¢+ Data Communications

- Forouzan
and N Etwor kl ng Fourth Edition

Chapter 11
Data Link Control

1 1 _1 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

11-2° FLOW AND

The most important responsibilities of the data link
layer are flow control and error control. Collectively,
these functions are known as data link control.

Topics discussed in this section:
Flow Control
Error Control

11.9

4/29/10

Figure 11.5 Taxonomy of protocols discussed in this chapter

Protocols

For noiseless
channel

—— Simplest

—— Stop-and-Wait

For noisy
channel

—— Stop-and-Wait ARQ
—— Go-Back-N ARQ

—— Selective Repeat ARQ

11.13

Topics discussed in this section:

Simplest Protocol

11.14

Stop-and-Wait Protocol

Let us first assume we have an ideal channel in which
no frames are lost, duplicated, or corrupted. We
introduce two protocols for this type of channel.

4/29/10

Figure 11.6 The design of the simplest protocol with no flow or error control

Sender Receiver
Network| Get data Deliver data | Network
; f
Data link Data link
| A
T
Physical | Send frame Receive frame | Physical
Data frames —>

Event: Request from
net

Repeat forever

Repeat forever

. | Notification from
Event: ;
physical layer

11.15

Algorithm 11.1 Sender-site algorithm for the simplest protocol

1 while(true) // Repeat forever
2 [{
3 WaitForEvent () ; // Sleep until an event occurs
4 if (Event (RequestToSend)) //There is a packet to send
5 {
6 GetDatal() ;
7 MakeFrame () ;
8 SendFrame () ; //Send the frame
9 }
10 |}
11.16

4/29/10

Algorithm 11.2 Receiver-site algorithm for the simplest protocol
1 while(true) // Repeat forever
2 |{
3 WaitForEvent () ; // Sleep until an event occurs
4 if (Event (ArrivalNotification)) //Data frame arrived
5 {
6 ReceiveFrame () ;
7 ExtractData() ;
8 DeliverDatal() ; //Deliver data to network layer
9 }

10 |}

11.17

Figure 11.7 Flow diagram for Example 11.1

Sender Receiver

Request \

I Arrival
Request !

| Arrival

\ Y
m

e Time

11.19

4/29/10

4/29/10

Figure 11.8 Design of Stop-and-Wait Protocol

Sender Receiver
Deliver
Network Get data data Network
Y |
Data link Data link
Y [
Physical | Receive Send Receive ~ Send | physical
frame frame frame frame
Data frame
| — |

—<—m ACKframe

.| Request from
Event:
network layer

Repeat forever Repeat forever

Event: Notification from Event: Notification from
vent: physical layer ‘| physical layer

11.20

Algorithm 11.3 Sender-site algorithm for Stop-and-Wait Protocol
1 while(true) / /Repeat forever
2 |(canSend = true //Allow the first frame to go
3
4 WaitForEvent () ; // Sleep until an event occursg
5 if (Event (RequestToSend) AND canSend)
6 {
7 GetDatal() ;
8 MakeFrame () ;
9 SendFrame () ; //Send the data frame
10 canSend = false; //Cannot send until ACK arrivesg
11 }
12 WaitForEvent () ; // Sleep until an event occurs
13 if (Event (ArrivalNotification) // An ACK has arrived
14 {
15 ReceiveFrame () ; //Receive the ACK frame
16 canSend = true;
17 }
18 |}
11.21

Algorithm 11.4 Receiver-site algorithm for Stop-and-Wait Protocol

1 while(true) //Repeat forever

2 {

3 WaitForEvent () ; // Sleep until an event occursg
4 if (Event (ArrivalNotification)) //Data frame arrives

5 {

6 ReceiveFrame () ;

7 ExtractData() ;

8 Deliver (data) ; //Deliver data to network layer]
9 SendFrame () ; //Send an ACK frame
10 }
11 |}

11.22

Figure 11.9 Flow diagram for Example 11.2

Receiver

Request '
\ Arrival

Arrival

Request !
] Arrival
|

Arrival

11.24

4/29/10

11-5 NOISY CHANNELS

Although the Stop-and-Wait Protocol gives us an idea
of how to add flow control to its predecessor, noiseless
channels are nonexistent. We discuss three protocols
in this section that use error control.

