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Course Overview
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Learning Objectives

» Intro to Electrical Engineering via Digital Signal
Processing.

» Develop initial understanding of Signals and Systems.
» Learn MATLAB
» Note: Math is not very hard - just algebra.
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DSP - Digital Signal Processing

Digital: processing via computers and digital hardware
we will use PC’s.
Signal: Principally signals are just functions of time
» Entertainment/music
» Communications
» Medical, ...

Processing: analysis and transformation of signals
we will use MATLAB
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Course Overview
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QOutline of Topics

» Sinusoidal Signals > MATLAB
» Time and Frequency representation of > Lectures
signals > Labs
> Homework
» Sampling
> Filtering

» Spectrum Analysis
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Sinusoidal Signals

» Fundamental building blocks for describing arbitrary
signals.

> General signals can be expresssed as sums of sinusoids
(Fourier Theory)

» Bridge to frequency domain.

» Sinusoids are special signals for linear filters
(eigenfunctions).

» Manipulating sinusoids is much easier with the help of
complex numbers.
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Course Overview
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Time and Frequency

» Closely related via sinusoids.
» Provide two different perspectives on signals.

» Many operations are easier to understand in frequency
domain.
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Sampling

» Conversion from continuous time to discrete time.
» Required for Digital Signal Processing.

» Converts a signal to a sequence of numbers (samples).
» Straightforward operation
> with a few strange effects.
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Course Overview
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Filtering

» A simple, but powerful, class of operations on signals.

» Filtering transforms an input signal into a more suitable
output signal.

» Often best understood in frequency domain.

Input Output
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Spectrum Analysis

» Analyze a given signal to find which frequencies it contains.
» Fourier Transform and fast Fourier Transform
» Spectrogram
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00000000 e

Relationship to other ECE Courses

» Next steps after ECE 201:

> ECE 220: Signals and Systems
> ECE 280: Circuits

» Core courses in controls and communications:
> ECE 421: Controls
» ECE 460: Communications
> Electives:
> ECE 410: DSP
» ECE 450: Robotics
» ECE 463: Digital Comms
> ECE 464: Filter Design
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Sinusoids, Complex Numbers, and
Complex Exponentials
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Sinusoidal Signals
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Lecture: Introduction to Sinusoids
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Sinusoidal Signals
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The Formula for Sinusoidal Signals

» The general formula for a sinusoidal signal is
x(t) = A-cos(2rft + ¢).

> A, f, and ¢ are parameters that characterize the sinusoidal
signal.
> A - Amplitude: determines the height of the sinusoid.
> f - Frequency: determines the number of cycles per
second.
> ¢ - Phase: determines the horizontal location of the
sinusoid.
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Sinusoidal Signals
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X(t) = A cos(2nft + @)
T T T
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» The formula for this sinusoid is:
x(t) =8-cos(2r-50-t+m/4). DIASON
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Sinusoidal Signals
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The Significance of Sinusoidal Signals

» Fundamental building blocks for describing arbitrary
signals.
» General signals can be expresssed as sums of sinusoids
(Fourier Theory)
> Provides bridge to frequency domain.
» Sinusoids are special signals for linear filters
(eigenfunctions).
» Sinusoids occur naturally in many situations.
> They are solutions of differential equations of the form

a?x(t)
a2 +ax(t) =0.
» Much more on these points as we proceed. Mass
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Sinusoidal Signals
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Background: The cosine function

» The properties of sinusoidal signals stem from the
properties of the cosine function:

> Periodicity: cos(x + 277) = cos(x)

> Eveness: cos(—x) = cos(x)

> Ones of cosine: cos(27tk) = 1, for all integers k.

> Minus ones of cosine: cos(7t(2k + 1)) = —1, for all
integers k.
Zeros of cosine: cos(5 (2k + 1)) = 0, for all integers k.
Relationship to sine function: sin(x) = cos(x — 7/2) and
cos(x) =sin(x + 11/2).

vy
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Sinusoidal Signals
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Amplitude

» The amplitude A is a scaling factor.
» |t determines how large the signal is.
» Specifically, the sinusoid oscillates between +A and —A.
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Sinusoidal Signals
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Frequency and Period

v

Sinusoids are periodic signals.

» The frequency f indicates how many times the sinusoid
repeats per second.

» The duration of each cycle is called the period of the
sinusoid.
It is denoted by T.

» The relationship between frequency and period is

f:lTande
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Sinusoidal Signals
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Phase and Delay
» The phase ¢ causes a sinusoid to be shifted sideways.
» A sinusoid with phase ¢ = 0 has a maximum at { = 0.
» A sinusoid that has a maximum at t = T can be written as

x(t) = A-cos(2nf(t—1)).
» Expanding the argument of the cosine leads to
x(t) = A- cos(2rtft — 27fT).
» Comparing to the general formula for a sinusoid reveals
—¢

¢ =—-2mnfrand T = pyr
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Sinusoidal Signals
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Sinusoidal Signals
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Exercise
1. Plot the sinusoid

x(t) =2cos(2r-10-t+ 7t/2)

betweent = —0.1 and t = 0.2.
2. Find the equation for the sinusoid in the following plot

Amplitude
o
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Tme() — UNIVERSITY

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis

Sinusoidal Signals
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Vectors and Matrices
» MATLAB is specialized to work with vectors and matrices.

» Most MATLAB commands take vectors or matrices as
arguments and perform looping operations automatically.

» Creating vectors in MATLAB:
directly:

using the increment (:) operator:
x = 1:2:10;
produces a vector with elements

(1, 3, 5, 7, 91.
using MATLAB commands For example, to read a .wav file

[ x, fs] = wavread('music.wav’); GEORGE
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Plot a Sinusoid

Sinusoidal Signals

oo

% parameters

A = 3;
f = 50;
phi = pi/4;
fs = 50«f;

% generate signal

5 cycles with 50 samples per cycle
tt =0 : 1/fs : 5/f;

xx = Axcos (2xpixfxtt + phi);

oo oo

%% plot

plot (tt, xx)

xlabel ( 'Time_(s)’ ) % labels for x and y axis
ylabel ( 'Amplitude’ )

title( 'x(t) _=_A_cos (2\pi_f_t_+_\phi)’)
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Sinusoidal Signals

Exercise

» The sinusoid below has frequency f = 10 Hz.

» Three of its maxima are at the the following locations
71 = —0.075s, 7, = 0.025s, 73 = 0.1255s

» Use each of these three delays to compute a value for the
phase ¢ via the relationship ¢; = —27rfT;.

» What is the relationship between the phase values ¢; you
obtain?
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Sinusoidal Signals
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Lecture: Adding Sinusoids of the Same
Frequency
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Sums of Sinusoids
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Adding Sinusoids

» Adding sinusoids of the same frequency is a problem that
arises regularly in
> circuit analysis
> linear, time-invariant systems, e.g., filters
» and many other domains
» We will see that adding sinusoids is much easier with
complex exponentials
> Today, we will do it the hard way — with trigonometry
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Sums of Sinusoids
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A Circuits Example

v(t)l ~) 1MQ > va(b) 2nF :‘:> ve(t)

» For v(t) =1V cos(271kHz - t), find the current i(t).
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Sums of Sinusoids
[e]e] lelele]elele]e]e]

Setting up the Problem

> Resistor: ig(t) = A

> Capacitor: ig(t) = c2lt)

» Kirchhoff’s current law: i(t) = ig(t) + ic(t)
» Kirchhoff’s voltage law: v(t) = vg(t) = v(t)
» Therefore,

ity = Y ¢ 20

'R dt
= 11MVQ cos(2m1kHz - t) — 27 - 1kHz - 2nF -sin(2711 kHz - t)

= 1pAcos(2t1 kHz - t) — 4 pAsin(27t1 kHz - 1)
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Sums of Sinusoids
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Simplifying i(t)

» Can we write
i(t) = 1pAcos(2t1 kHz - t) — 4t pAsin(27t1 kHz - t)

as a single sinusoid?
» Specifically, can we express it in the standard form

i(t) = Icos(27tft + ¢)

and, if so, what are /, f, and ¢?
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Sums of Sinusoids
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Solution

» Use the trig identity
> cos(Xx + y) = cos(x) cos(y) — sin(x)sin(y)
to change i(t) = /cos(27tft + ¢) to

i(t) = I-cos(¢) cos(2rtft) — I-sin(¢p) sin(27ft)
» Compare to
i(t) = 1pAcos(2t1 kHz - t) — 4t pAsin(27t1 kHz - t)

» Conclude:

» f =1KkHz - no change in frequency!
> [-cos(¢) =1pAand /-sin(¢) = 4t pA.
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Sums of Sinusoids
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Solution
» We still must find / and ¢ from
» [-cos(¢p) =1pAand /-sin(¢p) = 4 pA.
» We can find / from

P-cos?(¢p) + P-sin?(¢p) = I?
(1pA)2  + (4tpA)2 =~ (12.6pA)?

