

Spectrum before and after AM

- Comparison of the two spectra shows that amplitude modulation indeed moves a spectrum from low frequencies to high frequencies.
- Note that the shape of the spectrum is precisely preserved.
- Amplitude modulation can be described concisely by stating:
 - \blacktriangleright Half of the original spectrum is shifted by f_c to the right, and the other half is shifted by f_c to the left.
- **Question:** How can you get the original signal back so that you can listen to it.
 - This is called demodulation.

©2009-2019, B.-P. Paris

116

Instantaneous Frequency

- For a regular sinusoid, $\Psi(t) = 2\pi f_0 t + \phi$ and the frequency equals f_0 .
- This suggests as a possible relationship between $\Psi(t)$ and f_0

$$f_0 = \frac{1}{2\pi} \frac{d}{dt} \Psi(t).$$

- If the above derivative is not a constant, it is called the instantaneous frequency of the signal, $f_i(t)$.
- **Example:** For $\Psi(t) = 700\pi t^2 + 440\pi t + \phi$ we find

$$f_i(t) = \frac{1}{2\pi} \frac{d}{dt} (700\pi t^2 + 440\pi t + \phi) = 700t + 220.$$

This describes precisely the red line in the spectrogram on MASON the previous slide.

Constructing a Linear Chirp

- **• Objective:** Construct a signal such that its frequency is initially f_1 and increases linear to f_2 after T seconds.
- Solution: The above suggests that

$$f_i(t) = \frac{f_2 - f_1}{T}t + f_1$$

• Consequently, the phase function $\Psi(t)$ must be

$$\Psi(t) = 2\pi \frac{f_2 - f_1}{2T} t^2 + 2\pi f_1 t + \phi$$

Note that ϕ has no influence on the spectrum; it is usually set to 0. MASON

©2009-2019, B.-P. Paris

Sampling and Discrete-Time Signals

Sampling results in a sequence of samples

$$x(nT_s) = A \cdot \cos(2\pi f nT_s + \phi)$$

- Note that the independent variable is now *n*, not *t*.
- To emphasize that this is a discrete-time signal, we write

$$x[n] = \mathbf{A} \cdot \cos(2\pi f n T_{\mathbf{s}} + \phi).$$

MASON

- Sampling is a straightforward operation.
- We will see that the sampling rate f_s must be chosen with care!

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis Introduction to Sampling Sampled Signals in MATLAB Note that we have worked with sampled signals whenever we have used MATLAB. For example, we use the following MATLAB fragment to generate a sinusoidal signal: fs = 100;tt = 0:1/fs:3;xx = 5*cos(2*pi*2*tt + pi/4); ► The resulting signal xx is a discrete-time signal: The vector xx contains the samples, and the vector tt specifies the sampling instances: $0, 1/f_s, 2/f_s, \ldots, 3.$ We will now turn our attention to the impact of the sampling MASON rate f_s.

ECE 201: Intro to Signal Analysis

Introduction to Sampling

Undersampling, Aliasing

- ▶ When the sampling rate is such that $1 < \hat{f}_d \le 3/2$, then we define the apparent frequency $\hat{f}_a = \hat{f}_d 1$.
- Notice that 0 < *f*_a ≤ 1/2 and *f*_d = *f*_a + 1.
 For *f* = 11, *f*_s = 10 ⇒ *f*_d = 11/10 ⇒ *f*_a = 1/10.
- ▶ The samples of the sinusoidal signal are given by

$$x[n] = A\cos(2\pi \hat{f}_d n + \phi) = A\cos(2\pi (1 + \hat{f}_a)n + \phi).$$

Expanding the terms inside the cosine,

$$x[n] = A\cos(2\pi \hat{f}_a n + 2\pi n + \phi) = A\cos(2\pi \hat{f}_a n + \phi)$$

• Interpretation: The samples are identical to those from a sinusoid with frequency $f = \hat{f}_a \cdot f_s$ and phase ϕ .

Introduction to Sampling

<section-header> • Expected Outcome: • Outcome: • Substance is a constrained of the constrained o</section-header>	 Experiment: Sampling a Rotating Phasor Objective: Investigate sampling effects when we can distinguish between positive and negative frequencies. Experiment Set-up: Animation: rotating phasor in the complex plane. Sampling rate describes the number of "snap-shots" per second (strobes). Frequency the number of times the phasor rotates per second. positive frequency: counter-clockwise rotation. negative frequency: clockwise rotation. 	
 Polding: leads to reversal of direction. Aliasing: same direction but apparent frequency is lower than true frequency. 	Expected Outcome:	
Image is an true frequency. Image is a construction of a	 Folding: leads to reversal of direction. Aliasing: same direction but apparent frequency is lower 	
(2009-2019, 8-P Paris Comparison of Comparison	than true frequency.	MASON
Introduction to Sampling	©2009-2019, BP. Paris ECE 201: Intro to Signal Analysis	159
<page-header></page-header>	Introduction to Sampling	
fs = 20 <u>True Frequency</u> -0.5 0.5 19.5 20.5 5 <u>Apparent Frequency</u> -0.5 0 0.5 -0.5 0 0.5 • Note, that instead of folding we observe negative frequencies. • occurs when true frequency equals 9.5 in above example.	000000 000000000000000000000000000000	
	f_s = 20True Frequency -0.5 0 0.5 19.5 20 20.5 Apparent Frequency -0.5 0 0.5 -0.5 0 0.5 Note, that instead of folding we observe negative frequencies. \bullet occurs when true frequency equals 9.5 in above example.	