Topics discussed in this section:
Stop-and-Wait Automatic Repeat Request
Go-Back-N Automatic Repeat Request
Selective Repeat Automatic Repeat Request

11.25

1

Note II

Error correction in Stop-and-Wait ARQ is
done by keeping a copy of the sent
frame and retransmitting of the frame
when the timer expires.

11.26

4/29/10

T

Note I

In Stop-and-Wait ARQ, we use sequence
numbers to number the frames.
The sequence numbers are based on
modulo-2 arithmetic.

11.27

T

Note I

In Stop-and-Wait ARQ, the
acknowledgment number always
announces in modulo-2 arithmetic the
sequence number of the next frame
expected.

11.28

4/29/10

Figure 11.10 Design of the Stop-and-Wait ARQ Protocol

S, Nextframe

Sender

Data frame
Network Get data
| seqNo
Y
Data link
Physical Receive Send
frame frame
|| ———

R, Nextframe

Receiver
ACK frame Deliver
data Network
ackNo
[
Data link
Receive Send | physical
frame frame
~—

Event: Request from
network layer

Repeat forever *

Algorithm for sender site

A

Notification from
Event: P
physical layer

Time-out

Event:

Repeat forever

Algorithm for receiver site

A

Notification from
Event: P
physical layer

11.29

Algorithm 11.5 Sender-site algorithm for Stop-and-Wait ARQ

18, = 0;

2 |canSend = true;

3 while(true)

4 [{

5 WaitForEvent () ;

6

7 {

8 GetData() ;

9 MakeFrame (S;) ;
10 StoreFrame (S,) ;
11 SendFrame (S,) ;
12 StartTimer () ;
13 S, = S, + 1;

14 canSend = false;

15 }

16 WaitForEvent () ;
11.30

if (Event (RequestToSend) AND canSend)

// Frame 0 should be sent first
// Allow the first request to go
// Repeat forever

// Sleep until an event occurs

//The segNo is S,
//Keep copy

// Sleep

(continued)

4/29/10

Algorithm 11.5 Sender-site algorithm for Stop-and-Wait ARQ (continued)

17 if (Event (ArrivalNotification) // An ACK has arrived
18 {
19 ReceiveFrame (ackNo) ; //Receive the ACK frame|
20 if (not corrupted AND ackNo == S,) //Valid ACK
21 {
22 Stoptimer() ;
23 PurgeFrame (S,_1); //Copy is not needed
24 canSend = true;
25 }
26 }
27
28 if (Event (TimeOut) // The timer expired
29 {
30 StartTimer () ;
31 ResendFrame (S, 1) ; //Resend a copy check
32 }
33 |}
11.31

Algorithm 11.6 Receiver-site algorithm for Stop-and-Wait ARQ Protocol

1 R, = 0; // Frame 0 expected to arrive firs
2 while(true)
3
4 WaitForEvent () ; // Sleep until an event occurs
5 if (Event (ArrivalNotification)) //Data frame arrives
6 {
7 ReceiveFrame () ;
8 if (corrupted(frame)) ;
9 sleep();
10 if (segNo == R;) //Valid data frame
11 {
12 ExtractData() ;
13 DeliverData() ; //Deliver data
14 R, = R, + 1;
15 }
16 SendFrame (Ry) ; //Send an ACK
17 }
18 |}
11.32

4/29/10

10

Figure 11.11 Flow diagram for Example 11.3

Sender Receiver
A =7
;
Start Request iI : Ry
: ! OMGHIGET Ariva
1
Stop Arrival {0 'd;i1o(f:<_—,
........... L !
Sn i !
‘ Request O [[0313071+ m i
"""""" 1
i
: Lost ’ :
Sn | \
Time-out T ATIIRT !
Time-out ;0 0:1:0!1¢ Fr. | Rp
restart T L1ame 1 (reseny) | vorrmhrn)
Sn ! 1011 1:0:1: Arrival
1 LR EE L
Stop Arrival 107 f;’b‘;’fk_—

Start ' Request i (

Time-out
restart

.
! .
Stop Arrival 01T O OTE K]

11.34

Example 11.4

the utilization percentage of the link?