» Thus, I = 12.6 pA.

> Also,
[-sin(¢p) _4r
[-cos(¢) tan(g) = Kl
» Hence, ¢ ~ 0.47 - T ~ 85°.
» And, i(t) ~ 12.6 pAcos(2t1 kHz - t + 0.47 - 7r). Magss
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Sums of Sinusoids
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Exercise

> Express
x(t) = 3 - cos(2rtft) + 4 - cos(2rft + 11/2)

in the form A - cos(27ft + ¢).
» Answer: x(t) ~ 5cos(27tft + 53°)
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Sums of Sinusoids
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Solution to Exercise
» Express
x(t) = 3 - cos(2rtft) + 4 - cos(2rft + 71/2)
in the form A - cos(27tft + ¢).
» Solution: Use trig identity
cos(x + y) = cos(x) cos(y) — sin(x) sin(y) on second term.
» This leads to
x(t) = 3-cos(2rft)+
4 . cos(27tft) cos(t/2) — 4 - sin(27tft) sin(7r/2)
= 3-cos(27tft) — 4 -sin(2rft).
» Compare to what we want:
x(t) = A-cos(2rft+ ¢)
= A-cos(¢)cos(2rft) — A-sin(¢p)sin(27ft)  passx
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Sums of Sinusoids
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Solution contd
» We can conclude that A and ¢ must satisfy

A-cos(¢) =3 and A-sin(¢) = 4.
» We can find A from

A2 cos?(¢) + AP-sin?(p) = A?
9 + 16 = 25

» Thus, A=05.
» Also,

> Hence, ¢ ~ 53° (23 n).
» And, x(t) =5cos(2mft+53°).  DMasoN
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Sums of Sinusoids
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Summary

» Adding sinusoids of the same frequency is a problem that
is frequently encountered in Electrical Engineering.
» We noticed that the frequency of the sum of sinusoids is the
same as the frequency of the sinusoids that we added.
» Such problems can be solved using trigonometric
identities.
> but, that is very tedious.

> We will see that sums of sinusoids are much easier to
compute using complex algebra.
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Sums of Sinusoids
0000000000 e

Lecture: Complex Exponentials
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Complex Exponential Signals
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Introduction
» The complex exponential signal is defined as

x(t) = Aexp(j(2rtft + ¢)).

> As with sinusoids, A, f, and ¢ are (real-valued) amplitude,
frequency, and phase.
» By Euler’s relationship, it is closely related to sinusoidal
signals

x(t) = Acos(27tft + ¢) + jAsin(27ft + ¢).

» We will leverage the benefits the complex representation
provides over sinusoids:
> Avoid trigonometry,
» Replace with simple algebra,
> Visualization in the complex plane. — SER0
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Complex Exponential Signals
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Plot of Complex Exponential

x(t) =1-exp(j(2rt/8t+ 11/4))

Since x(t) is
complex-valued, both
real and imaginary parts
are functions of time.

05

Imag(x(t))
o

-05
05

Real(x(t)) 05 0 5 Time(s) . uwiversiTy
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Complex Exponential Signals
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Complex Plane

08z ,’/ \\\\ =0
06} ,’/ b .
/ \ x(t) =1 g/r/etn/4)

041 \

= [ We can think of a

g = complex expontial as
-o2f f signals that rotate along
ot a circle in the complex
AN plane.
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Expressing Sinusoids through Complex Exponentials

» There are two ways to write a sinusoidal signal in terms of
complex exponentials.

> Real part:
Acos(27tft + ¢) = Re{Aexp(j(27tft + §))}.
> Inverse Euler:
Acos(@rft +9) = A (expi(2nft + ) +exp(—j(2nft +9))

» Both expressions are useful and will be important
throughout the course.
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Complex Exponential Signals
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Phasors
» Phasors are not directed-energy weapons first seen in the
original Star Trek movie.
» That would be phasers!
» Phasors are the complex amplitudes of complex
exponential signals:

x(t) = Aexp(j(2rtft + ¢)) = Ae? exp(j2rtft).

» The phasor of this complex exponential is X = Ael?.
» Thus, phasors capture both amplitude A and phase ¢ —in
polar coordinates. '
» The real and imaginary parts of the phasor X = Ae/? are
referred to as the in-phase (1) and quadrature (Q)
components of X, respectively:

X =1+ jQ = Acos(¢) + jAsin(¢)
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Phasor Notation for Complex Exponentials
» The complex exponential signal

x(t) = Aexp(j(27tft + ¢)) = A&? exp(j2rft)

is characterized completely by the combination of
» phasor X = Ae/?
> frequency f
» We will frequently use this observation to denote a complex
exponential by providing the pair of phasor and frequency:

(Ae?, f)

> We will refer to this notation as the spectrum representation Z.
of the complex exponential x(t)

vvvvvvvvvv
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Complex Exponential Signals
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From Sinusoids to Phasors
» A sinusoid can be written as

Acos(27tft+¢) = g(exp(j(27'cft+ $)) +exp(—j2rtft+¢))).

» This can be rewritten to provide

¢ 19
Acos(27tft + ¢) = A:I exp(j2rft) + A62 exp(—jarnft).
> Thus, a sinusoid is composed of two complex exponentials

. ¢
» One with frequency f and phasor %,

> rotates counter-clockwise in the complex plane;
> one with frequency —f and phasor 4&,%.
> rotates clockwise in the complex plane;
> Note that the two phasors are conjugate complexes of eacf} i o

other, R
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Exercise

» Write
x(t) = 3cos(27t10t — 77/3)
as a sum of two complex exponentials.

» For each of the two complex exponentials, find the
frequency and the phasor.

» Repeat for
y(t) = 2sin(2710t + 71/4)

» What are the in-phase and quadrature signals of

z(t) = 53 exp(j271101)
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Answers to Exercise
>
x(t) = 3cos(2t10t — 77/3)
_ 8 gin/3gj2niot n 3 gin/3 g-j2miot
2 2

as a sum of two complex exponentials. .
> Phasor-frequency pairs: (3e7/7/3,10) and (3&7/3, —10)

| 4
y(t) = 2sin(2w10t + 71/4) = 2 cos(2110t — 77/ 4)
_ 16—/71/46/271101‘ + 1e/'7r/4e—j27r10t
>
- 5 52
z(t) = 5™ 3 exp(j2110t) = (= + j——) exp(j271101)
2 "2 Maso
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Lecture: The Phasor Addition Rule
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Complex Exponential Signals
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Problem Statement
» |t is often required to add two or more sinusoidal signals.
» When all sinusoids have the same frequency then the
problem simplifies.
> This problem comes up very often, e.g., in AC circuit
analysis (ECE 280) and later in the class (chapter 5).

» Starting point: sum of sinusoids
x(t) = Ay cos(2mtft + ¢1) + ... + Ay cos(27tft + Ppn)

> Note that all frequencies f are the same (no subscript).
> Amplitudes A; phases ¢; are different in general.
» Short-hand notation using summation symbol (}):

N
x(t) =) _ Ajcos(27ft + ¢;)
=1

]
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The Phasor Addition Rule

» The phasor addition rule implies that there exist an
amplitude A and a phase ¢ such that

N
x(t) =) _ Ajcos(2rtft + ¢;) = Acos(27ft + ¢)
i=1
» Interpretation: The sum of sinusoids of the same
frequency but different amplitudes and phases is
> a single sinusoid of the same frequency.
» The phasor addition rule specifies how the amplitude A and
the phase ¢ depends on the original amplitudes A; and ¢;.
» Example: We showed earlier (by means of an unpleasant
computation involving trig identities) that:
x(t) = 3-cos(27ft) +4-cos(27tft + 71/2) = 5 cos(27ft +53°),

GEOR

r
m
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Prerequisites
» We will need two simple prerequisites before we can derive
the phasor addition rule.
1. Any sinusoid can be written in terms of complex
exponentials as follows

Acos(2rft + ¢) = Re{A&2™14)} — Re{Ael &2,

Recall that Ae? is called a phasor (complex amplitude).
2. For any complex numbers Xj, X5, ..., Xn, the real part of
the sum equals the sum of the real parts.

