

Cousse overew	
Lecture: Introduction	
	Masois
Course Oeveev	
Learning Objectives - Intro to Electrical Engineering via Digital Signal Processing. - Develop initial understanding of Signals and Systems. - Learn MATLAB - Note: Math is not very hard - just algebra.	
	Masom

Spectrum Analysis

- Analyze a given signal to find which frequencies it contains.
- Fourier Transform and fast Fourier Transform
- Spectrogram

Course Overview
Course Overview
000000000
000000000

Relationship to other ECE Courses

- Next steps after ECE 201:
- ECE 220: Signals and Systems
- ECE 280: Circuits
- Core courses in controls and communications:
- ECE 421: Controls
- ECE 460: Communications
- Electives:
- ECE 410: DSP
- ECE 450: Robotics
- ECE 463: Digital Comms
- ECE 464: Filter Design

The Significance of Sinusoidal Signals

- Fundamental building blocks for describing arbitrary signals.
- General signals can be expresssed as sums of sinusoids
(Fourier Theory)
- Provides bridge to frequency domain.
- Sinusoids are special signals for linear filters (eigenfunctions).
- Sinusoids occur naturally in many situations.
- They are solutions of differential equations of the form

$$
\frac{d^{2} x(t)}{d t^{2}}+a x(t)=0 .
$$

- Much more on these points as we proceed.
©2009-2019, B.-P. Paris
ECE 201: Intro to Signal Analysis

Sinusoidal Signals	Sums of Sinusoids	Complex Exponential Signals
0	00000000000	0000
000		00000
000000		
0000		

Background: The cosine function

- The properties of sinusoidal signals stem from the properties of the cosine function:
- Periodicity: $\cos (x+2 \pi)=\cos (x)$
- Eveness: $\cos (-x)=\cos (x)$
- Ones of cosine: $\cos (2 \pi k)=1$, for all integers k.
- Minus ones of $\operatorname{cosine:~} \cos (\pi(2 k+1))=-1$, for all integers k.
- Zeros of cosine: $\cos \left(\frac{\pi}{2}(2 k+1)\right)=0$, for all integers k.
- Relationship to sine function: $\sin (x)=\cos (x-\pi / 2)$ and
$\cos (x)=\sin (x+\pi / 2)$

Sinusoidal Signals $\because 0 \circ$ $\circ \circ 00$ \circ	Sums of Sinusoids 00000000000	Complex Exponential Signals ஃooㅇ

Solution to Exercise

- Express

$$
x(t)=3 \cdot \cos (2 \pi f t)+4 \cdot \cos (2 \pi f t+\pi / 2)
$$

in the form $A \cdot \cos (2 \pi f t+\phi)$.

- Solution: Use trig identity
$\cos (x+y)=\cos (x) \cos (y)-\sin (x) \sin (y)$ on second term.
- This leads to

$$
\begin{aligned}
x(t)= & 3 \cdot \cos (2 \pi f t)+ \\
& 4 \cdot \cos (2 \pi f t) \cos (\pi / 2)-4 \cdot \sin (2 \pi f t) \sin (\pi / 2) \\
= & 3 \cdot \cos (2 \pi f t)-4 \cdot \sin (2 \pi f t) .
\end{aligned}
$$

- Compare to what we want:

$$
\begin{aligned}
x(t) & =A \cdot \cos (2 \pi f t+\phi) \\
& =A \cdot \cos (\phi) \cos (2 \pi f t)-A \cdot \sin (\phi) \sin (2 \pi f t)
\end{aligned}
$$

©2009-2019, B.-P. Paris
ECE 201: Intro to Signal Analysis

Sinusoidal Signals 000 000000 00000 0000	Sums of Sinusoids 00000000000	Complex Exponential Signals 0000 ○0000 0000000000000000

Solution cont'd

- We can conclude that A and ϕ must satisfy

$$
A \cdot \cos (\phi)=3 \text { and } A \cdot \sin (\phi)=4
$$

- We can find A from

$$
\begin{array}{ccc}
A^{2} \cdot \cos ^{2}(\phi) & +A^{2} \cdot \sin ^{2}(\phi) & =A^{2} \\
9 & +16 & =25
\end{array}
$$

- Thus, $A=5$.
- Also,

$$
\frac{\sin (\phi)}{\cos (\phi)}=\tan (\phi)=\frac{4}{3} .
$$

- Hence, $\phi \approx 53^{\circ}\left(\frac{53}{180} \pi\right)$.
- And, $x(t)=5 \cos \left(2 \pi f t+53^{\circ}\right)$.

		Complex Exponential Sig
Problem Statement - It is often required to add two or more sinusoidal signals. - When all sinusoids have the same frequency then the problem simplifies. - This problem comes up very often, e.g., in AC circuit analysis (ECE 280) and later in the class (chapter 5). Starting point: sum of sinusoids $x(t)=A_{1} \cos \left(2 \pi f t+\phi_{1}\right)+\ldots+A_{N} \cos \left(2 \pi f t+\phi_{N}\right)$ - Note that all frequencies f are the same (no subscript). - Amplitudes A_{i} phases ϕ_{i} are different in general. - Short-hand notation using summation symbol (Σ): $x(t)=\sum_{i=1}^{N} A_{i} \cos \left(2 \pi f t+\phi_{i}\right)$		
009-2019, B. B.P. Pais		
		Complex Exponential
The Phasor Addition Rule - The phasor addition rule implies that there exist an amplitude A and a phase ϕ such that $x(t)=\sum_{i=1}^{N} A_{i} \cos \left(2 \pi f t+\phi_{i}\right)=A \cos (2 \pi f t+\phi)$ Interpretation: The sum of sinusoids of the same frequency but different amplitudes and phases is a single sinusoid of the same frequency. - The phasor addition rule specifies how the amplitude A and the phase ϕ depends on the original amplitudes A_{i} and ϕ_{i}. Example: We showed earlier (by means of an unpleasant computation involving trig identities) that: $x(t)=3 \cdot \cos (2 \pi f t)+4 \cdot \cos (2 \pi f t+\pi / 2)=5 \cos \left(2 \pi f t+53^{\circ}\right)$		

Prerequisites

- We will need two simple prerequisites before we can derive the phasor addition rule.

1. Any sinusoid can be written in terms of complex exponentials as follows

$$
A \cos (2 \pi f t+\phi)=\operatorname{Re}\left\{A e^{j(2 \pi t t+\phi)}\right\}=\operatorname{Re}\left\{A e^{j \phi} e^{j 2 \pi t t}\right\} .
$$

Recall that $A e^{i \phi}$ is called a phasor (complex amplitude).
2. For any complex numbers $X_{1}, X_{2}, \ldots, X_{N}$, the real part of the sum equals the sum of the real parts.

$$
\operatorname{Re}\left\{\sum_{i=1}^{N} x_{i}\right\}=\sum_{i=1}^{N} \operatorname{Re}\left\{X_{i}\right\} .
$$

- This should be obvious from the way addition is defined for complex numbers.

$$
\left(x_{1}+j y_{1}\right)+\left(x_{2}+j y_{2}\right)=\left(x_{1}+x_{2}\right)+j\left(y_{1}+y_{2}\right) . \quad \text { MNAVESITV }
$$

Deriving the Phasor Addition Rule

Objective: We seek to establish that

$$
\sum_{i=1}^{N} A_{i} \cos \left(2 \pi f t+\phi_{i}\right)=A \cos (2 \pi f t+\phi)
$$

and determine how A and ϕ are computed from the A_{i} and ϕi.

Deriving the Phasor Addition Rule

- Step 4: Using $A e^{j \phi}=\sum_{i=1}^{N} A_{i} e^{j \phi_{i}}$ in our expression for the sum of sinusoids yields:

$$
\begin{aligned}
\operatorname{Re}\left\{\left(\sum_{i=1}^{N} A_{i} e^{j \phi_{i}}\right) e^{j 2 \pi t t}\right\} & =\operatorname{Re}\left\{A e^{j \phi} e^{j 2 \pi f t}\right\} \\
& =\operatorname{Re}\left\{A e^{j(2 \pi t t+\phi)}\right\} \\
& =A \cos (2 \pi f t+\phi) .
\end{aligned}
$$

- Note: the above result shows that the sum of sinusoids of the same frequency is a sinusoid of the same frequency.

©2009-2019, B.-P. Paris

ECE 201: Intro to Signal Analysis
Sinusoidal Signals
0
000
000000
0000
$\circ 000$
$\circ 00000$
0000
00000000000000000

Applying the Phasor Addition Rule

- Applicable only when sinusoids of same frequency need to be added!
- Problem: Simplify

$$
x(t)=A_{1} \cos \left(2 \pi f t+\phi_{1}\right)+\ldots A_{N} \cos \left(2 \pi f t+\phi_{N}\right)
$$

Solution: proceeds in 4 steps

1. Extract phasors: $X_{i}=A_{i} e^{i_{i}}$ for $i=1, \ldots, N$.
2. Convert phasors to rectangular form: $X_{i}=A_{i} \cos \phi_{i}+j A_{i} \sin \phi_{i}$ for $i=1, \ldots, N$.
3. Compute the sum: $X=\sum_{i=1}^{N} X_{i}$ by adding real parts and imaginary parts, respectively.
4. Convert result X to polar form: $X=A e^{i \phi}$.

- Conclusion: With amplitude A and phase ϕ determined in the final step

$$
x(t)=A \cos (2 \pi f t+\phi) .
$$

Example

Problem: Simplify

$$
x(t)=3 \cdot \cos (2 \pi f t)+4 \cdot \cos (2 \pi f t+\pi / 2)
$$

Solution:

1. Extract Phasors: $X_{1}=3 e^{j 0}=3$ and $X_{2}=4 e^{j \pi / 2}$.
2. Convert to rectangular form: $X_{1}=3 X_{2}=4 j$.
3. Sum: $X=X_{1}+X_{2}=3+4 j$
4. Convert to polar form: $A=\sqrt{3^{2}+4^{2}}=5$ and $\phi=\arctan \left(\frac{4}{3}\right) \approx 53^{\circ}\left(\frac{53}{180} \pi\right)$.

- Result:

$$
x(t)=5 \cos \left(2 \pi f t+53^{\circ}\right) .
$$

Sinusoidal Signals	Sums of Sinusoids	Complex Exponential Signals
0000	00000000000	0000
00000		
00000		0000000000000000

The Circuits Example

- For $v(t)=1 \mathrm{~V} \cdot \cos (2 \pi 1 \mathrm{kHz} \cdot t)$, find the current $i(t)$.