Solution
The bandwidth-delay product is

(1 % 10%) x (20 x 1073) = 20,000 bits

11.35

Assume that, in a Stop-and-Wait ARQ system,
bandwidth of the line is 1 Mbps, and 1 bit takes 20 ms to
make a round trip. What is the bandwidth-delay product?
If the system data frames are 1000 bits in length, what is

the

4/29/10

1"

‘ Example 11.4 (continued)

The system can send 20,000 bits during the time it takes
for the data to go from the sender to the receiver and then
back again. However, the system sends only 1000 bits. We
can say that the link utilization is only 1000/20,000, or 5
percent. For this reason, for a link with a high bandwidth
or long delay, the use of Stop-and-Wait ARQ wastes the
capacity of the link.

11.36

‘ Example 11.5

What is the utilization percentage of the link in
Example 11.4 if we have a protocol that can send up to
15 frames before stopping and worrying about the
acknowledgments?

Solution

The bandwidth-delay product is still 20,000 bits. The
system can send up to 15 frames or 15,000 bits during a
round trip. This means the utilization is 15,000/20,000, or
75 percent. Of course, if there are damaged frames, the
utilization percentage is much less because frames have
to be resent.

11.37

4/29/10

12

Note I

In the Go-Back-N Protocol, the sequence
numbers are modulo 2™,
where m is the size of the sequence
number field in bits.

11.38

Figure 11.12 Send window for Go-Back-N ARQ

S¢ Send window, S, Send window,
first outstanding frame next frame to send
ESACSNE] | 7 [8]9 f1o]n[12]13[14]15] 0 {1
Frames already Frames sent, but not Frames that can be sent, Frames that
acknowledged acknowledged (outstanding) but not received from upper layer cannot be sent

I
Send window, size S, =2™ - 1

a. Send window before sliding

Sf Sn

b. Send window after sliding

11.39

4/29/10

13

Figure 11.13 Receive window for Go-Back-N ARQ

Frames already received
and acknowledged

R, Receive window, next frame expected

4LB16L 718100 2 134005)

Frames that cannot be received
until the window slides

0 (1
L

a. Receive window

LA RUSR B EERRLSRER IS

b. Window after sliding

11.42

Figure 11.14 Design

of Go-Back-N ARQ

Sender

s, First s Next
f " n
outstanding to send

r. Next
n .
to receive

¢
=

Receiver
Data frame ACK frame Deliver
Network Get data data Network
seqNo ackNo
Y [

Data link Data link
Physical | Receive Send Receive Send | physical
frame frame frame frame
[' ']

~— [=) e

.| Request from
Event:
network layer

Repeat forever *

Algorithm for sender site ‘

@ Repeat forever

Event:

A

Algorithm for receiver site ‘

Notification from
Event: P
physical layer

11.44

4/29/10

14

4/29/10

Figure 11.15 Window size for Go-Back-N ARQ

Sender Receiver Sender Receiver

S¢S

f on X Sf Sn

® ey | & oy

5 s T ® ELDOS% (&

f-" b | S s, (HBER
e, | G b | R

S s g e, |

f [offil2]3[0]

ES
o
»
%)
B}

A
B
A
Time-out

o
5
By
%
E]

_s'ﬁ
w
4
D
/
=]
=]
[w] *
;
[S]
n
b
5
/\«:/\
=
=]
)
] =
=

!*m!
w
3
2D
S}
[=]
=]
[S]
=1

»
g
>
[

D

o
[S]
=]
[

/\

B

Correctly
discarded °
. Time-out

a. Window size < 2™ b. Window size = 2™

11.45

4

Note I

In Go-Back-N ARQ, the size of the send
window must be less than 2™;
the size of the receiver window
is always 1.

11.46

15

Algorithm 11.7 Go-Back-N sender algorithm

T, = 2% - 1;
2 8¢ = 0;
3 S, = 0;
4
5 while (true) //Repeat forever
6 |{
7 | WaitForEvent () ;
8 if (Event (RequestToSend)) //A packet to send
9 {
10 if (S,-S¢ >= Sy) //If window is full
11 Sleep();
12 GetDatal() ;
13 MakeFrame (S,) ;
14 StoreFrame (S,) ;
15 SendFrame (S,) ;
16 S, = S, + 1;
17 if (timer not running)
18 StartTimer () ;
19 }
20
(continued)
11.47
Algorithm 11.7 Go-Back-N sender algorithm (continued)