N N
Re {2 x,} — Y Re{X}.
i=1 i=1

» This should be obvious from the way addition is defined for
complex numbers.

o
(X1 +iy1) + (e +jy2) = (X1 +x2) +j(y1 + yo). MASON

uuuuuuuu
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Deriving the Phasor Addition Rule

» Objective: We seek to establish that
N
Y Ajcos(2ntft + ¢;) = Acos(27ft + )
i=1

and determine how A and ¢ are computed from the A; and

bi-
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Deriving the Phasor Addition Rule

» Step 1: Using the first pre-requisite, we replace the
sinusoids with complex exponentials

Zf\; Ajcos(2mtft + ¢;) = Z,-’L Re{Aiei(27fff+¢f)}
YN Re{Aeltigl2n}
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Deriving the Phasor Addition Rule

» Step 2: The second prerequisite states that the sum of the
real parts equals the the real part of the sum

N N
Y Re{Aie”e”™} = Re {Z A,-e/¢fe/2”ff} .
i=1 i=1
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Deriving the Phasor Addition Rule

> Step 3: The exponential &2 appears in all the terms of
the sum and can be factored out

N N
Re {ZAiei‘Pie/?nﬂ} — Re { (Z Aie/‘f’f) e/znfz}
i=1 i=1

> The term YN | A;e/?i is just the sum of complex numbers in
polar form.

> The sum of complex numbers is just a complex number X
which can be expressed in polar form as X = Aéel?.

> Hence, amplitude A and phase ¢ must satisfy

N
Ad? =Y Al
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Deriving the Phasor Addition Rule

» Note
> computing YN , A;e/?i requires converting A;e/ to
rectangular form,

> the result will be in rectangular form and must be converted
to polar form Ae/¢.
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Deriving the Phasor Addition Rule

> Step 4: Using Ae/? = YN | A;e/ in our expression for the
sum of sinusoids yields:
o{ (L, Ae) e] — Re{Aeie)
— Re {Ae/(anH-(P)
= Acos(2ntft+ ¢).

» Note: the above result shows that the sum of sinusoids of
the same frequency is a sinusoid of the same frequency.
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Applying the Phasor Addition Rule
» Applicable only when sinusoids of same frequency need to
be added!
» Problem: Simplify

x(t) = A cos(2rtft + ¢1) + ... Ay cos(27tft + Pn)

» Solution: proceeds in 4 steps
1. Extract phasors: X; = Aje/®ifori=1,..., N.
2. Convert phasors to rectangular form:
Xi = Ajcos¢;+ jAjsing;fori=1,..., N.
3. Compute the sum: X = Z,:’L X; by adding real parts and
imaginary parts, respectively.
4. Convert result X to polar form: X = Ael¢.
» Conclusion: With amplitude A and phase ¢ determined in
the final step Z
x(t) = Acos(2rtft+¢).  MasoN
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Example
» Problem: Simplify
x(t) =3 cos(2nft) + 4 - cos(2nft + 11/2)

» Solution:
1. Extract Phasors: X; = 3¢° = 3 and X, = 4&//2.
2. Convert to rectangular form: X; = 3 X, = 4/.
3. Sum: X:X-| —|—X2 =3+4j
4. Convert to polar form: A= /32 +42 =5 and
¢ = arctan(%) ~ 53° (%n)
> Result:
x(t) = 5cos(27tft + 53°).
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The Circuits Example

v(t)T() MO S va(t) 2nF :A:> ve(t)

» For v(t) =1V .cos(2n1kHz - t), find the current i(t).
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Problem Formulation with Phasors
» Source:

v(t) =1V -cos(2n1kHz - t) = Re{1V -exp(j2t1kHz - t)}

= phasor: V = 1Ve/
» Kirchhoff’s voltage law: v(t) = vg(t) = v(t);
= phasors: V = Vg = V.
» Resistor: ig(t) = V”Tft);
= phasor: Iz = %2
» Capacitor: ig(t) = CdVC()
= phasor: Ic=C- V- 1271 1 kHz
> Because LRUBIKIZY _ jorq kHz - exp(j271 kHz - )
» Kirchhoff’s current law: i(t) = ig(t) + ic(t); p
= phasors: I = Ig + ;. MESGR
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Problem Formulation with Phasors
» Therefore,

I:%+C-V~j2n~1kHz

\Y
1MQ+j27'L' 1kHz-2nF -1V

= 1TpA +j4tpA
» Convert to polar form:
1A + j4TpA = 12.6 pA - 0477

Using:
> /121 (4m)2~ 126

> tan~'((47m)) ~ 0.477
» Thus, i(t) ~ 12.6 yAcos(2t1kHz - t +0.47 - 1).

vvvvvvvvvv
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Exercise
» Simplify
7T
x(t) = 10 cos(207tt + Z)+
10 cos(207tt 4+ C%T)—i-
20 cos(207tt — %Tn)
> Answer:

x(t) = 10v/2 cos(207t + 7).
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Part Ill

Spectrum Representation of
Signals
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Lecture: Sums of Sinusoids (of different
frequency)
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Sum of Sinusoidal Signals
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Introduction

» To this point we have focused on sinusoids of identical
frequency f

N
x(t) =) Ajcos(2mft + ;).

i=1

> Note that the frequency f does not have a subscript /!

» Showed (via phasor addition rule) that the above sum can
always be written as a single sinusoid of frequency f.
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Introduction

» We will consider sums of sinusoids of different frequencies:

N
x(t) =) _ Ajcos(2mfit + ¢;).
i=

> Note the subscript on the frequencies f;!
> This apparently minor difference has dramatic
consequences.
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Sum of Two Sinusoids

x(t) = %cos(ant —/2)+ % cos(2mt3ft — 11/ 2)

—— 4/mcos(2mtft - 2)
—— 4/(3 1) cos(2m 3ft - 12)
— Sum of Sinusoids

Amplitude

0.01 0.02 0.03 0.04 0.05 0.06
Time (s)
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Sum of 25 Sinusoids

25
x(t) = ,;) ﬁ cos(2m(2n—1)ft — 1/ 2)

15

0.5

Amplitude
)

-1 i '. i l | h

0.01 0.02 0.03 0.04 0.05 0.06
Time (s)
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Non-sinusoidal Signals as Sums of Sinusoids

» If we allow infinitely many sinusoids in the sum, then the
result is a square wave signal.
» The example demonstrates that general, non-sinusoidal
signals can be represented as a sum of sinusoids.
» The sinusods in the summation depend on the general

signal to be represented.
> For the square wave signal we need sinusoids
> of frequencies (2n— 1) - f, and
> amplitudes ﬁ.
» (This is not obvious — Fourier Series).
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Non-sinusoidal Signals as Sums of Sinusoids

» The ability to express general signals in terms of sinusoids
forms the basis for the frequency domain or spectrum
representation.

» Basic idea: list the “ingredients” of a signal by specifying

» amplitudes and phases, as well as
> frequencies of the sinusoids in the sum.

©2009-2019, B.-P. Paris
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The Spectrum of a Sum of Sinusoids
» Begin with the sum of sinusoids introduced earlier

N
x(t) = Ao+ Y _ Aicos(27tfit + ;).
i=1
where we have broken out a possible constant term.
> The term Ay can be thought of as corresponding to a
sinusoid of frequency zero.
» Using the inverse Euler formula, we can replace the
sinusoids by complex exponentials

X(t)=Xo+ ) > exp(janfit) + - exp(—j2rfit) ¢ .
i=1

Whel’e XO = AO and )(I — Aleltl), GEORGE

vvvvvvvvvv
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The Spectrum of a Sum of Sinusoids (cont’d)
» Starting with

*

Nogxoo X; ,
X(t) :X0+Z EeXp(jZﬂ,'f,t)—F?exp(_jznflt) )
i=1

where X, = Ap and X; = A;e/?i.