Sum of Sinusoidal Signals \because 0000	Time and Frequency-Domain 000 000 000 000000 0000000000	Periodic Signals \bigcirc 00000000 0000 0000	Time-Frequency Spectrum \bigcirc 00000 00000	Operations on Spectrum ○00000

Sum of 25 Sinusoids

Sum of Sinusoidal Signals ○o \circ \rightarrow 0000	Time and Frequency-Domain 000 000 000000 0000000000	```Periodic Signals - 00000000 0000```	Time-Frequency Spectrum \circ 1 000000	Operations on Spectrum $\bigcirc 00000$

Non-sinusoidal Signals as Sums of Sinusoids

- If we allow infinitely many sinusoids in the sum, then the result is a square wave signal.
- The example demonstrates that general, non-sinusoidal signals can be represented as a sum of sinusoids.
- The sinusods in the summation depend on the general signal to be represented.
- For the square wave signal we need sinusoids
- of frequencies $(2 n-1) \cdot f$, and
- amplitudes $\frac{4}{(2 n-1) \pi}$.
- (This is not obvious \rightarrow Fourier Series).

Sum of Sinusoidal Signals ○o 0000	Time and Frequency-Domain 000 000 000 $\bigcirc 00000$ 0000000000	Periodic Signals \bigcirc 00000000 0000 0000	Time-Frequency Spectrum \bigcirc 00000 00000	Operations on Spectrum ○00000

Non-sinusoidal Signals as Sums of Sinusoids

- The ability to express general signals in terms of sinusoids forms the basis for the frequency domain or spectrum representation.
- Basic idea: list the "ingredients" of a signal by specifying
- amplitudes and phases, as well as
- frequencies of the sinusoids in the sum

©2009-2019, B.-P. Paris

Sum of Sinusoidal Signals oo \circ \circ $\bullet 000$	Time and Frequency-Domain 000 000 000000 0000000000	```Periodic Signals \(\circ\) 00000000 0000```	Time-Frequency Spectrum \circ 00000 000000	Operations on Spectrum OOOOOO

The Spectrum of a Sum of Sinusoids

- Begin with the sum of sinusoids introduced earlier

$$
x(t)=A_{0}+\sum_{i=1}^{N} A_{i} \cos \left(2 \pi f_{i} t+\phi_{i}\right) .
$$

where we have broken out a possible constant term.

- The term A_{0} can be thought of as corresponding to a sinusoid of frequency zero.
- Using the inverse Euler formula, we can replace the sinusoids by complex exponentials

$$
x(t)=X_{0}+\sum_{i=1}^{N}\left\{\frac{X_{i}}{2} \exp \left(j 2 \pi f_{i} t\right)+\frac{X_{i}^{*}}{2} \exp \left(-j 2 \pi f_{i} t\right)\right\}
$$

where $X_{0}=A_{0}$ and $X_{i}=A_{i} e^{j \phi_{i}}$.

Example

- Consider the signal

$$
x(t)=3+5 \cos (20 \pi t-\pi / 2)+7 \cos (50 \pi t+\pi / 4)
$$

- Using the inverse Euler relationship

$$
\begin{aligned}
x(t)=3 & +\frac{5}{2} e^{-j \pi / 2} \exp (j 2 \pi 10 t) \\
& +\frac{5}{2} e^{\frac{5}{2}} e^{j \pi / 2} \exp (j 2 \pi 25 t) \\
& +\frac{7}{2} e^{-j \pi / 4} \exp (-j 2 \pi 10 t) \\
& -j 2 \pi 25 t) .
\end{aligned}
$$

- Hence,

$$
\begin{aligned}
X(f)=\{(3,0), & \left(\frac{5}{2} e^{-j \pi / 2}, 10\right),\left(\frac{5}{2} e^{j \pi / 2},-10\right), \\
& \left.\left(\frac{7}{2} e^{j \pi / 4}, 25\right),\left(\frac{7}{2} e^{-j \pi / 4},-25\right)\right\}
\end{aligned}
$$

Why Bother with the Frequency-Domain? In many applications, the frequency contents of a signal is very important. For example, in radio communications signals must be limited to occupy only a set of frequencies allocated by the FCC. Hence, understanding and analyzing the spectrum of a signal is crucial from a regulatory perspective. Often, features of a signal are much easier to understand in the frequency domain. (Example on next slides). We will see later in this class, that the frequency-domain interpretation of signals is very useful in connection with linear, time-invariant systems. Example: A low-pass filter retains low frequency components of the spectrum and removes high-frequency components.				
©2009-2019, B.-P.			Intro to Signal Analys	
Example: Original signal				
©2009-2019, B.-P. Paris		ECE 20	ntro to Signal Analysis	

Sum of Sinusoidal Signals ○o \circ \circ 0000	Time and Frequency-Domain 000 000 000000 0000000000	Periodic Signals 0 0 00000000 0000	Time-Frequency Spectrum \circ 00000 000000	Operations on Spectrum OOOOOO

Example

- Problem: Find the signal $x(t)$ corresponding to

$$
\begin{aligned}
X(f)=\{(3,0), & \left(\frac{5}{2} e^{-j \pi / 2}, 10\right),\left(\frac{5}{2} e^{j \pi / 2},-10\right), \\
& \left.\left(\frac{7}{2} e^{j \pi / 4}, 25\right),\left(\frac{7}{2} e^{-j \pi / 4},-25\right)\right\}
\end{aligned}
$$

- Solution:

$$
\begin{aligned}
x(t)=3 & +\frac{5}{2} e^{-j \pi / 2} e^{j 2 \pi 10 t}+\frac{5}{2} e^{j \pi / 2} e^{-j 2 \pi 10 t} \\
& +\frac{7}{2} e^{j \pi / 4} e^{2 \pi 25 t}+\frac{7}{2} e^{-j \pi / 4} e^{-j 2 \pi 25 t}
\end{aligned}
$$

- Which simplifies to:

$$
x(t)=3+5 \cos (20 \pi t-\pi / 2)+7 \cos (50 \pi t+\pi / 4) .
$$

Exercise

- Find the signal with the spectrum:

$$
\begin{aligned}
X(f)=\{(5,0), & \left(2 e^{-j \pi / 4}, 10\right),\left(2 e^{j \pi / 4},-10\right), \\
& \left(\frac{5}{2} e^{j \pi / 4}, 15\right),\left(\frac{5}{2} e^{-j \pi / 4},-15\right)
\end{aligned}
$$

Sum of Sinusoidal Signals ○○ \circ \circ 0000	Time and Frequency-Domain ○00 000 000000 0000000000	Periodic Signals \bigcirc 00000000 0000	Time-Frequency Spectrum \bigcirc 00000 00000	Operations on Spectrum ○○0000

Plot of Amplitude Modulated Signal For $A=2, f m=50$, and $f c=400$, the AM signal is plotted below.

Sum of Sinusoidal Signals ○o \circ \circ 0000	Time and Frequency-Domain 000 000 000000 0000000000	$\begin{aligned} & \text { Periodic Signals } \\ & 0 \\ & 00000000 \\ & 0000 \end{aligned}$	Time-Frequency Spectrum \circ 00000 00000 oooo	Operations on Spectrum 000000

Spectrum of Amplitude Modulated Signal

- The AM signal is given by
$x(t)=A \cdot \cos \left(2 \pi f_{c} t\right)+\frac{1}{2} \cos \left(2 \pi\left(f_{c}+f_{m}\right) t\right)+\frac{1}{2} \cos \left(2 \pi\left(f_{c}-f_{m}\right) t\right)$.
- Thus, its spectrum is

$$
\begin{aligned}
X(f)=\{ & \left(\frac{A}{2}, f_{c}\right),\left(\frac{A}{2},-f_{c}\right), \\
& \left.\left(\frac{1}{4}, f_{c}+f_{m}\right),\left(\frac{1}{4},-f_{c}-f_{m}\right),\left(\frac{1}{4}, f_{c}-f_{m}\right),\left(\frac{1}{4},-f_{c}+f_{m}\right)\right\}
\end{aligned}
$$

Sum of Sinusoidal Signals ○○ \therefore -0 0000	Time and Frequency-Domain 000 000 000000 0000000000	Periodic Signals 90000000 0000	Time-Frequency Spectrum \therefore 0000 000000	Operations on Spectrum $\bigcirc 00000$

Harmonic Frequencies

- Consider a sum of sinusoids:

$$
x(t)=A_{0}+\sum_{i=1}^{N} A_{i} \cos \left(2 \pi f_{i} t+\phi_{i}\right) .
$$

- A special case arises when we constrain all frequencies f_{i} to be integer multiples of some frequency f_{0} :

$$
f_{i}=i \cdot f_{0} .
$$

- The frequencies f_{i} are then called harmonic frequencies of f_{0}.
- We will show that sums of sinusoids with frequencies that are harmonics are periodic.

Sum of Sinusoidal Signals \circ $\therefore 0$ $\circ 0$ 0000	Time and Frequency-Domain 000 000 000 000000 0000000000		```Time-Frequency Spectrum O 000000```	Operations on Spectrum ○○0000

Harmonic Signals are Periodic

- To establish periodicity, we must show that there is T_{0} such $x(t)=x\left(t+T_{0}\right)$.
- Begin with

$$
\begin{aligned}
x\left(t+T_{0}\right) & =A_{0}+\sum_{i=1}^{N} A_{i} \cos \left(2 \pi f_{i}\left(t+T_{0}\right)+\phi_{i}\right) \\
& =A_{0}+\sum_{i=1}^{N} A_{i} \cos \left(2 \pi f_{i} t+2 \pi f_{i} T_{0}+\phi_{i}\right)
\end{aligned}
$$

- Now, let $f_{0}=1 / T_{0}$ and use the fact that frequencies are harmonics: $f_{i}=i \cdot f_{0}$.

Sum of Sinusoidal Signals $\circ \circ$ \circ \therefore 0000	Time and Frequency-Domain	Periodic Signals 0 0 00000000 0000	Time-Frequency Spectrum \bigcirc 0000 00000 \qquad	Operations on Spectrum ○○0000

Instantaneous Frequency

- For a regular sinusoid, $\Psi(t)=2 \pi f_{0} t+\phi$ and the frequency equals f_{0}.
- This suggests as a possible relationship between $\Psi(t)$ and f_{0}

$$
f_{0}=\frac{1}{2 \pi} \frac{d}{d t} \Psi(t)
$$

- If the above derivative is not a constant, it is called the instantaneous frequency of the signal, $f_{i}(t)$.
- Example: For $\Psi(t)=700 \pi t^{2}+440 \pi t+\phi$ we find
$f_{i}(t)=\frac{1}{2 \pi} \frac{d}{d t}\left(700 \pi t^{2}+440 \pi t+\phi\right)=700 t+220$.
- This describes precisely the red line in the spectrogram on the previous slide.