©2009-2019, B.-P. Paris


```
Introduction to Sampling
      %% parameters
    fs = 10;
                 % sampling rate in frames per second
    dur = 10;
               % signal duration in seconds
    ff = 9.5; % frequency of rotating phasor
    phi = 0;
               % initial phase of phasor
    A = 1;
               % amplitude
    %% Prepare for plot
    TitleString = sprintf('Rotating_Phasor:_f_d_=_%5.2f', ff/fs);
    figure(1)
    % unit circle (plotted for reference)
    cc = exp(1j*2*pi*(0:0.01:1));
    ccx = A*real(cc);
    cci = A*imag(cc);
                                                                       MASON
©2009-2019. B.-P. Paris
                                       ECE 201: Intro to Signal Analysis
      Introduction to Sampling
    %% Animation
    for tt = 0:1/fs:dur
        tic; % establish time-reference
        plot(ccx, cci, ':', ...
            [0 A*cos(2*pi*ff*tt+phi)], [0 A*sin(2*pi*ff*tt+phi)], '-ob');
        axis('square')
        axis([-A A -A A]);
        title(TitleString)
        xlabel('Real')
        ylabel('Imag')
        grid on;
        drawnow % force plots to be redrawn
        te = toc;
        % pause until the next sampling instant, if possible
        if ( te < 1/fs)
            pause (1/fs-te)
        end
    end
                                                                       MASO
©2009-2019, B.-P. Paris
                                      ECE 201: Intro to Signal Analysis
```


$$\delta[n-k] = \begin{cases} 1 & \text{for } n=k \\ 0 & \text{else} \end{cases}$$

It follows that

©2009-2019, B.-P. Paris

$$x[n] \cdot \delta[n-k] = x[k] \cdot \delta[n-k] = \begin{cases} x[k] & \text{for } n=k \\ 0 & \text{else} \end{cases}$$

MASON

Decomposing a Signal with Impulses

	n		-1	0	1	2		
	<i>x</i> [<i>n</i>]		x[-1]	x[0]	x[1]	x[2]		
	$\delta[n]$		0	1	0	0		
	:	:	:	:	:	:	:	
	$x[-1] \cdot \delta[n+1]$		x[-1]	0	0	0		
	$x[0] \cdot \delta[n]$		0	x[0]	0	0		
	$x[1] \cdot \delta[n-1]$		0	0	x[1]	0		
	$x[2] \cdot \delta[n-2]$		0	0	0	x[2]		
	:	:	:	:	÷	÷	:	
\sum	$\sum_{k=-\infty}^{\infty} x[k] \cdot \delta[n-k]$		x[-1]	x[0]	x[1]	x[2]		
		1					·	M
2009-2019, B	2009-2019, BP. Paris ECE			1: Intro to S	ignal Analy	sis		
System	ns Special Signals Linear, Time	-invariant	Systems C		and Linear,	Time-invaria	ant Systen	ns Ir c

Decomposing a Signal with Impulses

From these considerations we conclude that

$$\sum_{k=-\infty}^{\infty} x[k] \cdot \delta[n-k] = x[n].$$

Notice that this implies

©2009-2019, B.-P. Paris

$$x[n] * \delta[n] = x[n].$$

MASON

- We now have a way to write a signal x[n] as a sum of scaled and delayed impulses.
- Next, we exploit this relationship to derive our main result.