» The spectrum representation simply lists the complex
amplitudes and frequencies in the summation:

X(1) = ((%6.0), g 7). (G ~h). oo Cib ), O~}
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Sum of Sinusoidal Signals

Example

» Consider the signal

x(t) =3+ 5cos(207tt — 71/2) + 7 cos(507tt + 71/ 4).
» Using the inverse Euler relationship
x(t)=3 + 3e/2exp(j2m10t) + 3€™/2exp(—j2r10t)
+ fe*exp(j2n25t) + Le /" *exp(—j2m25t).
> Hence,

X(f) ={(3.0), E

36772, -10)
e /m/4 —25)}

ei7/2,10), (
e/'rc/4’ 25), (%

LhSIRNOI[é)]
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Exercise

» Find the spectrum of the signal:

x(t) =6+ 4cos(107tt + 7w/3) + Scos(207tt — 71/7).

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis

Time and Frequency-Domain
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Time-domain and Frequency-domain
» Signals are naturally observed in the time-domain.

» A signal can be illustrated in the time-domain by plotting it
as a function of time.

» The frequency-domain provides an alternative perspective
of the signal based on sinusoids:
> Starting point: arbitrary signals can be expressed as sums
of sinusoids (or equivalently complex exponentials).
> The frequency-domain representation of a signal indicates
which complex exponentials must be combined to produce
the signal.
> Since complex exponentials are fully described by
amplitude, phase, and frequency it is sufficient to just
specify a list of theses parameters.
> Actually, we list pairs of complex amplitudes (Ae/?) and Z
frequencies f and refer to this list as X(f).

vvvvvvvvvv
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Time-domain and Frequency-domain

» It is possible (but not necessarily easy) to find X(f) from
x(t): this is called Fourier or spectrum analysis.

» Similarly, one can construct x(t) from the spectrum X(f):
this is called Fourier synthesis.

» Notation: x(t) <> X(f).

» Example (from earlier):

> Time-domain: signal

x(t) =3+ 5cos(207tt — 7/2) + 7 cos(507tt + 11/4).

> Frequency Domain: spectrum

5672, -10),
—jt/4 _
A N ¥

X(f)={(3,0), (3¢772,10),(
(Ee/n/4,25), (%
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Plotting a Spectrum
» To illustrate the spectrum of a signal, one typically plots the
magnitude versus frequency.
» Sometimes the phase is plotted versus frequency as well.

35 0.5

0.4

0.3

25F 0.2 .
0.1
2l
i 0

-0.1

-0.2

Magnitude
-
o
Phase/n
R —

20 a0 20 20

20 0 20 o 20
Frequency (Hz) Frequency (Hz) U VeRsity
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Why Bother with the Frequency-Domain?
» In many applications, the frequency contents of a signal is
very important.
> For example, in radio communications signals must be
limited to occupy only a set of frequencies allocated by the
FCC.
» Hence, understanding and analyzing the spectrum of a
signal is crucial from a regulatory perspective.
» Often, features of a signal are much easier to understand
in the frequency domain. (Example on next slides).
» We will see later in this class, that the frequency-domain
interpretation of signals is very useful in connection with
linear, time-invariant systems.
> Example: A low-pass filter retains low frequency
components of the spectrum and removes high-frequency -
components. MESGR
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Example: Original signal

T T 0.6

051

0.4 1

o
w
T

Amplitude
Spectrum

o
S
T

0.1

-0.1 L L L
490 495 500 505 510 Z
Frequency (Hz)
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Example: Corrupted signal
15 ' ' ' 5F =
45t
4+
351
3F
:
:é(' 5-2.5
ol
15f
1k
05¢
AN N R | I
o 05 15 2 500 550 600 - once
Time (s) Frequency (Hz) ON
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Synthesis: From Frequency to Time-Domain
» Synthesis is a straightforward process; it is a lot like
following a recipe.
» Ingredients are given by the spectrum

X(f) = {(X0,0), (X1, f1), (X7, —F1), oo, (i, ), (XN — )}

Each pair indicates one complex exponential component
by listing its frequency and complex amplitude.

» Instructions for combining the ingredients and producing
the (time-domain) signal:

N
n=—N

» Always simplify the expression you obtainl ~ DIASON
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Example
» Problem: Find the signal x(t) corresponding to

X(f) = {(3,0), (3e7772,10), (3672, ~10)
(367/4,25), (3617/4, ~25))

» Solution:

+ge—jn/26/27r10t + ge/n/Ze—j?mOt
+§e/n/4e/2n25t + %e—/n/4e—/2n25t

» Which simplifies to:

x(t) =3+ 5cos(207tt — 71/2) + 7 cos(507ct + 7t/ 4).
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Time and Frequency-Domain
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Exercise

» Find the signal with the spectrum:

X(f) = {(5,0), (2e7/7/410), (2¢/"/*, —10),
(ge/n/4, 15)' (ge—/’n/4, _15)
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Analysis: From Time to Frequency-Domain
» The objective of spectrum or Fourier analysis is to find the
spectrum of a time-domain signal.
» We will restrict ourselves to signals x(t) that are sums of
sinusoids

N
X(t) = A+ ZA,’ COS(27Tf,'t + (P,)
i—

» We have already shown that such signals have spectrum:
1 1 1 1
X(f) = {(X.0), (5%, 1), (GXT, =F1), - (G XN ), (5 XN — )
where Xo = Ag and X; = A;e/?i.
» We will investigate some interesting signals that can be

/5 EEEEE
written as a sum of sinusoids. MES6N
©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis
Time and Frequency-Domain
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Beat Notes

» Consider the signal
x(t) = 2 cos(275t) - cos(271400t).

» This signal does not have the form of a sum of sinusoids;
hence, we can not determine it’s spectrum immediately.

!
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MATLAB Code for Beat Notes

% Parameters

fs = 8192;

dur = 2;

f1 = 5;

f2 = 400;

A = 2;

NP = round(2+fs/fl); % number of samples to plot

% time axis and signal
tt=0:1/fs:dur;
xx = Axcos (2xpixflxtt) .xcos (2xpixf2xtt);

plot (tt (1:NP),xx (1:NP),tt (1:NP),A*rcos (2+xpixfl«tt (1:NP)),’r")
xlabel (' Time (s) ')
ylabel (' Amplitude’)

grld /GEDHGE
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Beat Notes as a Sum of Sinusoids

» Using the inverse Euler relationships, we can write

x(t) = cos(275t) - cos(27r400¢)

2.
2. 1. (/275 4 gJ275l) . 1. (27400l gj2r400L)
» Multiplying out yields:
1 . . 1 . .
X(t) — é(e/2714051‘ + e—j27r405t) + é(e/2n395t + e—j27r395t)_
» Applying Euler’s relationship, lets us write:

x(t) = cos(271405t) + cos(271395¢).
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Spectrum of Beat Notes

> We were able to rewrite the beat notes as a sum of
sinusoids

X (t) = cos(271405t) + cos(27r395t).

» Note that the frequencies in the sum, 395 Hz and 405 Hz,
are the sum and difference of the frequencies in the
original product, 5 Hz and 400 Hz.

» |t is now straightforward to determine the spectrum of the
beat notes signal:

X(f) = {(5,405), (3, ~405), (3,395), (3, ~395)}
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Spectrum of Beat Notes
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Amplitude Modulation

» Amplitude Modulation is used in communication systems.

» The objective of amplitude modulation is to move the
spectrum of a signal m(t) from low frequencies to high
frequencies.

> The message signal m(t) may be a piece of music; its
spectrum occupies frequencies below 20 KHz.

> For transmission by an AM radio station this spectrum must
be moved to approximately 1 MHz.

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis
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Amplitude Modulation

» Conventional amplitude modulation proceeds in two steps:

1. A constant A is added to m(t) such that A+ m(t) > 0 for all
t.

2. The sum signal A+ m(t) is multiplied by a sinusoid
cos(27tfst), where f; is the radio frequency assigned to the
station.