Sum of Sinusoidal Signals $\circ \circ$ \therefore 0 0000	Time and Frequency-Domain ○○ $\circ \circ$ 000000 0000000000	Periodic Signals 0 00000000 0000 0000	Time-Frequency Spectrum \circ 0000 000000	Operations on Spectrum \bigcirc

Constructing a Linear Chirp

- Objective: Construct a signal such that its frequency is initially f_{1} and increases linear to f_{2} after T seconds.
- Solution: The above suggests that

$$
f_{i}(t)=\frac{f_{2}-f_{1}}{T} t+f_{1} .
$$

- Consequently, the phase function $\Psi(t)$ must be

$$
\Psi(t)=2 \pi \frac{f_{2}-f_{1}}{2 T} t^{2}+2 \pi f_{1} t+\phi
$$

- Note that ϕ has no influence on the spectrum; it is usually set to 0 .

Exercise: Spectrum of AM Signal

- We discussed that amplitude modulation processess a message signal to produce the transmitted signal $s(t)$:

$$
\boldsymbol{s}(t)=(\boldsymbol{A}+m(t)) \cdot \cos \left(2 \pi f_{c} t\right) .
$$

- Assume that the spectrum of $m(t)$ is $M(f)$.
- Question: Use the Spectrum Operations we discussed to express the spectrum $S(f)$ in terms of $M(f)$.
- Answer:

$$
S(f)=\frac{1}{2} M\left(f+f_{c}\right)+\frac{1}{2} M\left(f-f_{c}\right)+\left\{\left(\frac{A}{2}, f_{c}\right)+\left\{\left(\frac{A}{2},-f_{c}\right)\right\}\right.
$$

Part IV

Sampling of Signals

Introduction to Sampling
\circ

Sampling and Discrete-Time Signals

- Sampling results in a sequence of samples

$$
x\left(n T_{s}\right)=A \cdot \cos \left(2 \pi f n T_{s}+\phi\right)
$$

- Note that the independent variable is now n, not t.
- To emphasize that this is a discrete-time signal, we write

$$
x[n]=A \cdot \cos \left(2 \pi f n T_{s}+\phi\right)
$$

- Sampling is a straightforward operation.
- We will see that the sampling rate f_{s} must be chosen with care!

Sampled Signals in MATLAB

- Note that we have worked with sampled signals whenever we have used MATLAB.
- For example, we use the following MATLAB fragment to generate a sinusoidal signal:
fs = 100;
tt $=0: 1 / f s: 3$;
$\mathrm{xx}=5 * \boldsymbol{\operatorname { c o s }}(2 * \mathbf{p} \mathbf{i} * 2 * t \mathrm{t}+\mathrm{pi} / 4)$;
- The resulting signal xx is a discrete-time signal:
- The vector xx contains the samples, and
- the vector $t t$ specifies the sampling instances: $0,1 / f_{s}, 2 / f_{s}, \ldots, 3$.
- We will now turn our attention to the impact of the sampling rate f_{s}.

```
Introduction to Sampling
    O.00000
    00000
```


Example: Three Sinuoids

```
- Objective: In MATLAB, compute sampled versions of three sinusoids:
1. \(x(t)=\cos (2 \pi t+\pi / 4)\)
2. \(x(t)=\cos (2 \pi 9 t-\pi / 4)\)
3. \(x(t)=\cos (2 \pi 11 t+\pi / 4)\)
- The sampling rate for all three signals is \(f_{s}=10\).
```

Introduction to Sampling

```
Introduction to Sampling
    O0000
    O0000
    000000000000000000
```

 000000000000000000
    ```

\section*{MATLAB code}
```

% plot_SamplingDemo - Sample three sinusoidal signals to

```
% plot_SamplingDemo - Sample three sinusoidal signals to
% demonstrate the impact of sampling
% demonstrate the impact of sampling
% set parameters
% set parameters
fs = 10;
fs = 10;
dur = 10;
dur = 10;
%% generate signals
%% generate signals
tt = 0:1/fs:dur
tt = 0:1/fs:dur
xx1 = cos(2*pi*tt+pi/4);
xx1 = cos(2*pi*tt+pi/4);
xx2 = cos(2*pi*9*tt-pi/4);
xx2 = cos(2*pi*9*tt-pi/4);
xx3 = cos(2*pi*11*tt+pi/4);
xx3 = cos(2*pi*11*tt+pi/4);
%% plot
%% plot
plot(tt,xx1,':o',tt,xx2,': x',tt, xx3,' :+');
plot(tt,xx1,':o',tt,xx2,': x',tt, xx3,' :+');
xlabel('Time_(s)')
xlabel('Time_(s)')
grid
grid
legend('f=1','f=9','f=11',' Location','EastOutside')
legend('f=1','f=9','f=11',' Location','EastOutside')



\section*{The Influence of the Sampling Rate}
- Now the three sinusoids are clearly distinguishable and lead to different samples.
- Since the only parameter we changed is the sampling rate \(f_{s}\), it must be responsible for the ambiguity in the first plot.
- Notice also that every 10-th sample (marked with a black circle) is identical for all three sinusoids.
- Since the sampling rate was 10 times higher for the second plot, this explains the first plot.
- It is useful to investigate the effect of sampling mathematically, to understand better what impact it has.
- To do so, we focus on sampling sinusoidal signals.

Introduction to Sampling
0000000000000000000

\section*{Sampling a Sinusoidal Signal}
- A continuous-time sinusoid is given by
\[
x(t)=A \cos (2 \pi f t+\phi) .
\]
- When this signal is sampled at rate \(f_{s}\), we obtain the discrete-time signal
\[
x[n]=A \cos \left(2 \pi f n / f_{s}+\phi\right)
\]
- It is useful to define the normalized frequency \(\hat{f}_{d}=\frac{f}{f_{s}}\), so that
\[
x[n]=A \cos \left(2 \pi \hat{f}_{d} n+\phi\right) .
\]
```

Introduction to Sampling
○○
\circ
$\circ 000$
○○○
$0 \cdot 0000000000000000$

```

\section*{Three Cases}
- We will distinguish between three cases:
1. \(0 \leq \hat{f}_{d} \leq 1 / 2\) (Oversampling, this is what we want!)
2. \(1 / 2<\bar{f}_{d} \leq 1\) (Undersampling, folding)
3. \(1<\hat{f}_{d} \leq 3 / 2\) (Undersampling, aliasing)
- This captures the three situations addressed by the first example:
1. \(f=1, f_{s}=10 \Rightarrow \hat{f}_{d}=1 / 10\)
2. \(f=9, f_{s}=10 \Rightarrow \hat{f}_{d}=9 / 10\)
3. \(f=11, f_{s}=10 \Rightarrow \hat{f}_{d}=11 / 10\)
- We will see that all three cases lead to identical samples.

Introduction to Sampling
○○
\(\circ\)
000000
000000000000000000

\section*{Oversampling}
- When the sampling rate is such that \(0 \leq \hat{f}_{d} \leq 1 / 2\), then the samples of the sinusoidal signal are given by
\[
x[n]=A \cos \left(2 \pi \hat{f}_{d} n+\phi\right) .
\]
- This cannot be simplified further.
- It provides our base-line.
- Oversampling is the desired behaviour!

\section*{Undersampling, Aliasing}
- When the sampling rate is such that \(1<\hat{f}_{d} \leq 3 / 2\), then we define the apparent frequency \(\hat{f}_{a}=\hat{f}_{d}-1\).
- Notice that \(0<\hat{f}_{a} \leq 1 / 2\) and \(\hat{f}_{d}=\hat{f}_{a}+1\).
- For \(f=11, f_{s}=10 \Rightarrow \hat{f}_{d}=11 / 10 \Rightarrow \hat{f}_{a}=1 / 10\).
- The samples of the sinusoidal signal are given by
\[
x[n]=A \cos \left(2 \pi \hat{f}_{d} n+\phi\right)=A \cos \left(2 \pi\left(1+\hat{f}_{a}\right) n+\phi\right) .
\]
- Expanding the terms inside the cosine,
\[
x[n]=A \cos \left(2 \pi \hat{f}_{a} n+2 \pi n+\phi\right)=A \cos \left(2 \pi \hat{f}_{a} n+\phi\right)
\]
- Interpretation: The samples are identical to those from a sinusoid with frequency \(f=\hat{f}_{a} \cdot f_{s}\) and phase \(\phi\).
\(\circ\)
000000
000000000000000000

\section*{Undersampling, Folding}
- When the sampling rate is such that \(1 / 2<\hat{f}_{d} \leq 1\), then we introduce the apparent frequency \(\hat{f}_{a}=1-\hat{f}_{d}\); again \(0<\hat{f}_{a} \leq 1 / 2\); also \(\hat{f}_{d}=1-\hat{f}_{a}\).
- For \(f=9, f_{s}=10 \Rightarrow \hat{f}_{d}=9 / 10 \Rightarrow \hat{f}_{a}=1 / 10\).
- The samples of the sinusoidal signal are given by
\[
x[n]=A \cos \left(2 \pi \hat{f}_{d} n+\phi\right)=A \cos \left(2 \pi\left(1-\hat{f}_{a}\right) n+\phi\right) .
\]
- Expanding the terms inside the cosine,
\[
x[n]=A \cos \left(-2 \pi \hat{f}_{a} n+2 \pi n+\phi\right)=A \cos \left(-2 \pi \hat{f}_{a} n+\phi\right)
\]
- Because of the symmetry of the cosine, this equals
\[
x[n]=A \cos \left(2 \pi \hat{f}_{a} n-\phi\right) .
\]
- Interpretation: The samples are identical to those from a sinusoid with frequency \(f=\hat{f}_{a} \cdot f_{s}\) and phase \(-\phi\) (phase

\section*{Sampling Higher-Frequency Sinusoids}
- For sinusoids of even higher frequencies \(f\), either folding or aliasing occurs.
- As before, let \(\hat{f}_{d}\) be the normalized frequency \(f / f_{s}\).
- Decompose \(\hat{f}_{d}\) into an integer part \(N\) and fractional part \(f_{p}\).
- Example: If \(\hat{f}_{d}\) is 5.7 then \(N\) equals 5 and \(f_{p}\) is 0.7 .
- Notice that \(0 \leq f_{p}<1\), always.
- Phase Reversal occurs when the phase of the sampled sinusoid is the negative of the phase of the continuous-time sinusoid.
- We distinguish between
- Folding occurs when \(f_{p}>1 / 2\). Then the apparent frequency \(\hat{f}_{a}\) equals \(1-f_{p}\) and phase reversal occurs.
- Aliasing occurs when \(f_{p} \leq 1 / 2\). Then the apparent frequency is \(\hat{f}_{a}=f_{p}\); no phase reversal occurs.