21 if (Event (ArrivalNotification)) //ACK arrives
22 {
23 Receive (ACK) ;
24 if (corrupted (ACK))
25 Sleep () ;
26 if ((ackNo>S¢) && (ackNo<=S,)) //If a valid ACK
27 While(Sf <= ackNo)
28 {
29 PurgeFrame (S¢) ;
30 Sg = Sg + 1;
31 }
32 StopTimer () ;
33 }
34
35 if (Event (TimeOut)) //The timer expires
36 {
37 StartTimer () ;
38 Temp = Sg;
39 while(Temp < S,):
40 {
41 SendFrame (S¢) ;
42 Sg = Sg + 1;
43 }
44 }
45 |}
11.48

4/29/10

16

Algorithm 11.8 Go-Back-N receiver algorithm

1 R, = 0;
2
3 while (true) //Repeat forever
4 |{
5 WaitForEvent () ;
6
7 if (Event (ArrivalNotification)) /Data frame arrives
8 {
9 Receive (Frame) ;
10 if (corrupted (Frame))
11 Sleep();
12 if (segNo == R,) //If expected frame
13 {
14 DeliverData() ; //Deliver data
15 R, = R, + 1; //81ide window
16 SendACK(R,) i
17 }
18 }
19 |}
11.49

Figure 11.16 Flow diagram for Example 11.6

Start
timer S¢

" Initial
Sn
Request [@1]2[3]4]5]6]7]0[1]2}

S

n
o[1]2]3]a]s]6[7[o[1]

2]

Arrival

Request

Request

Request

Arrival

b pival [O[12[3]4s]s[7o[1 2]

Stop
timer

Receiver

&9 .,

| BT i
I
I
I

Arrival

Arrival

Arrival

Arrival

11.51

4/29/10

17

4/29/10

Figure 11.17 Flow diagram for Example 11.7

Sender Receiver
))
timer St[S0 Rn
@ il [o1]23]4]s]6[7[o[1]2] [1T2[3[a]5]6]7] nitial

S S

Request

R,

n

ORIZEAETET Avival

S

S, 1
f n |

Request [Ofi2[314]516|7]o[112} Frame 1>
.

R D

n

Request

Request
Time-out

Time-out
Restart

O METEI] Al

Arrival

Arrival

s Arrival
top
timar y

11.54

Note I

Stop-and-Wait ARQ is a special case of
Go-Back-N ARQ in which the size of the
send window is 1.

11.55

18

4/29/10

Figure 11.18 Send window for Selective Repeat ARQ

Send window, first S S, Send window,
outstanding frame next frame to send

(4 [5]6]7 18 {9 t0fmii2jm3jmaiis/ofi:

Frames already | Frames sent, but Frames that can Frames that
acknowledged | not acknowledged be sent cannot be sent
T
Ssize = 2!
11.56

Figure 11.19 Receive window for Selective Repeat ARQ

R Receive window,
" next frame expected

BERRERSEENBANENEN KN BN ECIRISERRERRENRER NN

- - LIS P S -

Frames that can be received
Frames already and stored for later delivery. Frames that
received Colored boxes, already received cannot be received
Rgize = 2!

11.57

19

Figure 11.20 Design of Selective Repeat ARQ

First 5 Next Next
f outstanding”™ to send " to receive
Sender Receiver
Data frame ACK or NAK Deliver
Network Get data data Network
seqNo ackNo
Y or [
Data link nakNo Data link
Physical Receive Send Receive Send Physical
frame frame frame frame

L |
I e e .

~— .

Event: Request from
network layer

Repeat forever *

Algorithm for sender site

. Repeat forever

A

Event: Notification from
vent: physical layer

Time-out Algorithm for receiver site

Event:
A

Notification from
Event:

11.58

Figure 11.21 Selective Repeat ARQ, window size

Sender Receiver
Sf Sn
F'a”’@o o
Sf Sn
Frame X | Ry
s, s,
2[3] A R
Time-out 213 %‘ 0
[o[1]2[3]

Correctly

i

discarded

Sender Receiver

St [Sn
® [R50 [ame, |*
S s, [TJ3[0[H

2300 [ome | P

m Fra,ne 2 Rn

-
v
[
[S] »
;\/
[S]
=
o |[w]
[o]
=

‘ /
[S]
[=]
[N
w
[=]

I'a,n n
Time-out €0

/' [Erroneously
accepted

a. Window size = 2™

b. Window size > 2™

11.59

4/29/10

20

Note I

In Selective Repeat ARQ, the size of the
sender and receiver window
must be at most one-half of 2m.