» Consequently, the transmitted signal has the form:

x(t) = (A+ m(t)) - cos(2mtfst).
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Amplitude Modulation

v

We are interested in the spectrum of the AM signal.
» However, we cannot compute X(f) for arbitrary message
signals m(t).
» For the special case m(t) = cos(27tfyt) we can find the
spectrum.
> To mimic the radio case, f, would be a frequency in the
audible range.
> As before, we will first need to express the AM signal x(t)
as a sum of sinusoids.
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Amplitude Modulated Signal
» For m(t) = cos(2mtfnt), the AM signal equals
x(t) = (A+ cos(27tfpt)) - cos(27ft).

» This simplifies to

x(t) = A-cos(2mtfst) + cos(27tfmt) - cos(27ft).
» Note that the second term of the sum is a beat notes signal

with frequencies f,, and f.

» We know that beat notes can be written as a sum of

sinusoids with frequencies equal to the sum and difference
of fm and f;:

x(t) = A-cos(2rfet) + 1 cos(27t(fo+ fm)t) + 1 cos(2m(fe — f@ t).
2 2 GEORGE
MASON
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Plot of Amplitude Modulated Signal
For A= 2, fm = 50, and fc = 400, the AM signal is plotted

it
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Spectrum of Amplitude Modulated Signal

» The AM signal is given by

1 1
x(t) = A-cos(27mtfot) + > cos(2mt(fe+ fm)t) + > cos(2m(fy — fm)t).
» Thus, its spectrum is

X()={ (§.). (5 1),
(3. fc+1n) (3, —fo = fm), (3. fo — fn), (3, —Fo + Tm)}
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Spectrum of Amplitude Modulated Signal
For A= 2, fm = 50, and fc = 400, the spectrum of the AM
signal is plotted below.
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Spectrum of Amplitude Modulated Signal

> It is interesting to compare the spectrum of the signal
before modulation and after multiplication with cos(27tf.t).

» The signal s(t) = A+ m(t) has spectrum

1 1
S(1) = {(A.0). (5,50). (5, ~50)}.
» The modulated signal x(t) has spectrum

X() ={ (4.400)

(4, —400),
(4.450), (

A
§1
1, —450), (1,350), (1, —350)}

» Both are plotted on the next page.
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Spectrum before and after AM

Before Modulation After Modulation

2 2F

18

=
<)

1.6

g
)

14

g
i

12

I
N

1

Spectrum
Spectrum
=

0.8

o
©

0.6

1] ]

-100 -50 0 50 100 -500 0 500 Z
Frequency (Hz) Frequency (Hz) MXSON

o
o

o
IS

o
o N
—o
—o

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis

Time and Frequency-Domain

0O00000000e

Spectrum before and after AM

» Comparison of the two spectra shows that amplitude
modulation indeed moves a spectrum from low frequencies
to high frequencies.

» Note that the shape of the spectrum is precisely preserved.

» Amplitude modulation can be described concisely by
stating:

> Half of the original spectrum is shifted by f; to the right, and
the other half is shifted by f; to the left.

» Question: How can you get the original signal back so that
you can listen to it.

» This is called demodulation.
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Lecture: Periodic Signals
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Periodic Signals

What are Periodic Signals?

» A signal x(t) is called periodic if there is a constant Ty
such that
x(t) = x(t+ Tp) for all t.

» In other words, a periodic signal repeats itself every Ty
seconds.

» The interval Ty is called the fundamental period of the
signal.

» The inverse of Ty is the fundamental frequency of the
signal.

» Example:

» A sinusoidal signal of frequency f is periodic with period
To =1/f.
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Harmonic Frequencies
» Consider a sum of sinusoids:

N
x(t) = Ao+ Y _ Aicos(27tfit + ;).
i=1

> A special case arises when we constrain all frequencies f;
to be integer multiples of some frequency fy:

fi=i-f.
» The frequencies f; are then called harmonic frequencies of
fo.
» We will show that sums of sinusoids with frequencies that
are harmonics are periodic. fRsox
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Harmonic Signals are Periodic

» To establish periodicity, we must show that there is Ty such
x(t) = x(t+ To).
» Begin with

x(t+Ty) = Ao+ YN, A cos(2rfi(t+ To) + i)
= Ao+ YN, Aicos(2ntfit + 27, Ty + ;)

» Now, let fy = 1/ Ty and use the fact that frequencies are
harmonics: f; =i - f,.
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Harmonic Signals are Periodic
» Then, fi- To =i-fy- Ty = i and hence

= Ao+ YN, A cos(2mfit + 27ti + ¢;)

» We can drop the 27t/ terms and conclude that
x(t+ To) = x(1).
» Conclusion: A signal of the form

N
x(t) = Ao+ ) _ Ajcos(27i - fot + ;)
i=1

is periodic with period To = 1/1.

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis

Periodic Signals

[e]e]e] lelele]e]

Finding the Fundamental Frequency
» Often one is given a set of frequencies fi, f, ..., fy and is
required to find the fundamental frequency f,.
» Specifically, this means one must find a frequency f, and
integers ny, no, ..., ny such that all of the following
equations are met:

= m-f
f2 = No- fo
fn = ny-fo

» Note that there isn’t always a solution to the above
problem.
> However, if all frequencies are integers a solution exists.
> Even if all frequencies are rational a solution exists.

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis
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Example
» Find the fundamental frequency for the set of frequencies
fi =12, =27, f; = 51.
» Set up the equations:

12 = ny - fo
27 = no- fo
51 = ns - fo

» Try the solution ny = 1; this would imply fy = 12. This
cannot satisfy the other two equations.

» Try the solution ny = 2; this would imply fy = 6. This
cannot satisfy the other two equations.

» Try the solution ny = 3; this would imply fy = 4. This
cannot satisfy the other two equations.

Periodic Signals

O0000e00

Example
» Note that the three sinusoids complete a cycle at the same
time at TO = 1/fo =1/3s.

Amplitude
o
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A Few Things to Note

» Note that the fundamental frequency f, that we determined
is the greatest common divisor (gcd) of the original
frequencies.

> fy=38isthegedof 4 =12, f, =27, and f3 = 51.

» The integers n; are the number of full periods (cycles) the
sinusoid of fregency f; completes in the fundamental period
To=1/1.

> Forexample,ny =f;-Top=f-1/fy = 4.
» The sinusoid of frequency f; completes ny = 4 cycles
during the period Tj.
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Exercise

» Find the fundamental frequency for the set of frequencies
fi=21%=351f=5.
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Fourier Series
» We have shown that a sum of sinusoids with harmonic
frequencies is a periodic signal.
» One can turn this statement around and arrive at a very
important result:
Any periodic signal can be expressed as a sum of
sinusoids with harmonic frequencies.

» The resulting sum is called the Fourier Series of the signal.
» Put differently, a periodic signal can always be written in
the form
x(t) = Ao+ XN, Aicos(2mifyt + ¢;)
= X +Zil\i1 )(ie/'Znifot +)(i*e—j27tifot

with Xo = Ap and X; = 2 e/, Masow
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Fourier Series

» For a periodic signal the complex amplitudes X; can be
computed using a (relatively) simple formula.

» Specifically, for a periodic signal x(t) with fundamental
period Ty the complex amplitudes X; are given by:

1

Xi= 1

To -
/ x(t) - 27t/ Togt,
0

> Note that the integral above can be evaluated over any
interval of length Ty.

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis




Periodic Signals

[e]e] o]

Example: Square Wave

» A square wave signal is periodic and between t = 0 and
t = Ty it equals

1 0<t<Dl
x(t) = - 2
() {—1 h<t<Ty

» From the Fourier Series expansion it follows that x(¢) can
be written as

o]

x(ty=Y ﬁ cos(27(2n — 1)ft — 11/2)

n=0
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Time-Frequency Spectrum
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Limitations of Sum-of-Sinusoid Signals
» So far, we have considered only signals that can be written
as a sum of sinusoids.

N
x(t) = Ao+ Y_ Ajcos(27tfit + ¢;).
i=1
» For such signals, we are able to compute the spectrum.
» Note, that signals of this form
> are assumed to last forever, i.e., for —oo < t < oo,
> and their spectrum never changes.
» While such signals are important and useful conceptually,
they don’t describe real-world signals accurately.
» Real-world signals
> are of finite duration,
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Musical Notation

» Musical notation (“sheet music”) provides a way to
represent real-world signals: a piece of music.
» As you know, sheet music
P places notes on a scale to reflect the frequency of the tone
to be played,
> uses differently shaped note symbols to indicate the
duration of each tone,
> provides the order in which notes are to be played.
» In summary, musical notation captures how the spectrum
of the music-signal changes over time.
» We cannot write signals whose spectrum changes with
time as a sum of sinusoids.
> A static spectrum is insufficient to describe such signals.