Introduction to Sampling
0 .
000000
00000000000000000000

\section*{Examples}
- For the three sinusoids considered earlier:
1. \(f=1, \phi=\pi / 4, f_{s}=10 \Rightarrow \hat{f}_{d}=1 / 10\)
2. \(f=9, \phi=-\pi / 4, f_{s}=10 \Rightarrow \hat{f}_{d}=9 / 10\)
3. \(f=11, \phi=\pi / 4, f_{s}=10 \Rightarrow \hat{f}_{d}=11 / 10\)
- The first case, represents oversampling: The apparent frequency \(\hat{f}_{a}=\hat{f}_{d}\) and no phase reversal occurs.
- The second case, represents folding: The apparent \(\hat{f}_{a}\) equals \(1-\hat{f}_{d}\) and phase reversal occurs.
- In the final example, the fractional part of \(\hat{f}_{d}=1 / 10\). Hence, this case represents alising; no phase reversal occurs.
```

Introduction to Sampling
○○○○○
0000000000000000000

```

\section*{Exercise}

The discrete-time sinusoidal signal
\[
x[n]=5 \cos \left(2 \pi 0.2 n-\frac{\pi}{4}\right)
\]
was obtained by sampling a continuous-time sinusoid of the form
\[
x(t)=A \cos (2 \pi f t+\phi)
\]
at the sampling rate \(f_{s}=8000 \mathrm{~Hz}\).
1. Provide three different sets of paramters \(A, f\), and \(\phi\) for the continuous-time sinusoid that all yield the discrete-time sinusoid above when sampled at the indicated rate. The parameter \(f\) must satisfy \(0<f<12000 \mathrm{~Hz}\) in all three cases.
2. For each case indicate if the signal is undersampled or oversampled and if aliasing or folding occurred.

\section*{©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis}

Introduction to Sampling
\(\circ\)
\(\circ 00000\)
0000000000000000000

\section*{Experiments}
- Two experiments to illustrate the effects that sampling introduces:
1. Sampling a chirp signal.
2. Sampling a rotating phasor.

```

 Introduction to Sampling
 \circ००oo0000000\bullet000000
 ᄋ%
 fs = 8192; % 44.1KHz for oversampling, 8192 for undersampling
 % chitp: 0 to 20KHz in 10 seconds
 fstart = 0;
 fend = 20e3
 dur = 10;
 %% generate signal
 tt = 0:1/fs:dur.
 psi = 2*pi*(fend-fstart)/(2*dur)*tt.^2; % phase function
 xx = cos(psi);
 %% spectrogram
spectrogram(xx, 256, 128, 256, fs,'yaxis');
%% play sound
soundsc(xx, fs);

| ©2009-2019, B.-P. Paris | ECE 201: Intro to Signal Analysis |
| :---: | :---: |
| Introduction to Sampling | |
| 00 | |
| 00 | |
| 000000 | |
| 000000000000000000 | |
| 00000 | |

Apparent and Normalized Frequency

```

```

Introduction to Sampling

```
000000000000000000

\section*{Experiment: Sampling a Rotating Phasor}
- Objective: Investigate sampling effects when we can distinguish between positive and negative frequencies.
- Experiment Set-up:
- Animation: rotating phasor in the complex plane.
- Sampling rate describes the number of "snap-shots" per second (strobes).
- Frequency the number of times the phasor rotates per second.
- positive frequency: counter-clockwise rotation.
- negative frequency: clockwise rotation.
- Expected Outcome?
- Expected Outcome:
- Folding: leads to reversal of direction.
- Aliasing: same direction but apparent frequency is lower than true frequency.
```

Introduction to Sampling

```
introd
\(\circ\)
\(\circ\)
\(\circ\)
000000
0000000000000000000

\section*{True and Apparent Frequency}
\begin{tabular}{|l||c|c|c|c|c|c|}
\multicolumn{7}{c|}{\(f_{s}=20\)} \\
\hline True Frequency & -0.5 & 0 & 0.5 & 19.5 & 20 & 20.5 \\
\hline Apparent Frequency & -0.5 & 0 & 0.5 & -0.5 & 0 & 0.5 \\
\hline
\end{tabular}
- Note, that instead of folding we observe negative frequencies.
- occurs when true frequency equals 9.5 in above example.
```

Introduction to Sampling
O
0000000000000000000
%% parameters
fs = 10; % sampling rate in frames per second
dur = 10; % signal duration in seconds
ff = 9.5; % frequency of rotating phasor
phi = 0; % initial phase of phasor
A = 1; % amplitude
%% Prepare for plot
TitleString = sprintf('Rotating_Phasor:\smilef_d=_`%5.2f', ff/fs);
figure(1)
\% unit circle (plotted for reference)
$c \mathrm{C}=\exp (1 j * 2 * \mathrm{pi} *(0: 0.01: 1))$)
ccx $=$ A*real (cc) ;
ci $=A *$ imag (cc) ;

```
    Introduction to Sampling
```

 Introduction to Sampling
 OO
 OO
 00000000000000000000
 00000000000000000000
 %% Animation
for tt = 0:1/fs:dur
tic; % establish time-reference
plot(ccx, cci, ':', ..
[0 A* cos(2*pi*ff*tttphi)], [0 A*sin(2*pi*ff*tt+phi)], '-ob');
axis('square')
axis([-A A -A A]);
title(TitleString)
xlabel('Real')
ylabel('Imag')
grid on;
drawnow % force plots to be redrawn
te = toc;
% pause until the next sampling instant, if possible
if (te < 1/fs)
pause(1/fs-te)
end
end

Reconstruction

- The reconstructed signal $\hat{x}(t)$ is computed from the samples and the pulse $p(t)$:

$$
\hat{x}(t)=\sum_{n=-\infty}^{\infty} x[n] \cdot p\left(t-n T_{s}\right) .
$$

- The reconstruction formula says:
- place a pulse at each sampling instant $\left(p\left(t-n T_{s}\right)\right)$,
- scale each pulse to amplitude $x[n]$,
- add all pulses to obtain the reconstructed signal.

