the intelligent union bound.
 - It still relies on pairwise error probabilities.
 - It excludes many terms in the union bound; thus, it is tighter.

inary Hypothesis Testing

Optimal Receiver Frontend

000000000000000 000000000 0000000 M-ary Signal Sets

Message Sequences oo oo oooooo oooooo

Example: QPSK

For the QPSK signal set

$$s_n(t) = \sqrt{2E_s/T} \cos(2\pi f_c t + n \cdot \pi/2 + \pi/4)$$
, for $n = 0, ..., 3$

the intelligent union bound includes only the immediate neighbors of each signal:

$$\Pr\{e\} \le 2Q\left(\sqrt{\frac{E_s}{N_0}}\right)$$

Recall that the exact probability of error is

$$\Pr\{e\} = 2Q\left(\sqrt{\frac{E_s}{N_0}}\right) - Q^2\left(\sqrt{\frac{E_s}{N_0}}\right)$$

Binary Hypothesis Testing

Optimal Receiver Frontend

M-ary Signal Sets

Message Sequences oo oo oooooo oooooo

Example: 16-QAM

- ► For the 16-QAM signal set, there are
 - 4 signals s_i that share a decision boundary with 4 neighbors; bound on conditional error probability: $\Pr\{e|s_i\} = 4Q(\sqrt{\frac{2E_0}{N_0}}).$
 - 8 signals s_c that share a decision boundary with 3 neighbors; bound on conditional error probability:

$$\mathsf{Pr}\{e|s_c\} = 3Q(\sqrt{\frac{2E_0}{N_0}}).$$

4 signals s_o that share a decision boundary with 2 neighbors; bound on conditional error probability:

$$\mathsf{Pr}\{e|s_o\} = 2Q(\sqrt{\frac{2E_0}{N_0}}).$$

The resulting intelligent union bound is

$$\Pr\{e\} \leq 3Q\left(\sqrt{\frac{2E_0}{N_0}}\right).$$

A Simple Example	Binary Hypothesis Testing 00000000 000000000 00000000	Optimal Receiver Frontend oo ooooooooooooooooooooooooooooooooo	<i>M</i> -ary Signal Sets	Message Sequences oo oo oooooo ooooooo

Example: 16-QAM

The resulting intelligent union bound is

$$\Pr\{e\} \leq 3Q\left(\sqrt{\frac{2E_0}{N_0}}\right).$$

Recall that the exact probability of error is

$$\Pr\{e\} = 3Q\left(\sqrt{\frac{2E_0}{N_0}}\right) - \frac{9}{4}Q^2\left(\sqrt{\frac{2E_0}{N_0}}\right)$$

Nearest Neighbor Approximation

- At high SNR, the error probability is dominated by terms that involve the shortest distance d_{min} between any pair of nodes.
 - The corresponding error probability is proportional to $Q(\sqrt{\frac{d_{\min}}{2N_0}})$.
- For each signal s_n , we count the number N_n of neighbors at distance d_{\min} .
- Then, the error probability at high SNR can be approximated as

$$\Pr\{e\} \approx \frac{1}{M} \sum_{n=1}^{M-1} N_n Q(\sqrt{\frac{d_{\min}}{2N_0}}) = \bar{N}_{\min} Q(\sqrt{\frac{d_{\min}}{2N_0}})$$

Binary Hypothesis Testing

Optimal Receiver Frontend

M-ary Signal Sets

Message Sequences oo oo oooooo oooooo

Example: 16-QAM

- In 16-QAM, the distance between adjacent signals is $d_{\min} = 2\sqrt{E_s}$.
- There are:
 - 4 signals with 4 nearest neighbors
 - 8 signals with 3 nearest neighbors
 - 4 signals with 2 nearest neighbors
- The average number of neighbors is $\bar{N}_{min} = 3$.
- The error probability is approximately,

$$\mathsf{Pr}\{e\} pprox \mathsf{3} \mathcal{Q}\left(\sqrt{rac{2E_0}{N_0}}
ight).$$

same as the intelligent union bound.