» Alternative: time-frequency spectrum

nnnnnnn

> their spectrum changes over time. MES6N

vvvvvvvvvv
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Example: Musical Scale

Note C D E F G A B C
Frequency (Hz) || 262 | 294 | 330 | 349 | 392 | 440 | 494 | 523

Table: Musical Notes and their Frequencies
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Example: Musical Scale
> If we play each of the notes for 250 ms, then the resulting
signal can be summarized in the time-frequency spectrum
below.
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MATLAB Spectrogram Function

» MATLAB has a function spect rogram that can be used to
compute the time-frequency spectrum for a given signal.

» The resulting plots are similar to the one for the musical
scale on the previous slide.
» Typically, you invoke this function as
spectrogram( xx, 256, 128, 256,
fs,’ yaxis’),
where xx is the signal to be analyzed and fs is the
sampling frequency.
» The spectrogram for the musical scale is shown on the
next slide.
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Spectrogram: Musical Scale
» The color indicates the magnitude of the spectrum at a
given time and frequency.
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Chirp Signals
» Obijective: construct a signal such that its frequency
increases with time.
» Starting Point: A sinusoidal signal has the form:

x(t) = Acos(2rtfyt + ¢).

» We can consider the argument of the cos as a time-varying
phase function
¥ (t) = 2nft + ¢.
» Question: What happens when we allow more general
functions for ¥ (t)?
> For example, let

¥(t) = 700712 4 4407t + . M
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Spectrogram: cos(¥(t))
» Question: How is he time-frequency spectrum related to
¥(t)?
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Instantaneous Frequency

» For a regular sinusoid, ¥(t) = 27rtfyt + ¢ and the frequency
equals f.

» This suggests as a possible relationship between ¥(t) and
o 1 d

fo = EE‘I’(U.

» If the above derivative is not a constant, it is called the
instantaneous frequency of the signal, f;(t).

» Example: For ¥(t) = 7007tt? + 4407t + ¢ we find

fi(t) = 21—7T%(7oom‘2 + 4407t + ¢) = 700t + 220.

> This describes precisely the red line in the spectrogramon _ ~_
the previous slide. MESGR
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Constructing a Linear Chirp

> Obijective: Construct a signal such that its frequency is
initially f; and increases linear to f, after T seconds.

» Solution: The above suggests that

fo — fi

fi(t) = ==

t+1f.

» Consequently, the phase function ¥ (t) must be

¥(t)=2n 5T t“+2nfit+ ¢

> Note that ¢ has no influence on the spectrum; it is usually
setto 0.
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Constructing a Linear Chirp

» Example: Construct a linear chirp such that the frequency
decreases from 1000 Hz to 200 Hz in 2 seconds.

» The desired signal must be

x(t) = cos(—2712002 4 2711000t).
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Exercise

» Construct a linear chirp such that the frequency increases
from 50 Hz to 200 Hz in 3 seconds.

» Sketch the time-frequency spectrum of the following signal

x(t) = cos(27t500¢t + 100 cos(2712t))
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Signal Operations in the Frequency Domain

» Signal processing implies that we apply operations to
signals; Examples include:
> Adding two signals
> Delaying a signal
> Multiplying a signal with a complex exponential signal
» Question: What does each of these operation do the
spectrum of the signal?
> We will answer that question for some common signal
processing operations.
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Scaling a Signal
> Let x(t) be a signal with spectrum X (f) = {(Xn, fn) } n-
» Question: If c is a scalar constant, what is the spectrum of
the signal y(t) = c- x(t)?
» Since
x(1) = Y X, - &2t
n

y(t)=c-x(t)=Y c- X, .

» Therefore,
Y(f) — {(C . Xn, fn)}n.

» We use the short-hand Y (f) = c¢- X(f) to denote p
{(¢c-Xn.t)}p.— MasoN
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Adding Two Signals
> Let x(t) and y(t) be signals with spectra X(f) and Y (f).
» Question: What is the spectrum of the signal
z(t) = x(t) +y(1)?
» Since

2(t) = x(1) + (1) = ¥ X - &2+ Y ¥, - o2
Z(f) = {(Xa + Yo )}

» We use the short-hand Z(f) = X(f) + Y(f) to denote
{(Xn+ Yn,fn)}.
» Example: What is the spectrum Z(f) when signals with
spectra X(f) = {(3,0),(1,1),(1,-1),(2,.2),(2,-2)} and _

aaaaaa

Y(f) = {(j,1). (=, —1),(1,3), (1, —3)} are added? MAgoN

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis

Operations on Spectrum

[e]e] le]e]e)

Delaying a Signal
> Let x(t) be a signal and X (f) = {(Xn, fn) } » denotes its
spectrum.
» Question: What is the spectrum of the signal
y(t) = x(t—7)7
» Since

y(t) — X(t . T) — an . e/27rfn(t—‘r) — Exne—j27tfn'r . e/'27tfnt
n n

it follows that
Y(f) = {(Xne 27, )} .

> Notice that delaying a signal induces phase shifts in the

spectrum
> The phase shifts are proportional to the delay T and the Nﬁ&"dﬁ

frequencies f,, ~ weweew
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Delaying a Signal — Example

» Example: What is the spectrum Y(f) when the signal with
spectrum X(f) = {(3,0),(1,1),(1,-1),(2,2),(2,-2) } is
shifted by T = 1?

» Answer:

Y(f) ={3.0),(=).1).(.=1).(-2.2), (-2, -2)}
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Multiplying by a Complex Exponential
> Let x(t) be a signal and X(f) = {(c- Xp, fn) } » denotes its
spectrum.
» Question: What is the spectrum of the signal
y(t) = x(t) - &?7%t?
» Since

y(t) — X(t) . e/27tfct — ZXn . e/'27rfnt . ej27tfct — ZXn . e/'27r(f,,+fc)t
n n

it follows that
Y(f) - {Xn, fn + fc}

> Notice that the entire spectrum is shifted by f, i.e.,
Y(f) = X(f+fc).

> Notice the “symmetry” with the time delay operation —this _ =_
is called duality. AN
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Exercise: Spectrum of AM Signal

» We discussed that amplitude modulation processess a
message signal to produce the transmitted signal s(t):

s(t) = (A+m(t)) - cos(2rtfet).

» Assume that the spectrum of m(t) is M(f).

» Question: Use the Spectrum Operations we discussed to
express the spectrum S(f) in terms of M(f).

> Answer:

S() = M(F+16) + ZM( = )+ {(5. 1) + {(5.~0)}
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Sampling and Discrete-Time Signals

» MATLAB, and other digital processing systems, can not
process continuous-time signals.

» Instead, MATLAB requires the continuous-time signal to be
converted into a discrete-time signal.

» The conversion process is called sampling.
» To sample a continuous-time signal, we evaluate it at a
discrete set of times t, = nTs, where
> nis ainteger,
> T is called the sampling period (time between samples),
> fs = 1/Tsis the sampling rate (samples per second).
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Sampling and Discrete-Time Signals

» Sampling results in a sequence of samples
x(nTs) = A-cos(27tfnTs + ¢).

» Note that the independent variable is now n, not t.
» To emphasize that this is a discrete-time signal, we write

x[n] = A-cos(2rtfnTs + ¢).

» Sampling is a straightforward operation.

» We will see that the sampling rate fs must be chosen with
care!
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Sampled Signals in MATLAB

» Note that we have worked with sampled signals whenever
we have used MATLAB.