```
    Introduction to Sampling
```

 \(\circ\)
 \circ
\circ
\circ

Ideal Reconstruction

- Reconstruction with the above pulses will be pretty good.
- Particularly, when the sampling rate is much greater than twice the signal frequency (significant oversampling).
- However, reconstruction is not perfect as suggested by the sampling theorem.
- To obtain perfect reconstruction the following pulse must be used:

$$
p(t)=\frac{\sin \left(\pi t / T_{s}\right)}{\pi t / T_{s}}
$$

- This pulse is called the sinc pulse.
- Note, that it is of infinite duration and, therefore, is not practical.
- In practice a truncated version may be used for excellent reconstruction.

Modulator

- System relationship between input and output signals:

$$
y[n]=(x[n]) \cdot \cos \left(2 \pi f_{d} n\right) ;
$$

where the modulator frequency f_{d} is a parameter of the system.

- Example:
- Input signal: $x[n]=\{1,2,3,4,3,2,1\}$
- assume $f_{d}=0.5$, i.e., $\cos \left(2 \pi f_{d} n\right)=\{\ldots, 1,-1,1,-1, \ldots\}$.
- Output signal: $y[n]=\{1,-2,3,-4,3,-2,1\}$.

©2009-2019, B.-P. Paris

| $\begin{aligned} & \text { Systems } \\ & 00 \text { O } 000 \bullet 00000 \end{aligned}$ | Special Signals 0000000 | Linear, Time-invariant Systems \circ 00000 00000000 | Convolution and Linear, Time-invariant Systems $\stackrel{\circ}{\circ}$ 000000000 $\bigcirc 0000$ | Impleme 000 |
| :---: | :---: | :---: | :---: | :---: |

Averager

- System relationship between input and output signals:

$$
\begin{aligned}
y[n] & =\frac{1}{M} \sum_{k=0}^{M-1} x[n-k] \\
& =\frac{1}{M} \cdot(x[n]+x[n-1]+\ldots+x[n-(M-1)]) \\
& =\sum_{k=0}^{M-1} \frac{1}{M} \cdot x[n-k] .
\end{aligned}
$$

- This system computes the sliding average over the M most recent samples.
- Example: Input signal: $x[n]=\{1,2,3,4,3,2,1\}$
- For computing the output signal, a table is very useful.
- synthetic multiplication table.

| Systems
 $00 \circ$
 000000000 | Special Signals 0000000 | Linear, Time-invariant Systems $\begin{aligned} & \circ \\ & \stackrel{0}{\circ} \\ & 00000 \\ & 00000000 \end{aligned}$ | Convolution and Linear, Time-invariant Systems ```\circ 0000000000 00000``` | Impleme 000 |
| :---: | :---: | :---: | :---: | :---: |

General FIR Filter

- System relationship:

$$
y[n]=\sum_{k=0}^{M-1} b_{k} \cdot x[n-k] .
$$

- The filter coefficients b_{k} determine the characteristics of the filter.
- Much more on the relationship between the filter coefficients b_{k} and the characteristics of the filter later.
- Clearly, with $b_{k}=\frac{1}{M}$ for $k=0,1, \ldots, M-1$ we obtain the M-point averager.
- Again, computation of the output signal can be done via a synthetic multiplication table.
- Example: $x[n]=\{1,2,3,4,3,2,1\}$ and $b_{k}=\{1,-2,1\}$. MAsons

©2009-2019, B.-P. Paris

FIR Filter $\left(b_{k}=\{1,-2,1\}\right)$

| n | -1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $x[n]$ | 0 | 1 | 2 | 3 | 4 | 3 | 2 | 1 | 0 | 0 |
| $1 \cdot x[n]$ | 0 | 1 | 2 | 3 | 4 | 3 | 2 | 1 | 0 | 0 |
| $-2 \cdot x[n-1]$ | 0 | 0 | -2 | -4 | -6 | -8 | -6 | -4 | -2 | 0 |
| $+1 \cdot x[n-2]$ | 0 | 0 | 0 | 1 | 2 | 3 | 4 | 3 | 2 | 1 |
| $y[n]$ | 0 | 1 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 1 |

- $y[n]=\{1,0,0,0,-2,0,0,0,1\}$
- Note that the output signal $y[n]$ is longer than the input signal $x[n]$.
- Note, synthetic multiplication works only for short, finite-duration signal.

| Systems $\begin{aligned} & \text { Special Signals } \\ & \text { O.o.0.0.0.0 } \\ & 0.00000\end{aligned}$ | Linear, Time-invariant Systems
 $\stackrel{\circ}{\circ}$
 00000 00000000 | Convolution and Linear, Time-invariant Systems
 \circ \circ \circ $\circ 000$
 000000000
 $\bigcirc 0000$ |
| :---: | :---: | :---: |

Unit-Step Response of the 3-Point Averager

- Input signal: $x[n]=u[n]$.
- Output signal: $r[n]=\frac{1}{3} \sum_{k=0}^{2} u[n-k]$.

| n | -1 | 0 | 1 | 2 | 3 | \ldots |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $u[n]$ | 0 | 1 | 1 | 1 | 1 | \ldots |
| $\frac{1}{3} u[n]$ | 0 | $\frac{1}{3}$ | $\frac{1}{3}$ | $\frac{1}{3}$ | $\frac{1}{3}$ | \ldots |
| $+\frac{1}{3} u[n-1]$ | 0 | 0 | $\frac{1}{3}$ | $\frac{1}{3}$ | $\frac{1}{3}$ | \ldots |
| $+\frac{1}{3} u[n-2]$ | 0 | 0 | 0 | $\frac{1}{3}$ | $\frac{1}{3}$ | \ldots |
| $r[n]$ | 0 | $\frac{1}{3}$ | $\frac{2}{3}$ | 1 | 1 | \ldots |

| | | | | |
| :---: | :---: | :---: | :---: | :---: |
| ©2009-2019, B.-P. Paris | | ECE 201: Intro to Signal Analysis | | 183 |
| Systems Special Signals
 00
 0
 0000000000000 | Linear, Time-invariant Systems Convolution and Linear, Time-invariant Systems
 \circ \circ
 \circ \circ
 0000 $\circ 00000000$
 $\circ 0000000$ 00000 | | | is $\left.\begin{array}{c}\text { Impleme } \\ 000\end{array}\right)$ 000 |

Unit-Impulse Sequence and Unit-Impulse Response

- The signal with samples

$$
\delta[n]= \begin{cases}1 & \text { for } n=0, \\ 0 & \text { for } n \neq 0\end{cases}
$$

is called the unit-impulse sequence or unit-impulse signal.

- The output of an FIR filter when the input is the unit-impulse signal ($x[n]=\delta[n]$) is called the unit-impulse response, denoted $h[n]$.
- Typically, we will simply call the above signals simply impulse signal and impulse response.
- We will see that the impulse-response captures all characteristics of a FIR filter.
- This implies that impulse response is a very important concept!

Important Insights

- For an FIR filter, the impulse response equals the sequence of filter coefficients:

$$
h[n]=\left\{\begin{array}{cl}
b_{n} & \text { for } n=0,1, \ldots, M-1 \\
0 & \text { else } .
\end{array}\right.
$$

- Because of this relationship, the system relationship for an FIR filter can also be written as

$$
\begin{aligned}
y[n] & =\sum_{k=0}^{M-1} b_{k} x[n-k] \\
& =\sum_{k=0}^{M-1} h[k] x[n-k] \\
& =\sum_{-\infty}^{\infty} h[k] x[n-k] .
\end{aligned}
$$

- The operation $y[n]=h[n] * x[n]=\sum_{-\infty}^{\infty} h[k] x[n-k]$ is called convolution; it is a very, very important operation.

Introduction

- We have introduced systems as devices that process an input signal $x[n]$ to produce an output signal $y[n]$.
- Example Systems:
- Squarer: $y[n]=(x[n])^{2}$
- Modulator: $y[n]=x[n] \cdot \cos \left(2 \pi f_{d} n\right)$, with $0<f_{d} \leq \frac{1}{2}$.

FIR Filter:

$$
y[n]=\sum_{k=0}^{M-1} h[k] \cdot x[n-k] .
$$

Recall that $h[k]$ is the impulse response of the filter and that the above operation is called convolution of $h[n]$ and $x[n]$.

- Objective: Define important characteristics of systems and determine which systems possess these characteristics.

| Systems
 ○○ ○
 000000000 | Special Signals 0000000 | Linear, Time-invariant Systems
 \bullet
 Oooos
 00000000 | Convolution and Linear, Time-invariant Systems $\stackrel{\circ}{\circ}$ $\because 00000000$ \bigcirc | Impleme 000 |
| :---: | :---: | :---: | :---: | :---: |

Causal Systems

- Definition: A system is called causal when it uses only the present and past samples of the input signal to compute the present value of the output signal.
- Causality is usually easy to determine from the system equation:
- The output $y[n]$ must depend only on input samples $x[n], x[n-1], x[n-2], \ldots$.
- Input samples $x[n+1], x[n+2], \ldots$ must not be used to find $y[n]$.
- Examples:
- All three systems on the previous slide are causal.
- The following system is non-causal:

$$
y[n]=\frac{1}{3} \sum_{k=-1}^{1} x[n-k]=\frac{1}{3}(x[n+1]+x[n]+x[n-1]) .
$$

Example: FIR Filter

- FIR Filter: $y[n]=\sum_{k=0}^{M-1} h[k] \cdot x[n-k]$

1. References: $y_{i}[n]=\sum_{k=0}^{M-1} h[k] \cdot x_{i}[n-k]$ for $i=1,2$.
2. Linear Combination: $x[n]=x_{1}[n]+x_{2}[n]$ and

$$
y[n]=\sum_{k=0}^{M-1} h[k] \cdot x[n-k]=\sum_{k=0}^{M-1} h[k] \cdot\left(x_{1}[n-k]+x_{2}[n-k]\right) .
$$

3. Check:

$$
y[n]=y_{1}[n]+y_{2}[n]=\sum_{k=0}^{M-1} h[k] \cdot x_{1}[n-k]+\sum_{k=0}^{M-1} h[k] \cdot x_{2}[n-k] .
$$

- Conclusion: linear.

©2009-2019, B.-P. Paris

ECE 201: Intro to Signal Analysis

| Systems
 $00 \circ$
 000000000 | Special Signals 0000000 | Linear, Time-invariant Systems | Convolution and Linear, Time-invariant Systems $\stackrel{\circ}{\circ}$ 000000000 0 | Impleme 000 |
| :---: | :---: | :---: | :---: | :---: |

Time-invariance

- The following test procedure defines time-invariance and shows how one can determine if a system is time-invariant:

1. Reference: Pass input signal $x[n]$ through the system to obtain output $y[n]$.
2. Delayed Input: Form the delayed signal $x_{d}[n]=x\left[n-n_{0}\right]$. Then, Pass signal $x_{d}[n]$ through the system and obtain $y_{d}[n]$.
3. Check: The system is time-invariant if

$$
y\left[n-n_{0}\right]=y_{d}[n]
$$

- The above must hold for all inputs $x[n]$ and all delays n_{0}.
- Interpretation: A time-invariant system does not change, over time, the way it processes the input signal.

| | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Decomposing a Signal with Impulses | | | | | | | |
| n $x[n]$ $\delta[n]$ | \ldots | -1 $\mathrm{x}[-1]$ 0 | 0 $\times[0]$ 1 | 1 $\mathrm{x}[1]$ 0 | 2 $x[2]$ 0 | | |
| \vdots $x[-1] \cdot \delta[n+1]$ $x[0] \cdot \delta[n]$ $x[1] \cdot \delta[n-1]$ $x[2] \cdot \delta[n-2]$ \vdots | | \vdots $\times[-1]$ 0 0 0 \vdots | \vdots 0 [0] 0 0 \vdots | \vdots 0 0 $\mathrm{x}[1]$ 0 \vdots | \vdots 0 0 0 $\times[2]$ \vdots | \ldots | |
| $\sum_{k=-\infty}^{\infty} x[k] \cdot \delta[n-k]$ | | X[-1] | x[0] | x[1] | x[2] | | |
| ECE 201 itrote cimal Anvie | | | | | | | |
| | | | | | | | |
| Decomposing a Signal with Impulses
 From these considerations we conclude that $\sum_{k=-\infty}^{\infty} x[k] \cdot \delta[n-k]=x[n] .$
 Notice that this implies $x[n] * \delta[n]=x[n] .$
 - We now have a way to write a signal $x[n]$ as a sum of scaled and delayed impulses.
 - Next, we exploit this relationship to derive our main result. | | | | | | | |
| 2009-2019, , B.P. Paris | | | | | | | |

Introduction

- We have discussed:
- Sinusoidal and complex exponential signals,
- Spectrum representation of signals:
- arbitrary signals can be expressed as the sum of sinusoidal (or complex exponential) signals.
- Linear, time-invariant systems.
- Next: complex exponential signals as input to linear, time-invariant systems.

Example: 3-Point Averaging Filter

- Consider the 3-point averager:

$$
y[n]=\frac{1}{3} \sum_{k=0}^{2} x[n-k]=\frac{1}{3} \cdot(x[n]+x[n-1]+x[n-2]) .
$$

- Question: What is the output $y[n]$ if the input is $x[n]=\exp \left(j 2 \pi f_{d} n\right)$?
- Recall that f_{d} is the normalized frequency f / f_{s}; we are assuming the signal is oversampled, $\left|f_{d}\right|<\frac{1}{2}$
- Initially, assume $A=1$ and $\phi=0$; generalization is easy.

Delayed Complex Exponentials

- The 3-point averager involves delayed versions of the input signal.
- We begin by assessing the impact the delay has on the complex exponential input signal.
- For

$$
x[n]=\exp \left(j 2 \pi f_{d} n\right)
$$

a delay by k samples leads to

$$
\begin{aligned}
x[n-k] & =\exp \left(j 2 \pi f_{d}(n-k)\right) \\
& =e^{j\left(2 \pi f_{d} n-2 \pi f_{d} k\right)}=e^{j 2 \pi f_{d} n} \cdot e^{-j 2 \pi f_{d} k} \\
& =e^{j\left(2 \pi f_{d} n+\phi_{k}\right)}=e^{j 2 \pi f_{d} n} \cdot e^{j \phi_{k}}
\end{aligned}
$$

where $\phi_{k}=-2 \pi f_{d} k$ is the phase shift induced by the k sample delay.

| Introduction to Frequency Response | Frequency Response of LTI Systems | A comprehensive Example
 00000000000 |
| :--- | :--- | :--- |
| | $\circ \circ 00000000$ | 0000 |
| | | 00000000000 |

Average of Delayed Complex Exponentials

- Now, the output signal $y[n]$ is the average of three delayed complex exponentials

$$
\begin{aligned}
y[n] & =\frac{1}{3} \sum_{k=0}^{2} x[n-k] \\
& =\frac{1}{3} \sum_{k=0}^{2} e^{\left(2 \pi f_{d} n-2 \pi f_{d} k\right)}
\end{aligned}
$$

- This expression involves the sum of complex exponentials of the same frequency; the phasor addition rule applies:

$$
y[n]=e^{j 2 \pi f_{d} n} \cdot \frac{1}{3} \sum_{k=0}^{2} e^{-j 2 \pi f_{d} k} .
$$

- Important Observation: The output signal is a complex exponential of the same frequency as the input signal.
- The amplitude and phase are different.

Frequency Response of the 3-Point Averager

- The output signal $y[n]$ can be rewritten as:

$$
\begin{aligned}
y[n] & =e^{j 2 \pi f_{d} n} \cdot \frac{1}{3} \sum_{k=0}^{2} e^{-j 2 \pi f_{d} k} \\
& =e^{j 2 \pi f_{d} n} \cdot H\left(e^{j 2 \pi f_{d}}\right) .
\end{aligned}
$$

where

$$
\begin{aligned}
H\left(e^{j 2 \pi f_{d}}\right) & =\frac{1}{3} \sum_{k=0}^{2} e^{-j 2 \pi f_{d} k} \\
& =\frac{1}{3} \cdot\left(1+e^{-j 2 \pi f_{d}}+e^{-j 2 \pi 2 f_{d}}\right) \\
& =\frac{1}{3} \cdot e^{-j 2 \pi f_{d}}\left(e^{j 2 \pi f_{d}}+1+e^{-j 2 \pi f_{d}}\right) \\
& =\frac{e^{-j 2 \pi f_{d}}}{3}\left(1+2 \cos \left(2 \pi f_{d}\right)\right) .
\end{aligned}
$$

Interpretation

- From the above, we can conclude:
- If the input signal is of the form $x[n]=\exp \left(j 2 \pi f_{d} n\right)$,
- then the output signal is of the form $y[n]=H\left(e^{j 2 \pi f_{d}}\right) \cdot \exp \left(j 2 \pi f_{d} n\right)$.
- The function $H\left(e^{j 2 \pi f_{d}}\right)$ is called the frequency response of the system.
Note: If we know $H\left(e^{j 2 \pi f_{d}}\right)$, we can easily compute the output signal in response to a complex expontial input signal.

Examples

- Recall:

$$
H\left(e^{j 2 \pi f_{d}}\right)=\frac{e^{-j 2 \pi f_{d}}}{3}\left(1+2 \cos \left(2 \pi f_{d}\right)\right)
$$

- Let $x[n]$ be a complex exponential with $f_{d}=0$.
- Then, all samples of $x[n]$ equal to one.
- The output signal $y[n]$ also has all samples equal to one.
- For $f_{d}=0$, the frequency response $H\left(e^{j 2 \pi 0}\right)=1$.
- And, the output $y[n]$ is given by

$$
y[n]=H\left(e^{j 2 \pi 0}\right) \cdot \exp (j 2 \pi 0 n),
$$

i.e., all samples are equal to one.

Examples

