Time-Domain and Frequency-Domain

Periodic Signals

Finding the Fundamental Frequency

- Often one is given a set of frequencies f₁, f₂,..., f_N and is required to find the fundamental frequency f₀.
- Specifically, this means one must find a frequency f₀ and integers n₁, n₂, ..., n_N such that all of the following equations are met:

$$f_1 = n_1 \cdot f_0$$

$$f_2 = n_2 \cdot f_0$$

$$\vdots$$

$$f_N = n_N \cdot f_0$$

- Note that there isn't always a solution to the above problem.
 - However, if all frequencies are integers a solution exists.
 - Even if all frequencies are rational a solution exists.

Periodic Signals

Example

Find the fundamental frequency for the set of frequencies

$$f_1 = 12, f_2 = 27, f_3 = 51.$$

Set up the equations:

$$12 = n_1 \cdot f_0$$

$$27 = n_2 \cdot f_0$$

$$51 = n_3 \cdot f_0$$

- Try the solution $n_1 = 1$; this would imply $f_0 = 12$. This cannot satisfy the other two equations.
- Try the solution $n_1 = 2$; this would imply $f_0 = 6$. This cannot satisfy the other two equations.
- Try the solution $n_1 = 3$; this would imply $f_0 = 4$. This cannot satisfy the other two equations.
- ▶ Try the solution $n_1 = 4$; this would imply $f_0 = 3$. This **can** satisfy the other two equations with $n_2 = 9$ and $n_3 = 17$.

Sum of Sinusoidal Signals	Time-Domain and Frequency-Domain	Periodic Signals
00	000	
0000	000	00000000
00	000000	0000
0000	000000000	

Example

Note that the three sinusoids complete a cycle at the same time at $T_0 = 1/f_0 = 1/3s$.

A Few Things to Note

- Note that the fundamental frequency f₀ that we determined is the greatest common divisor (gcd) of the original frequencies.
 - $f_0 = 3$ is the gcd of $f_1 = 12$, $f_2 = 27$, and $f_3 = 51$.
- The integers n_i are the number of full periods (cycles) the sinusoid of freqency f_i completes in the fundamental period T₀ = 1 / f₀.
 - For example, $n_1 = f_1 \cdot T_0 = f_1 \cdot 1 / f_0 = 4$.
 - The sinusoid of frequency f₁ completes n₁ = 4 cycles during the period T₀.

Find the fundamental frequency for the set of frequencies $f_1 = 2, f_2 = 3.5, f_3 = 5.$

Time-Domain and Frequency-Domain

Periodic Signals

Fourier Series

- We have shown that a sum of sinusoids with harmonic frequencies is a periodic signal.
- One can turn this statement around and arrive at a very important result:

Any periodic signal can be expressed as a sum of sinusoids with harmonic frequencies.

- The resulting sum is called the Fourier Series of the signal.
- Put differently, a periodic signal can always be written in the form

$$\begin{array}{rcl} x(t) &=& A_0 + \sum_{i=1}^N A_i \cos(2\pi i f_0 t + \phi_i) \\ &=& X_0 + \sum_{i=1}^N X_i e^{j2\pi i f_0 t} + X_i^* e^{-j2\pi i f_0 t} \end{array}$$

with
$$X_0 = A_0$$
 and $X_i = \frac{A_i}{2} e^{j\phi_i}$

Fourier Series

- For a periodic signal the complex amplitudes X_i can be computed using a (relatively) simple formula.
- Specifically, for a periodic signal x(t) with fundamental period T₀ the complex amplitudes X_i are given by:

$$X_{i} = \frac{1}{T_{0}} \int_{0}^{T_{0}} x(t) \cdot e^{-j2\pi i t/T_{0}} dt.$$

Note that the integral above can be evaluated over any interval of length T₀.

Example: Square Wave

A square wave signal is periodic and between t – 0 and t = T₀ it equals

$$x(t) = \begin{cases} 1 & 0 \le t < \frac{T_0}{2} \\ -1 & \frac{T_0}{2} \le t < T_0 \end{cases}$$

From the Fourier Series expansion it follows that x(t) can be written as

$$x(t) = \sum_{n=0}^{\infty} \frac{4}{(2n-1)\pi} \cos(2\pi(2n-1)ft - \pi/2)$$

Time-Domain and Frequency-Domain

Periodic Signals

25-Term Approximation to Square Wave