» For example, we use the following MATLAB fragment to
generate a sinusoidal signal:

fs
tt
XX

100;
0:1/fs:3;
5xcos (2xpix2xtt + pi/4);

» The resulting signal xx is a discrete-time signal:
» The vector xx contains the samples, and
> the vector tt specifies the sampling instances:
0,1/f,2/fs,...,3.
» We will now turn our attention to the impact of the sampling
rate fs. Faeona
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Example: Three Sinuoids

» Obijective: In MATLAB, compute sampled versions of
three sinusoids:
1. x(t) = cos(2mtt + 71/ 4)
2. x(t) = cos(2m9t — 1t/ 4)
3. x(t) = cos(2mi1t+ 7t/4)
» The sampling rate for all three signals is f; = 10.
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MATLAB code

plot_SamplingDemo - Sample three sinusoidal signals to
demonstrate the impact of sampling

oo oo

%% set parameters
fs = 10;
dur = 10;

%% generate signals

tt = 0:1/fs:dur;

xx1 = cos (2+pixtt+pi/4);
xx2 = coS (2+pix9xtt-pi/4);
xx3 = cos (2+pix1lxtt+pi/4);

%% plot

plot (tt,xx1l,’:0’,tt,xx2," :x",tt,xx3," :+");

xlabel (' Time_ (s)’)

grid

legend (' £f=1',’ £f=9’,’ £=11’,’Location’,’EastOutside’) Zconce
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Resulting Plot
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What happened?

» The samples for all three signals are identical: how is that
possible?
» Is there a “bug” in the MATLAB code?
> No, the code is correct.
» Suspicion: The problem is related to our choice of
sampling rate.
> To test this suspicion, repeat the experiment with a different
sampling rate.
» We also reduce the duration to keep the number of samples
constant - that keeps the plots reasonable.

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis



Introduction to Sampling

[e]e]e]e] o)

MATLAB code

% plot_SamplingDemoHigh - Sample three sinusoidal signals to
% demonstrate the impact of sampling

o

% set parameters
fs = 100;
dur = 1;

%% generate signals

tt = 0:1/fs:dur;

xx1 = cos (2+pixtt+pi/4);
Xx2 = cos (2+xpix9xtt-pi/4);
xxX3 = cos (2+pixllxtt+pi/4);

%% plots

plot (tt,xx1,’—*’,tt,xx2,’-x’,tt,xx3, " —+", ...
tt(l:10:end), xx1(1:10:end),’ok’);

grid

xlabel (' Time_ (s) ')

legend (' £=1",’ £=9’,’£f=11",’f_s=10’',’Location’,’EastOutside’) biASON
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Resulting Plot
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The Influence of the Sampling Rate

» Now the three sinusoids are clearly distinguishable and
lead to different samples.

» Since the only parameter we changed is the sampling rate
fs, it must be responsible for the ambiguity in the first plot.
» Notice also that every 10-th sample (marked with a black
circle) is identical for all three sinusoids.
> Since the sampling rate was 10 times higher for the second
plot, this explains the first plot.
» It is useful to investigate the effect of sampling
mathematically, to understand better what impact it has.
» To do so, we focus on sampling sinusoidal signals.
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Sampling a Sinusoidal Signal

» A continuous-time sinusoid is given by
x(t) = Acos(2rtft + ¢).

» When this signal is sampled at rate fs, we obtain the
discrete-time signal

x[n] = Acos(27rtfn/fs + ¢).

> ltis useful to define the normalized frequency #; = é o]
that A
x[n] = Acos(27tfyn+ ¢).
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Three Cases

» We will distinguish between three cases:
1. 0 < fy < 1/2 (Oversampling, this is what we want!)
2. 1/2 < t; < 1 (Undersampling, folding)
3. 1 < f; < 3/2 (Undersampling, aliasing)
» This captures the three situations addressed by the first
example:
1. f=1f=10= % =1/10
2. f=9,fs=10=f; =9/10
3. f=11,f,=10= f; = 11/10

» We will see that all three cases lead to identical samples.
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Oversampling

» When the sampling rate is such that 0 < #; < 1/2, then
the samples of the sinusoidal signal are given by

x[n] = Acos(2rtfyn+ ¢).

» This cannot be simplified further.
» It provides our base-line.
» Oversampling is the desired behaviour!
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Undersampling, Aliasing

» When the sampling rate is such that 1 < #; < 3/2, then we
define the apparent frequency f; = fy — 1.

» Noticethat 0 < f, < 1/2and fy = f,+ 1.
» Forf=11,=10=f, =11/10 = f, = 1/10.
» The samples of the sinusoidal signal are given by

x[n] = Acos(27r?dn +¢) = Acos(2m(1 + ?‘a)n +¢).
» Expanding the terms inside the cosine,
x[n] = Acos(27tfan + 27tn 4 ¢) = Acos(27tfan + ¢)

> Interpretation: The samples are identical to those from a p
sinusoid with frequency f = f; - f; and phase ¢. MASON

uuuuuuuuuu
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Undersampling, Folding
» When the sampling rate is such that 1/2 < f; < 1, then we
introduce the apparent frequency f,=1—1;; again
O<fa<1/2alsofd—1—fa X
> Forf=29, fs_10:>fd_9/10:>fa:1/10.
» The samples of the sinusoidal signal are given by
x[n] = Acos(27tfyn + ¢) = Acos(2rt(1 — Fa)n+ ¢).
» Expanding the terms inside the cosine,
x[n] = Acos(—27tfan + 2710+ ¢) = Acos(—27fan + ¢)
» Because of the symmetry of the cosine, this equals
x[n] = Acos(27tfan — ¢).
> Interpretation: The samples are identical to those froma
sinusoid with frequency f = 7, - f; and phase —¢ (phase ~MASON

vvvvvvvvvv
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Sampling Higher-Frequency Sinusoids

» For sinusoids of even higher frequencies f, either folding or
aliasing occurs.

> As before, let f, be the normalized frequency f/fs.

» Decompose fy into an integer part N and fractional part fo.

» Example: If f; is 5.7 then N equals 5 and fpis 0.7.
> Notice that 0 < f, < 1, always.

» Phase Reversal occurs when the phase of the sampled
sinusoid is the negative of the phase of the
continuous-time sinusoid.

» We distinguish between

» Folding occurs when f, > 1/2. Then the apparent

frequency #, equals 1 — fr and phase reversal occurs.
> Aliasing occurs when f, < 1/2. Then the apparent

frequency is f, = fp; No phase reversal occurs. MESON

uuuuuuuuuu
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Examples

» For the three sinusoids considered earlier:
1. f=1,0=n/4f=10=1F=1/10
2. f=9,¢p=—-m/4f=10=Ff;=9/10
3. f=11,9p=m/4fs=10=F =11/10
» The first case, represents oversampling: The apparent
frequency f; = fy and no phase reversal occurs.
» The second case, represents folding: The apparent ;
equals 1 — fy and phase reversal occurs.
> In the final example, the fractional part of f; = 1/10.

Hence, this case represents alising; no phase reversal
occurs.
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Exercise
The discrete-time sinusoidal signal

x[n] = 5 cos(270.2n — %).

was obtained by sampling a continuous-time sinusoid of the
form

x(t) = Acos(2rtft + ¢)
at the sampling rate fs = 8000 Hz.

1. Provide three different sets of paramters A, f, and ¢ for the
continuous-time sinusoid that all yield the discrete-time
sinusoid above when sampled at the indicated rate. The
parameter f must satisfy 0 < f < 12000 Hz in all three
cases.

2. For each case indicate if the signal is undersampled or Misas
oversampled and if aliasing or folding occurred. s
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Experiments

» Two experiments to illustrate the effects that sampling
introduces:
1. Sampling a chirp signal.
2. Sampling a rotating phasor.
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Experiment: Sampling a Chirp Signal

> Obijective: Directly observe folding and aliasing by means
of a chirp signal.
» Experiment Set-up:
> Set sampling rate. Baseline: f; = 44.1KHz (oversampled),
Comparison: f; = 8.192KHz (undersampled)
» Generate a (sampled) chirp signal with instantaneous

frequency increasing from 0 to 20KHz in 10 seconds.
> Evaluate resulting signal by

> playing it through the speaker,
> plotting the periodogram.

» Expected Outcome?

» Expected Outcome:

> Directly observe folding and aliasing in second part of p
experiment. MASON

uuuuuuuu
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Periodogram of undersampled Chirp
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%% Parameters
fs = 8192; % 44.1KHz for oversampling, 8192 for undersampling

% chitp: 0 to 20KHz in 10 seconds

fstart = 0;
fend = 20e3;
dur = 10;

%% generate signal

tt = 0:1/fs:dur;
psi = 2+pix (fend-fstart)/ (2+«dur)+tt.”2; $ phase function
XX = cos(psi);

%% spectrogram
spectrogram( xx, 256, 128, 256, fs,’yaxis’);

%% play sound
soundsc ( xx, fs);
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Apparent and Normalized Frequency
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Experiment: Sampling a Rotating Phasor

» Objective: Investigate sampling effects when we can
distinguish between positive and negative frequencies.
» Experiment Set-up:
> Animation: rotating phasor in the complex plane.
» Sampling rate describes the number of “snap-shots” per
second (strobes).
> Frequency the number of times the phasor rotates per
second.
> positive frequency: counter-clockwise rotation.
> negative frequency: clockwise rotation.