- Let $x[n]$ be a complex exponential with $f_{d}=\frac{1}{3}$.
- Then, the samples of $x[n]$ are the periodic repetition of

$$
\left\{1,-\frac{1}{2}+\frac{j \sqrt{3}}{2},-\frac{1}{2}-\frac{j \sqrt{3}}{2}\right\} .
$$

- The 3-point average over three consecutive samples equals zero; therefore, $y[n]=0$.
- For $f_{d}=\frac{1}{3}$, the frequency response $H\left(e^{j 2 \pi f_{d}}\right)=0$.
- Consequently, the output $y[n]$ is given by

$$
y[n]=H\left(\frac{1}{3}\right) \cdot \exp \left(j 2 \pi \frac{1}{3} n\right)=0 .
$$

Thus, all output samples are equal to zero.

| Introduction to Frequency Response 000000000000 | Frequency Response of LTI Systems
 000000000 | A comprehensive Example \circ $\bigcirc 000000000$ |
| :---: | :---: | :---: |

Introduction

- We have demonstrated that for linear, time-invariant systems
- the output signal $y[n]$
- is the convolution of the input signal $x[n]$ and the impulse response $h[n]$.

$$
\begin{aligned}
y[n] & =x[n] * h[n] \\
& =\sum_{k=0}^{M} h[k] \cdot x[n-k]
\end{aligned}
$$

- Question: Find the output signal $y[n]$ when the input signal is $x[n]=A \exp \left(j\left(2 \pi f_{d} n+\phi\right)\right)$.

©2009-2019, B.-P. Paris

ECE 201: Intro to Signal Analysis

| Introduction to Frequency Response | Frequency Response of LTI Systems | A comprehensive Example |
| :--- | :--- | :--- |
| 000000000000 | \circ | \circ |
| | | $\circ 00000000$ |

Response to a Complex Exponential

- Problem: Find the output signal $y[n]$ when the input signal is $x[n]=A \exp \left(j\left(2 \pi f_{d} n+\phi\right)\right)$.
- Output $y[n]$ is convolution of input and impulse response

$$
\begin{aligned}
y[n] & =x[n] * h[n] \\
& =\sum_{k=0}^{M} h[k] \cdot x[n-k] \\
& =\sum_{k=0}^{M} h[k] \cdot A \exp \left(j\left(2 \pi f_{d}(n-k)+\phi\right)\right) \\
& =A \exp \left(j\left(2 \pi f_{d} n+\phi\right)\right) \cdot \sum_{k=0}^{M} h[k] \cdot \exp \left(-j 2 \pi f_{d} k\right) \\
& =A \exp \left(j\left(2 \pi f_{d} n+\phi\right)\right) \cdot H\left(e^{j 2 \pi f_{d}}\right)
\end{aligned}
$$

The term

$$
H\left(e^{j 2 \pi f_{d}}\right)=\sum_{k=0}^{M} h[k] \cdot \exp \left(-j 2 \pi f_{d} k\right)
$$

is called the Frequency Response of the system.

| Introduction to Frequency Response | Frequency Response of LTI Systems | A comprehensive Example |
| :--- | :--- | :--- |
| 0,00000000000 | \circ | \vdots |
| | 000000000 | 0.00 |
| 0 | 0000000000 | |

Introduction

- Objective: Apply many of the things we covered to the solution of a "real-world" problem.
- Problem: Design and implement a decoder for "touch-tone" dialing.
- When dialing a digit on a telphone touch-pad a two-tone signal is emitted. These are called dual tone multifrequency (DTMF) signals.

| Frequencies (Hz) | 1209 | 1336 | 1477 |
| :---: | :---: | :---: | :---: |
| 697 | 1 | 2 | 3 |
| 770 | 4 | 5 | 6 |
| 852 | 7 | 8 | 9 |
| 941 | ${ }^{*}$ | 0 | $\#$ |

| Introduction to Frequency Response | Frequency Response of LTI Systems | A comprehensive Example |
| :--- | :--- | :--- |
| 000000000000 | \circ | \circ |
| | 000000000 | 0000 |
| | | $\circ 000000000$ |

Generating DTMF Signals

- Generating DTMF signals for a given digit is straightforward.
- Determine the frequencies that the signal contains,
- Generate two sinusoids of these frequencies,
- Add sinusoids.
- Repeat for each digit to be dialed.
- The following MATLAB code extracts digits to be dialed from a string and forms the signal
- Function signature:
function tones $=$ dtmfdial(string, fs, tonedur, pausedur)

| Introduction to Frequency Response 000000000000 | Frequency Response of LTI Systems ○OOOOOOOO | A comprehensive Example $\stackrel{\circ}{\circ}$ -०० 0000000000 | |
|---|---|---|---|
| Parsing the Dial-String```%% lookup table to translate digits string into numbers Digits = double('123456789*0#'); InverseDigits = zeros(1,length(Digits)); for kk=1:12 InverseDigits(Digits(kk)) = kk; end RawNumbers = double(string); numbers = InverseDigits(RawNumbers); % ensure numbers are integers between 1 and 12 numbers = round(numbers); % silently discard fractional part if (min(numbers) < 1 \|| max(numbers) > 12)``````end``` | | |
| ©2009-2019, B.-P. Paris | ECE 201: Intro to Signa | 251 |
| Introduction to Frequency Response 000000000000 | Frequency Response of LTI Systen ○○0000000 | A comprehensive Example \circ 응
 。 ○000000000 |
| Generating the DTMF Signal```%% construct signal % convert durations to number of samples Ntone = round(fs*tonedur); Npause = round(fs*pausedur); % figure out how long the output signal will be Nnumbers = length(numbers); Nsamples = Nnumbers*(Ntone + Npause); tones = zeros(1, Nsamples); pause = zeros(1, Npause); % associate numbers with DTMF pairs, record normalized frequencies! dtmfpairs = ... [697 697 697 770 770 770 852 852 852 941 941 941; 1209 1336 1477 1209 1336 1477 1209 1336 1477 1209 1336 1477]/fs``` | | |
| ©2009-2019, B.-P. Paris | ECE 201: Intro to Signa | |

| Prequency Domain Transforms | |
| :---: | :---: | :---: |
| FII | |
| Lecture: Discrete-Time Fourier Transform | |

| DTFT
 -0000
 -0000000000000 | z-Transform 00000 000000 | DFT 000000 0000000 oocooo |
| :---: | :---: | :---: |
| Introduction
 - We will take frequency d
 - Discret arbitrarily
 > z-Trans variable Discret signals; algorith
 - Transforms
 - They pr in signa
 - They sim time-do | transform
 ansform ntinuous in ion of DTF
 rm: applie rete set of
 se:
 on signals ndwidth) ms that are onvolution. | |
| ©2009-2019, B.-P. Paris | ECE 201: Intro to | 267 |
| DTFT -0000
 OOOOO
 -0000000000000 | z-Transform $\bigcirc 0000$ 000000 | DFT $\bigcirc 00000$ 0000000 |
| Recall: Frequen
 - Passing a c through a lin ersponse h
 - The frequen | tial signal nt system put signal
 $\left.f_{d}\right) \cdot \exp (j 2$
 $\left.\mathrm{e}^{j 2 \pi f_{d}}\right)$ is g
 $\sum_{k=0}^{1} h[k] \cdot \operatorname{ex}$ | |
| | | MEO965 |
| ©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis ${ }^{\text {a }}$ (${ }^{\text {a }}$ | | |

Linearity: The DTFT is a linear operation.

- Assume that

$$
x_{1}[n] \stackrel{\text { DTFT }}{\longleftrightarrow} X_{1}\left(e^{j 2 \pi f_{d}}\right)
$$

and that

$$
x_{2}[n] \stackrel{\text { DTFT }}{\longleftrightarrow} X_{2}\left(e^{j 2 \pi f_{d}}\right) .
$$

- Then,

$$
x_{1}[n]+x_{2}[n] \stackrel{\text { DTFT }}{\longleftrightarrow} X_{1}\left(e^{j 2 \pi f_{d}}\right)+X_{2}\left(e^{j 2 \pi f_{d}}\right)
$$

- Periodicity: The DTFT is periodic in the variable f_{d} :

$$
X\left(e^{j 2 \pi f_{d}}\right)=X\left(e^{j 2 \pi\left(f_{d}+n\right)}\right) \quad \text { for any integer } n
$$

| | DFT ․o.000 |
| :---: | :---: |
| DTFT of a Finite-Duration Signal
 - Combining Linearity and the DTFT for a delayed impulse, we can easily find the DTFT of a signalk with finitely many samples. $\sum_{k=0}^{M-1} x[k] \cdot \delta[n-k] \stackrel{\text { DTFT }}{\longleftrightarrow} \sum_{k=0}^{M-1} x[k] \cdot \exp \left(-j 2 \pi f_{d} k\right) .$
 Example: The DTFT of the signal $x[n]=\{1,2,3,4\}$ is $1+2 e^{j 2 \pi f_{d}}+3 e^{j 4 \pi f_{d}}+4 e^{j 6 \pi f_{d}} .$
 I.e., $\{1,2,3,4\} \stackrel{\text { DTFT }}{\longleftrightarrow} 1+2 e^{j 2 \pi f_{d}}+3 e^{j 4 \pi f_{d}}+4 e^{j 6 \pi f_{d}}$ | |
| ๑г209-2019, B.e.P. Pais ECE 201: Into to Signal Analysis | 273 |
| | DFT 0000000 |

DTFT of a Rectangular Pulse

- Let $x[n]$ be a rectangular pulse of L samples, i.e., $x[n]=u[n]-u[n-L]$.
- Then, the DTFT of $x[n]$ is given by

$$
X\left(e^{j 2 \pi f_{d}}\right)=\sum_{k=0}^{L-1} 1 \cdot e^{j 2 \pi f_{d} k}
$$

- Using the geometric sum formula

$$
\begin{gathered}
S=\sum_{k=0}^{L-1} a^{k}=\frac{1-a^{L}}{1-a}, \\
X\left(e^{j 2 \pi f_{d}}\right)=\frac{1-e^{-j 2 \pi f_{d} L}}{1-e^{-j 2 \pi f_{d}}}=\frac{\sin \left(\pi f_{d} L\right)}{\sin \left(\pi f_{d}\right)} \cdot e^{-j \pi f_{d}(L-1)} .
\end{gathered}
$$

- Thus

| | DFT
 OOOOOO
 0.0000 |
| :---: | :---: |
| Example continued
 The expression $Y\left(e^{j 2 \pi f_{d}}\right)=\frac{1}{1-a e^{-j 2 \pi f_{d}}} \cdot \frac{1}{1-b e^{-j 2 \pi f_{d}}}$
 can be rewritten as $Y\left(e^{j 2 \pi f_{d}}\right)=\frac{a}{a-b} \cdot \frac{1}{1-a e^{-j 2 \pi f_{d}}}-\frac{b}{a-b} \cdot \frac{1}{1-b e^{-j 2 \pi f_{d}}}$
 The inverse transform of $Y\left(e^{j 2 \pi f_{d}}\right)$ is $y[n]=\frac{a}{a-b} \cdot a^{n} \cdot u[n]-\frac{b}{a-b} \cdot b^{n} \cdot u[n] .$ | |
| ๑2009-2019, B. P. Paris ECE 201: Into to signal Analysis | 291 |
| | |
| Parseval's Theorem
 The Energy of a discrete-time signal $x[n]$ is defined as $E=\sum_{k=-\infty}^{\infty}\|x[n]\|^{2} .$
 - Parseval's theorem states that the energy can also be computed using the DTFT $E=\sum_{k=-\infty}^{\infty}\|x[n]\|^{=} \int_{-\frac{1}{2}}^{\frac{1}{2}}\left\|X\left(e^{j 2 \pi f_{d}}\right)\right\|^{2} d f_{d}$ | |
| | MASONS |
| @roo9-2019, B. P. Pais ECE 201: Into to Signal Analysis | |

| | DF |
| :---: | :---: |
| Example
 Find the energy of the sinc pulse $x[n]=2 f_{b} \cdot \operatorname{sinc}\left(2 \pi f_{b} n\right) .$
 This is impossible in the time domain and trivial in the frequency domain $E=\sum_{k=-\infty}^{\infty}\|x[n]\|^{=} \int_{-\frac{1}{2}}^{\frac{1}{2}}\left\|X\left(e^{j 2 \pi f_{d}}\right)\right\|^{2} d f_{d}=2 f_{b}$ | |
| | Masoin |
| | |
| | |
| Lecture: The z-Transform | |
| | Misoin |
| ECE 201: into to Sinal Anay is | |

| | |
| :---: | :---: |
| Equivalence of Convolution and Polynomial Multiplcation
 - The convolution property states $x[n] * h[n] \stackrel{z}{\longleftrightarrow} X(z) \cdot H(z)$
 - We saw that the z-Transforms of finite duration signals are polynomials. Hence, convolution is equivalent to polynomial multiplaction.
 - Example: $x[n]=\{1,2,1\}$ and $h[n]=\{1,1\}$; by convolution $x[n] * h[n]=\{1,3,3,, 1\}$
 In terms of z-Transforms: $\begin{aligned} X(z) \cdot H(z) & =\left(1+2 z^{-1}+1 z^{-2}\right) \cdot\left(1+1 z^{-1}\right) \\ & =1+3 z^{-1}+3 z^{-2}+z^{-3} \end{aligned}$ | |
| | |
| | |
| Zeros of $H(z)$
 - An important use of the z-Transform is providing insight into the properties of a filter.
 Of particular interest are the zeros of a filter's z-Transform $H(z)$.
 Example: The L-point averager has the z-Transform $H(z)=\frac{1}{L} \cdot \frac{1-z^{-L}}{1-z^{-1}}=\frac{1}{L} \cdot \prod_{k=1}^{L-1}\left(1-e^{-j 2 \pi k / L} \cdot z^{-k}\right)$
 The factorization shows that zeros of $H(z)$ occur when $z=e^{-j 2 \pi k / L}$.
 Note that
 - zeros occur along the unit circle $\|z\|=1$
 - at angles that correspond to frequencies $f_{d}=k / L$ for $k=1, \ldots, L-1$.
 Zeros are evenly spaced in the stop-band of the filter. | |
| | |

Roots of $H(z)$ for a very good Lowpass Filter

Roots of $H(z)$ and magnitude of Frequency Response for a very good LPF. Zeros are on the unit-circle in the stop band. In the pass band, pairs of roots form a "channel" to keep the MAsson O2009-2019, B.-P. Paris frnmunnumnnen 201: Intro to Signal Analysis

| DTFT | z-Transform | DFT |
| :--- | :--- | :--- |
| 00000 | 00000 | |
| 0000 | 0000000 | |
| 000000 | 000000 | 0000000 |
| 0000000000000 | | |
| | | |

IIR Filter

- Question: Can we realize a filter with the infinite impulse response (IIR) $h[n]=a^{n} \cdot u[n]$?
- Recall that

$$
a^{n} \cdot u[n] \stackrel{2}{\longleftrightarrow} \frac{1}{1-a z^{-1}}
$$

- Hence,

$$
Y(z)=X(Z) \cdot \frac{1}{1-a z^{-1}} \quad \text { or } \quad Y(z) \cdot\left(1-a z^{-1}\right)=X(z)
$$

- In the time domain,

$$
y[n]-a y[n-1]=x[n] \quad \text { or } \quad y[n]=x[n]+a y[n-1] .
$$

| DTFT $\because \circ \circ$ -oooooooooooono | z-Transform ○○○○ | DFT 000000 000000 |
| :---: | :---: | :---: |
| Lecture: Discrete Fourier Transform (DFT) | | |
| | | MAsobis |
| ๑2009-2019, B. P.P. Pais | ECE 201: Into to S Sinal Analysis | 307 |
| | | DFT |
| Introduction
 The Discrete Fourier Transform (DFT) is a work horse of Digital Signal Processing.
 Its primary uses include:
 - Measuring the spectrum of a signal from samples
 - Fast algorithms for convolution or correlation
 - The DFT is computed from a block of N samples $x[0], \ldots, x[N-1]$.
 - It computes the DTFT at N evenly spaced, discrete frequencies: | | |
| ๑2009-2019, B.P.P. Pais | ECE 201: Into to Signal Analysis | 308 |

Implicit Periodicity

With zero-padding, the shifting of the implicitly periodic signal introduces only zero samples in the block of N samples.

| @2009-2019, B.-P. Paris | ECE 201: Intro to Signal Analysis | 319 |
| :---: | :---: | :---: |
| DTFT
 00000 0000
 0000000000000 | z-Transform
 00000
 \circ
 000000 | DFT
 000000 000000 |

Convolution with FFTs

- Fast convolution based on FFTs of zero-padded signals can be implemented as follows:
\% signals
$\mathrm{x}=[1,2,3]$;
$h=[1,1]$;
\% zero-padding to length 4
$\mathrm{xp}=[\mathrm{x}, 0]$;
$h p=[h, 0,0]$;
- transforms

Xp = fft (xp);
Hp = fft (hp);
ㅇ multiply and inverse transform
$y=i f f t(X p . * H p)$

| Review of Complex Algebra | |
| :---: | :---: |
| Part IX | |

Why Complex Numbers?

- Complex numbers are closely related to sinusoids.
- They eliminate the need for trigonometry ...
- ... and replace it with simple algebra.
- Complex algebra is really simple - this is not an oxymoron.
- Complex numbers can be represented as vectors.
- Used to visualize the relationship between sinusoids.
©2009-2019, B.-P. Paris
ECE 201: Intro to Signal Analysis
Complex Numbers
$\bigcirc 0000000$
00000000000000

The Basics

- Complex unity: $j=\sqrt{-1}$.
- Complex numbers can be written as

$$
z=x+j \cdot y
$$

This is called the rectangular or cartesian form.

- x is called the real part of $z: x=\operatorname{Re}\{z\}$.
- y is called the imaginary part of $z: y=\operatorname{lm}\{z\}$.
- z can be thought of a vector in a two-dimensional plane.
- Cordinates are x and y.
- Coordinate system is called the complex plane.

Illustration - The Complex Plane


