Finding the Fundamental Frequency

- Often one is given a set of frequencies $f_{1}, f_{2}, \ldots, f_{N}$ and is required to find the fundamental frequency f_{0}.
- Specifically, this means one must find a frequency f_{0} and integers $n_{1}, n_{2}, \ldots, n_{N}$ such that all of the following equations are met:

$$
\begin{aligned}
f_{1} & =n_{1} \cdot f_{0} \\
f_{2} & =n_{2} \cdot f_{0} \\
& \vdots \\
f_{N} & =n_{N} \cdot f_{0}
\end{aligned}
$$

- Note that there isn't always a solution to the above problem.
- However, if all frequencies are integers a solution exists.
- Even if all frequencies are rational a solution exists.

Example

- Find the fundamental frequency for the set of frequencies $f_{1}=12, f_{2}=27, f_{3}=51$.
- Set up the equations:

$$
\begin{aligned}
12 & =n_{1} \cdot f_{0} \\
27 & =n_{2} \cdot f_{0} \\
51 & =n_{3} \cdot f_{0}
\end{aligned}
$$

- Try the solution $n_{1}=1$; this would imply $f_{0}=12$. This cannot satisfy the other two equations.
- Try the solution $n_{1}=2$; this would imply $f_{0}=6$. This cannot satisfy the other two equations.
- Try the solution $n_{1}=3$; this would imply $f_{0}=4$. This cannot satisfy the other two equations.
- Try the solution $n_{1}=4$; this would imply $f_{0}=3$. This can satisfy the other two equations with $n_{2}=9$ and $n_{3}=17$.

Example

- Note that the three sinusoids complete a cycle at the same time at $T_{0}=1 / f_{0}=1 / 3 s$.

A Few Things to Note

- Note that the fundamental frequency f_{0} that we determined is the greatest common divisor (gcd) of the original frequencies.
- $f_{0}=3$ is the gcd of $f_{1}=12, f_{2}=27$, and $f_{3}=51$.
- The integers n_{i} are the number of full periods (cycles) the sinusoid of freqency f_{i} completes in the fundamental period $T_{0}=1 / f_{0}$.
- For example, $n_{1}=f_{1} \cdot T_{0}=f_{1} \cdot 1 / f_{0}=4$.
- The sinusoid of frequency f_{1} completes $n_{1}=4$ cycles during the period T_{0}.

Exercise

- Find the fundamental frequency for the set of frequencies $f_{1}=2, f_{2}=3.5, f_{3}=5$.

Fourier Series

- We have shown that a sum of sinusoids with harmonic frequencies is a periodic signal.
- One can turn this statement around and arrive at a very important result:

Any periodic signal can be expressed as a sum of sinusoids with harmonic frequencies.

- The resulting sum is called the Fourier Series of the signal.
- Put differently, a periodic signal can always be written in the form

$$
\begin{aligned}
x(t) & =A_{0}+\sum_{i=1}^{N} A_{i} \cos \left(2 \pi i f_{0} t+\phi_{i}\right) \\
& =X_{0}+\sum_{i=1}^{N} X_{i} e^{j 2 \pi i i_{0} t}+X_{i}^{*} e^{-j 2 \pi i i_{0} t}
\end{aligned}
$$

with $X_{0}=A_{0}$ and $X_{i}=\frac{A_{i}}{2} e^{i \phi_{i}}$.

Fourier Series

- For a periodic signal the complex amplitudes X_{i} can be computed using a (relatively) simple formula.
- Specifically, for a periodic signal $x(t)$ with fundamental period T_{0} the complex amplitudes X_{i} are given by:

$$
X_{i}=\frac{1}{T_{0}} \int_{0}^{T_{0}} x(t) \cdot e^{-j 2 \pi i t / T_{0}} d t
$$

- Note that the integral above can be evaluated over any interval of length T_{0}.

Example: Square Wave

- A square wave signal is periodic and between $t-0$ and $t=T_{0}$ it equals

$$
x(t)=\left\{\begin{array}{cc}
1 & 0 \leq t<\frac{T_{0}}{2} \\
-1 & \frac{T_{0}}{2} \leq t<T_{0}
\end{array}\right.
$$

- From the Fourier Series expansion it follows that $x(t)$ can be written as

$$
x(t)=\sum_{n=0}^{\infty} \frac{4}{(2 n-1) \pi} \cos (2 \pi(2 n-1) f t-\pi / 2)
$$

25-Term Approximation to Square Wave

$$
x(t)=\sum_{n=0}^{25} \frac{4}{(2 n-1) \pi} \cos (2 \pi(2 n-1) f t-\pi / 2)
$$