11.60

Algorithm 11.9 Sender-site Selective Repeat algorithm

1 Sw = 2m—l :

2 8¢ = 0;

3 8, = 0;

4

5 while (true) //Repeat forever

6 |{

7 WaitForEvent () ;

8 if (Event (RequestToSend)) //There is a packet to send

9 {

10 if(S,-S¢ >= Sy,) //If window is full

11 Sleep();

12 GetData() ;

13 MakeFrame (S,) ;

14 StoreFrame (S,) ;

15 SendFrame (S,) ;

16 S, = S, + 1;

17 StartTimer (S,) ;

18 }

19

(continued)

11.61

4/29/10

21

Algorithm 11.9 Sender-site Selective Repeat algorithm (continued)
20 if (Event (ArrivalNotification)) //ACK arrives
21 {

22 Receive (frame) ; //Receive ACK or NAK
23 if (corrupted(frame))

24 Sleep();

25 if (FrameType == NAK)

26 if (nakNo between S and S,)

27 {

28 resend (nakNo) ;

29 StartTimer (nakNo) ;

30 }

31 if (FrameType == ACK)

32 if (ackNo between S¢ and S,)

33 {

34 while(sg < ackNo)

35 {

36 Purge (s¢) ;

37 StopTimer (s¢) ;

38 Sg = S¢g + 1;

39 }

40 }

41 }

11.62 (continued)
Algorithm 11.9 Sender-site Selective Repeat algorithm (continued)
42
43 if (Event (TimeOut (t))) //The timer expires
44 {

45 StartTimer(t) ;
46 SendFrame (t) ;
47 }

48

11.63

4/29/10

22

Algorithm 11.10 Receiver-site Selective Repeat algorithm

1 Ry, = 0;
2 NakSent = false;
3 |AckNeeded = false;
4 Repeat (for all slots)
5 Marked(slot) = false;
6
7 while (true) //Repeat forever
8 [{
9 WaitForEvent () ;
10
11 if (Event (ArrivalNotification)) /Data frame arrives
12 {
13 Receive (Frame) ;
14 if (corrupted (Frame)) && (NOT NakSent)
15 {
16 SendNAK (R,) ;
17 NakSent = true;
18 Sleep();
19 }
20 if (segqNo <> R;)&& (NOT NakSent)
21 {
22 SendNAK (R,) ;
11.64

Algorithm 11.10 Receiver-site Selective Repeat algorithm

23 NakSent = true;
24 if ((segNo in window) && (!Marked (segNo))
25 {
26 StoreFrame (seqgNo)
27 Marked (segNo)= true;
28 while (Marked(Ry,))
29 {
30 DeliverData (Ry) ;
31 Purge (R,) ;
32 R, = R, + 1;
33 AckNeeded = true;
34 }
35 if (AckNeeded) ;
36 {
37 SendAck (R,) ;
38 AckNeeded = false;
39 NakSent = false;
40 }
41 }
42 }
43 }
44 |}

11.65

4/29/10

23

Figure 11.22 Delivery of data in Selective Repeat ARQ

R

ackNo sent: 3

o[1]2[3]4]5f6]7]0[1]2]3]

a. Before delivery

b. After delivery

11.66

Figure 11.23 Flow diagram for Example 11.8

S¢ Sn
iitial (O] 23] A5 [E[7]0]

0 S¢

T Request
Arrival

S

Request

Request

1
. Arrival
L Arrival

; St L[S]
. Request [oi2[3]4[5]6]7]0} m
, Sf Sn : Lost ’

Receiver

=,

n

[0[1]2]3[4]5]6]7] Initial

R,

n

[o[1]2[3]4]s]e]7]
Frame 0
delivered

Arrival

Arrival

Arrival

n

o[BAfs[e]7] Arriva
1

| Frames 1,2, 3
\ delivered

11.71

4/29/10

24

Figure 11.24 Design of piggybacking in Go-Back-N ARQ

Send Receive Receive Send
window window window window
ackNo

Network | Deliver Get Deliver Get | Network

A |
[Y seqNo | \

Frame

Data link Data link
Physical | Receive Send Receive Send | physical
frame frame

frame frame

[lll==— == e |

.| Request from
Event:
network layer

Request from
network layer
Repeat forever + . . Repeat forever *

A

Algorithm for _— __ Algorithm for
sending and receiving

sending and receiving
1 Event: Event:

A

Event: Notification from Event: Notification from
vent: physical layer vent: physical layer

11.72

4/29/10

25