```
Complex Numbers
OO000000
0000000000000000
```


Euler's Formulas

- Euler's formula provides the connection between complex numbers and trigonometric functions.

$$
e^{j \phi}=\cos (\phi)+j \cdot \sin (\phi)
$$

- Euler's formula allows conversion between trigonometric functions and exponentials.
- Exponentials have simple algebraic rules!
- Inverse Euler's formulas:

$$
\begin{aligned}
& \cos (\phi)=\frac{e^{j \phi}+e^{-j \phi}}{2} \\
& \sin (\phi)=\frac{e^{j \phi}-e^{-j \phi}}{2 j}
\end{aligned}
$$

- These relationships are very important


```
Complex Numbers
```

$\circ 0000000$

Converting from Cartesian to Polar Form

- A complex number $z=x+j y$ in cartesian form is converted to polar form via

$$
r=\sqrt{x^{2}+y^{2}}
$$

and

$$
\tan (\phi)=\frac{y}{x} .
$$

- The computation of the angle ϕ requires some care.
- One must distinguish between the cases $x<0$ and $x>0$.

$$
\phi= \begin{cases}\arctan \left(\frac{y}{x}\right) & \text { if } x>0 \\ \arctan \left(\frac{y}{x}\right)+\pi & \text { if } x<0\end{cases}
$$

- If $x=0, \phi$ equals $+\pi / 2$ or $-\pi / 2$ depending on the sign of y.