ECE 201: Intro to Signal Analysis

©2009-2019, B.-P. Paris

EC

©2009-2019, B.-P. Paris

©2009-2019, B.-P. Paris

ECE 201: Intro to Signal Analysis

Introduction to Frequency Response	Frequency Response of LTI Systems o ooooooooo	A comprehensive Example o o●oo oooooooooooooo
Parsing the Dial-String	g	
<pre>%% lookup table to transi Digits = double('12345678 InverseDigits = zeros(1,1 for kk=1:12 InverseDigits(Digits end</pre>	<pre>late digits string into nu 39*0#'); length(Digits)); s(kk)) = kk;</pre>	umbers
RawNumbers = double(stri numbers = InverseDigits(ing); RawNumbers);	
<pre>% ensure numbers are inte numbers = round(numbers if (min(numbers) < 1 error('input_numbers end</pre>	egers between 1 and 12); % silently discard fra max (numbers) > 12) s_must_be_integers_between	actional part
		MASON UNIVERSITY
©2009-2019, BP. Paris Introduction to Frequency Response	ECE 201: Intro to Signal Ana Frequency Response of LTI Systems	Ilysis 251 A comprehensive Example
0000000000	0 000000000	° 00●0 ° °000000000
Generating the DTMF	Signal	
%% construct signal % convert durations to nu Ntone = round (fs*tonedu Npause = round (fs*pausec	umber of samples ir); dur);	
% figure out how long the Nnumbers = length (number Nsamples = Nnumbers*(Ntor	e output signal will be rs); ne + Npause);	
<pre>tones = zeros(1, Nsamples pause = zeros(1, Npause);</pre>	5); ;	
% associate numbers with	DTMF pairs, record normal	lized frequencies!
dtmfpairs = [697 697 697 770 770 1209 1336 1477 1209) 770 852 852 852 941 941 9 1336 1477 1209 1336 1477	941; 1209 1336 1477]/fs

$$\frac{\partial \operatorname{Pressure}}{\partial \operatorname{Pressure}} \xrightarrow{\partial \operatorname{Pressure}}{\partial \operatorname{Pressure}} Pressure Pressure$$

ECE 201: Intro to Signal Analysis

286

©2009-2019, B.-P. Paris

DTFT **Frequency Shift Property** Let $x[n] \stackrel{\text{DTFT}}{\longleftrightarrow} X(e^{j2\pi f_d})$ Find the DTFT of $y[n] = x[n] \cdot e^{j2\pi f_0 n}$: $Y(e^{j2\pi f_d}) = \sum_{n=-\infty}^{\infty} y[n] \cdot e^{-j2\pi f_d n} = \sum_{n=-\infty}^{\infty} x[n] \cdot e^{-j2\pi f_0 n} \cdot e^{-j2\pi f_d n}$ Combining the exponentials yields $Y(e^{j2\pi f_d}) = \sum_{n=-\infty}^{\infty} y[n] \cdot e^{-j2\pi (f_d - f_0)n} = X(e^{j2\pi (f_d - f_0)})$ Frequency shift property $x[n] \cdot e^{j2\pi f_0 n} \stackrel{\text{DTFT}}{\longleftrightarrow} X(e^{j2\pi (f_d - f_0)})$ MASON ©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis Example The impulse response of an ideal bandpass filter with bandwidth B and center frequency f_c is obtained by \blacktriangleright frequency shifting by f_c ▶ an ideal lowpass with cutoff frequency B/2 Using the transform for the ideal lowpass $2f_b \cdot \operatorname{sinc}(2\pi f_b n) \stackrel{\text{DTFT}}{\longleftrightarrow} \begin{cases} 1 & \text{for } |f_d| \le f_b \\ 0 & \text{for } f_b < |f_d| \le \frac{1}{2} \end{cases}$ the inverse DTFT of the ideal band pass is given by $x[n] = B \cdot \operatorname{sinc}(2\pi \frac{B}{2}n) \cdot e^{j2\pi f_c n}$ This technique is very useful to convert lowpass filters into MASON bandpass or highpass filters. ©2009-2019. B.-P. Paris ECE 201: Intro to Signal Analysis

Convolution Property

- The convolution property follows from linearity and the time delay property.
- Recall that the convolution of signals x[n] and h[n] is defined as

$$y[n] = x[n] * h[n] = \sum_{k=-\infty}^{\infty} h[k] \cdot x[n-k].$$

 With the time-delay property and linearity, the right hand side transforms to

$$Y(e^{j2\pi f_d}) = \sum_{k=-\infty}^{\infty} h[k] \cdot e^{-j2\pi f_d k} X(e^{j2\pi f_d}).$$

► Since
$$\sum_{k=-\infty}^{\infty} h[k] \cdot e^{-j2\pi f_d k} = H(e^{j2\pi f_d}),$$

 $x[n] * h[n] \stackrel{\text{DTFT}}{\longleftrightarrow} X(e^{j2\pi f_d}) \cdot H(e^{j2\pi f_d})$

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis
DTFT z-Transform

Example

©2009-2019, B.-P. Paris

Convolution of two right sided exponentials (|*a*|, |*b*| < 1 and *a* ≠ *b*)

$$y[n] = (a^n \cdot u[n]) * (b^n \cdot u[n])$$

has DTFT

$$Y(e^{j2\pi f_d}) = \frac{1}{1 - ae^{-j2\pi f_d}} \cdot \frac{1}{1 - be^{-j2\pi f_d}}$$

► Question: What is the inverse transform of Y(e^{j2πf_d})? I.e., is there a closed form expression for y[n]?

©2009-2019, B.-P. Paris

©2009-2019, B.-P. Paris