A Simple Example	Binary Hypothesis Testing 00000000 000000000 00000000	Optimal Receiver Frontend oo ooooooooooooooooooooooooooooooooo	<i>M</i> -ary Signal Sets	Message Sequences 000 000000 000000

Example: 8-PSK

- For 8-PSK, each signal has 2 nearest neighbors at distance $d_{\min} = \sqrt{(2 \sqrt{2})E_s}$.
- Hence, both the intelligent union bound and the nearest neighbor approximation yield

$$\Pr\{e\} \approx 2Q\left(\sqrt{\frac{(2-\sqrt{2})E_s}{2N_0}}\right) = 2Q\left(\sqrt{\frac{3(2-\sqrt{2})E_b}{2N_0}}\right)$$

• Since, $E_b = 3E_s$.

A Simple Example	Binary Hypothesis Testing	Optimal Receiver Frontend oo ooooooooooooooooooooooooooooooooo	<i>M</i> -ary Signal Sets	Message Sequences
			000000000000000000000000000000000000000	

Comparison

Solid: exact Pe, dashed: approximation. For 8PSK, only approximation is shown.

- The intelligent union bound is very tight for all cases considered here.
 - It also coincides with the nearest neighbor approximation

A Simple Example Binary Hypothesis Testing Optimal Receiver Frontend O

General Approximation for Probability of Symbol Error

From the above examples, we can conclude that a good, general approximation for the probability of error is given by

$$\Pr\{e\} \approx \bar{N}_{\min}Q\left(\frac{d_{\min}}{\sqrt{2N_0}}\right) = \bar{N}_{\min}Q\left(\sqrt{\frac{\eta_P E_b}{2N_0}}\right).$$

- signal-to-noise ratio (SNR) E_b/N_0 and
- geometry of the signal constellation via the average number of neighbors \bar{N}_{min} and the power efficiency η_P .

Binary Hypothesis Testing

Optimal Receiver Frontend

M-ary Signal Sets

Message Sequences

Bit Errors

- So far, we have focused on symbol errors; however, ultimately we are concerned about bit errors.
- There are many ways to map groups of log₂(*M*) bits to the *M* signals in a constellation.
- **Example QPSK:** Which mapping is better?

QPSK Phase	Mapping 1	Mapping 2
π/4	00	00
3π/4	01	01
5π/4	10	11
7π/4	11	10

A Simple Example	Binary Hypothesis Testing	Optimal Receiver Frontend	M-ary Signal Sets	Message Sequences
00000 000000000	00000000 00000000 00000000	00 000000000000 00000000 0000000	00 0000000 000000000 00000000 00000000	000 00 000000 000000

Bit Errors

Example QPSK:

QPSK Phase	Mapping 1	Mapping 2
π/4	00	00
3π/4	01	01
5π/4	10	11
7π/4	11	10

- Note, that for Mapping 2 nearest neighbors differ in exactly one bit position.
 - That implies, that the most common symbol errors will induce only one bit error.
 - That is not true for Mapping 1.

Binary Hypothesis Testing

Optimal Receiver Frontend

M-ary Signal Sets

000000000000000000

Message Sequences

Gray Coding

- A mapping of *log*₂(*M*) bits to *M* signals is called Gray Coding if
 - The bit patterns that are assigned to nearest neighbors in the constellation
 - differ in exactly one bit position.
- With Gray coding, the most likely symbol errors induce exactly one bit error.
 - Note that there are $log_2(M)$ bits for each symbol.
- Hence, with Gray coding the *bit error probability* is well approximated by

$$\Pr\{\text{bit error}\} \approx \frac{\bar{N}_{\min}}{\log_2(M)} Q\left(\sqrt{\frac{\eta_P E_b}{2N_0}}\right) \lesssim Q\left(\frac{d_{\min}}{\sqrt{2N_0}}\right)$$