```
Complex Numbers
```

\circ
$\circ 0000000$
00000000000000000

Exercise

- Convert to polar form

1. $z=1+j$
2. $z=3 \cdot j$
3. $z=-1-j$

- Convert to cartesian form

1. $z=3 e^{-j 3 \pi / 4}$

- in MATLAB, plot $\cos (j x)$ for $-2 \leq x \leq 2$ then explain the shape of the resulting graph.

Complex Numbers
00000000
000000000000000
0000

Conjugate Complex

- The conjugate complex z^{*} of a complex number z has
- the same real part as $z: \operatorname{Re}\{z\}=\operatorname{Re}\left\{z^{*}\right\}$, and
- the opposite imaginary part: $\operatorname{Im}\{z\}=-\operatorname{Im}\left\{z^{*}\right\}$.
- Rectangular form:

$$
\text { If } z=x+j y \text { then } z^{*}=x-j y .
$$

- Polar form:

$$
\text { If } z=r \cdot e^{j \phi} \text { then } z^{*}=r \cdot e^{-j \phi} .
$$

- Note, z and z^{*} are mirror images of each other in the complex plane with respect to the real axis.

```
Complex Numbers
O
```


Illustration - Conjugate Complex

Multiplication

- Multiplication of complex numbers is possible in both polar and rectangular form.
- Polar Form: Let $z_{1}=r_{1} \cdot e^{j \phi_{1}}$ and $z_{2}=r_{2} \cdot e^{j \phi_{2}}$, then

$$
z_{1} \cdot z_{2}=r_{1} \cdot r_{2} \cdot \exp \left(j\left(\phi_{1}+\phi_{2}\right)\right) .
$$

- Rectangular Form: Let $z_{1}=x_{1}+j y_{1}$ and $z_{2}=x_{2}+j y_{2}$, then

$$
\begin{aligned}
z_{1} \cdot z_{2} & =\left(x_{1}+j y_{1}\right) \cdot\left(x_{2}+j y_{2}\right) \\
& =x_{1} x_{2}+j^{2} y_{1} y_{2}+j x_{1} y_{2}+j x_{2} y_{1} \\
& =\left(x_{1} x_{2}-y_{1} y_{2}\right)+j\left(x_{1} y_{2}+x_{2} y_{1}\right) .
\end{aligned}
$$

- Polar form provides more insight: multiplication involves rotation in the complex plane (because of $\phi_{1}+\phi_{2}$).
$\circ 0000000$
0000000000000000

Absolute Value

- The absolute value of a complex number z is defined as

$$
|z|=\sqrt{z \cdot z^{*}} \text {, thus, }|z|^{2}=z \cdot z^{*} .
$$

- Note, $|z|$ and $|z|^{2}$ are real-valued.
- In MATLAB, abs (z) computes $|z|$.
- Polar Form: Let $z=r \cdot e^{j \phi}$,

$$
|z|^{2}=r \cdot e^{j \phi} \cdot r \cdot e^{-j \phi}=r^{2} .
$$

- Hence, $|z|=r$.
- Rectangular Form: Let $z=x+j y$,

$$
\begin{aligned}
|z|^{2} & =(x+j y) \cdot(x-j y) \\
& =x^{2}-j^{2} y^{2}-j x y+j x y \\
& =x^{2}+y^{2} .
\end{aligned}
$$

Division

- Closely related to multiplication

$$
\frac{z_{1}}{z_{2}}=\frac{z_{1} z_{2}^{*}}{z_{2} z_{2}^{*}}=\frac{z_{1} z_{2}^{*}}{\left|z_{2}\right|^{2}} .
$$

- Polar Form: Let $z_{1}=r_{1} \cdot e^{j \phi_{1}}$ and $z_{2}=r_{2} \cdot e^{j \phi_{2}}$, then

$$
\frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}} \cdot \exp \left(j\left(\phi_{1}-\phi_{2}\right)\right) .
$$

- Rectangular Form: Let $z_{1}=x_{1}+j y_{1}$ and $z_{2}=x_{2}+j y_{2}$, then

$$
\begin{aligned}
\frac{z_{1}}{z_{2}} & =\frac{z_{1} z_{2}^{*}}{\left|z_{2}\right|^{2}} \\
& =\frac{\left(x_{1}+j y_{1}\right) \cdot\left(x_{2}-j y_{2}\right)}{x_{2}^{2}+y_{2}^{2}}
\end{aligned}
$$

$$
=\frac{\left(x_{1} x_{2}+y_{1} y_{2}\right)+j\left(-x_{1} y_{2}+x_{2} y_{1}\right)}{x_{2}^{2}+y_{2}^{2}} .
$$

©2009-2019, B.-P. Paris
ECE 201: Intro to Signal Analysis
Complex Numbers
00000000
0000000000000000

Exercises

- For $z_{1}=3 e^{j \pi / 4}$ and $z_{2}=2 e^{-j \pi / 2}$, compute

1. $z_{1}+z_{2}$,
2. $z_{1} \cdot z_{2}$, and
3. $\left|z_{1}\right|$.

Give your results in both polar and rectangular forms.

Powers of Complex Numbers

- A complex number z is easily raised to the n-th power if z is in polar form.
- Specifically,

$$
\begin{aligned}
z^{n} & =\left(r \cdot e^{j \phi}\right)^{n} \\
& =r^{n} \cdot e^{j n \phi}
\end{aligned}
$$

- The magnitude r is raised to the n-th power
- The phase ϕ is multiplied by n.
- The above holds for arbitrary values of n, including
- n an integer (e.g., z^{2}),
- n a fraction (e.g., $z^{1 / 2}=\sqrt{z}$)
- n a negative number (e.g., $z^{-1}=1 / z$)
- n a complex number (e.g., z^{j})

Roots of Unity

- Quite often all complex numbers z solving the following equation must be found

$$
z^{N}=1 .
$$

- Here N is an integer.
- There are N different complex numbers solving this equation.
- The solutions have the form

$$
z=e^{j 2 \pi n / N} \text { for } n=0,1,2, \ldots, N-1 .
$$

- Note that $z^{N}=e^{j 2 \pi n}=1$!
- The solutions are called the N-th roots of unity.
- In the complex plane, all solutions lie on the unit circle andmasors are senarated bv anale $2 \pi / N$

Roots of a Complex Number

- The more general problem is to find all solutions of the equation

$$
z^{N}=r \cdot e^{j \phi} .
$$

In this case, the N solutions are given by

$$
z=r^{1 / N} \cdot \exp \left(j \frac{\phi+2 \pi n}{N}\right) \text { for } n=0,1,2, \ldots, N-1 .
$$

| | | $\begin{aligned} & \text { MASORGE } \\ & \text { MASON } \end{aligned}$ |
| :---: | :---: | :---: |
| ©2009-2019, B.-P. Paris | ECE 201: Intro to Signal Analysis | 345 |
| Complex Numbers
 \circ ○
 00000000 0000000000000000 ○○○○ | | |

Example: Roots of a Complex Number

- Example: Find all solutions of $z^{5}=-1$.
- Solution:
- Note $-1=e^{j \pi}$, i.e., $r=1$ and $\phi=\pi$.
- There are $N=5$ solutions:
- All have magnitude 1.
- The five angles are $\pi / 5,3 \pi / 5,5 \pi / 5,7 \pi / 5,9 \pi / 5$.

| Complex Numbers |
| :--- |
| $\circ \circ$ |
| 0.0000000 |
| 000000000000000 |
| 0000000000 |

Example

- Show that $\cos (x+y)$ equals $\cos (x) \cos (y)-\sin (x) \sin (y)$:

$$
\begin{aligned}
\cos (x+y) & =\operatorname{Re}\left\{e^{j(x+y)}\right\}=\operatorname{Re}\left\{e^{j x} \cdot e^{j y}\right\} \\
& =\operatorname{Re}\{(\cos (x)+j \sin (x)) \cdot(\cos (y)+j \sin (y))\} \\
& =\operatorname{Re}\{(\cos (x) \cos (y)-\sin (x) \sin (y))+ \\
& j(\cos (x) \sin (y)+\sin (x) \cos (y))\} \\
& =\cos (x) \cos (y)-\sin (x) \sin (y) .
\end{aligned}
$$

```
@2009-2019, B.-P. Paris
```

```
Complex Numbers
```

Complex Numbers
l

```

\section*{Example}
- Show that \(\cos (x) \cos (y)\) equals \(\frac{1}{2} \cos (x+y)+\frac{1}{2} \cos (x-y)\) :
\[
\begin{aligned}
\cos (x) \cos (y) & =\frac{e^{i x}+e^{-j x}}{} e^{j i y}+e^{-j y} \\
& =\frac{\left.e^{i(x)}+{ }^{2}\right)+e^{j\left(-x^{2}-y\right)}+e^{i(x-y)}+e^{i(-x+y)}}{4} \\
& =\frac{e^{i(x+y)}+e^{-j(x+y)}}{4}+\frac{e^{j(x-y)}+e^{-j(x-y)}}{4} \\
& =\frac{1}{2} \cos (x+y)+\frac{1}{2} \cos (x-y) .
\end{aligned}
\]
\begin{tabular}{|c|c|}
\hline Complex Numbers & \\
\hline \multicolumn{2}{|l|}{Exercises} \\
\hline \begin{tabular}{l}
- Simplify
\[
\begin{aligned}
& \text { 1. }(\sqrt{2}-\sqrt{2 j})^{8} \\
& \text { 2. }(\sqrt{2}-\sqrt{2} j)^{-1}
\end{aligned}
\] \\
- Advanced \\
1. \(j^{j}\) \\
2. \(\cos (j)\)
\end{tabular} & \\
\hline & Matosi \\
\hline
\end{tabular}```