» Expected Outcome?
» Expected Outcome:
> Folding: leads to reversal of direction.
> Aliasing: same direction but apparent frequency is lower =
than true frequency. MaSoRN
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True and Apparent Frequency

fs == 20
True Frequency -05/0,05|195 | 20 | 20.5
Apparent Frequency || -0.5 | 0| 05| -05 | 0 | 0.5

» Note, that instead of folding we observe negative
frequencies.

» occurs when true frequency equals 9.5 in above example.
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%% parameters

fs = 10; % sampling rate in frames per second
dur = 10; % signal duration in seconds

ff = 9.5; $% frequency of rotating phasor

phi = 0; % initial phase of phasor

A =1; % amplitude

%% Prepare for plot
TitleString = sprintf ('Rotating, Phasor: f_d _=_%5.2f", ff/fs);
figure (1)

% unit circle (plotted for reference)
cc = exp(lj*x2xpix(0:0.01:1));

ccx = Axreal(cc);

cci = Aximag(cc);
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%% Animation
for tt = 0:1/fs:dur
tic; % establish time-reference
plot (ccx, cci, ":', ...
[0 Axcos (2xpixffxtt+phi)], [0 Axsin(2xpixffxtt+phi)], ’'-ob’);
axis (’ square’)
axis([-A A -A A]);
title (TitleString)
xlabel ("Real’)
ylabel (' Imag’)
grid on;

o3

drawnow ¢ force plots to be redrawn
te = toc;

% pause until the next sampling instant, if possible
if ( te < 1/fs)

pause (1/fs-te)
end
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Lecture: The Sampling Theorem
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Introduction to Sampling

The Sampling Theorem
» We have analyzed the relationship between the frequency
f of a sinusoid and the sampling rate fs.
> We saw that the ratio f/fs must be lessthan 1/2, i.e.,
fs > 2 - f. Otherwise aliasing or folding occurs.
» This insight provides the first half of the famous sampling
theorem

A continuous-time signal x(t) with frequencies no higher
than fnax can be reconstructed exactly from its samples
x[n] = x(nTs), if the the samples are taken at a rate

fs =1/ Ts that is greater than 2 - fax.

v,

» This very import result is attributed to Claude Shannon and _

GEORGE

Harry Nyquist. ~—— ASON
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Reconstructing a Signal from Samples

» The sampling theorem suggests that the original
continuous-time signal x(t) can be recreated from its
samples x[n].

> Assuming that samples were taken at a high enough rate.
> This process is referred to as reconstruction or D-to-C
conversion (discrete-time to continuous-time conversion).

» In principle, the continous-time signal is reconstructed by
placing a suitable pulse at each sample location and
adding all pulses.

> The amplitude of each pulse is given by the sample value.
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Suitable Pulses

» Suitable pulses include
> Rectangular pulse (zero-order hold):

p(t) = { 1 for—Tg/2<t< Ts/2

0 else.
> Triangular pulse (linear interpolation)

14+1t/Ts for—Tg<t<O0
p(ty=<9 1—t/Ts for0<t<Ts
0 else.
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Reconstruction

» The reconstructed signal X(t) is computed from the
samples and the pulse p(t):

e}

X(t)y=Y_ x[n]-p(t—nTs).

n=-—oo

» The reconstruction formula says:
> place a pulse at each sampling instant (p(t — nTs)),
> scale each pulse to amplitude x[n],
> add all pulses to obtain the reconstructed signal.
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|ldeal Reconstruction
» Reconstruction with the above pulses will be pretty good.
> Particularly, when the sampling rate is much greater than
twice the signal frequency (significant oversampling).
» However, reconstruction is not perfect as suggested by the
sampling theorem.
» To obtain perfect reconstruction the following pulse must

be used:
sin(7tt/ Ts)

O =—t7
» This pulse is called the sinc pulse.

» Note, that it is of infinite duration and, therefore, is not
practical.
> In practice a truncated version may be used for excellent =
reconstruction. SR
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The sinc pulse
15 T T T
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Introduction to Linear,
Time-Invariant Systems
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[ ]

Systems

> A system is used to process an input signal x[n] and
produce the ouput signal y[n].
> We focus on discrete-time signals and systems;
> a correspoding theory exists for continuous-time signals
and systems.
» Many different systems:
> Filters: remove undesired signal components,
» Modulators and demodulators,
> Detectors.

X ——— system  ———YIn]
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Representative Examples

» The following are examples of systems:
» Squarer: y[n] = (x[n])?;
» Modulator: y[n] = x[n] - cos(27tfyn);
> Averager: y[n] = & YV ' x[n— k];
> FIR Filter: y[n] = YM_, byx[n — k]
» In MATLAB, systems are generally modeled as functions
with x[n] as the first input argument and y[n] as the output
argument.

> Example: first two lines of function implementing a squarer.

function yy = squarer (xx)
% squarer - output signal is the square of the input signal
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0O@0000000

Squarer

» System relationship between input and output signals:

yln] = (x[n))?.

» Example: Input signal: x[n] = {1,2,3,4,3,2,1}
> Notation: x[n] = {1,2,3,4,3,2,1} means
x[0]=1,x[1]=2,..., x[6] =1;
all other x[n] = 0.

» Output signal: y[n] = {1,4,9,16,9,4,1}.
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Modulator

» System relationship between input and output signals:
ylnl = (x[n]) - cos(2rtfgn);

where the modulator frequency fy is a parameter of the
system.

» Example:
> Input signal: x[n] ={1,2,3,4,3,2,1}
> assume fy = 0.5, i.e., cos(2rtfyn) = {...,1,—1,1,—1,...}.

» Output signal: y[n] = {1,-2,3,—4,3, -2,1}.
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Averager

» System relationship between input and output signals:

ylnl = 4T x[n— K]
= 4N+ xn=1+...+x[n—(M-1)])

= Y boxn— k.

» This system computes the sliding average over the M most
recent samples.
» Example: Input signal: x[n] = {1,2,3,4,3,2,1}
» For computing the output signal, a table is very useful.
» synthetic multiplication table.
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3-Point Averager (M = 3)

n[1 0 1 2 3 4 5 6 7 8
xn][0 1 2 3 4 3 2 1 00
1 i 2 4 2 1
RS Mt E IS AP RO I -
M 3? 3 3%1
+y-x[n-2/|{0 o 0o & 2 1 & 1 2 1
yinfJo I 1 2 3 03 2 1 1
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General FIR Filter

» The M-point averager is a special case of the general FIR
filter.

> FIR stands for Finite Impulse Response; we will see what
this means later.
» The system relationship between the input x[n] and the
output y[n] is given by

M—1

y[n =Y bx-x[n—k].
k=0

> M is the number of filter coefficients.
» M — 1 is called the order of the filter.
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General FIR Filter

» System relationship:

M—1

y[n] =Y bx-x[n—k].
k=0

» The filter coefficients by determine the characteristics of
the filter.

> Much more on the relationship between the filter
coefficients by and the characteristics of the filter later.
> Clearly, with b, = {; for k =0,1,..., M — 1 we obtain the
M-point averager.
» Again, computation of the output signal can be done via a
synthetic multiplication table. P
> Example: x[n] ={1,2,3,4,3,2,1} and b, = {1, -2,1}. ON

uuuuuuuuuu
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FIR Filter (bx = {1,—-2,1})

n 41 0 1 2 3 4 5 6 7 8
x[n] 01 2 3 4 3 2 1 0 0
1-x[n] 0 1 2 3 4 3 2 1 0 0

—2.x[n-1]]0 0 -2 -4 -6 8 -6 -4 -2 0

+1.x[n—-2]|0 0 0 1 2 3 4 3 2 f{
yIn] O 1 0 0 0 2 0 0 0 1

» y[n]={1,0,0,0,—2,0,0,0,1}
> Note that the output signal y[n] is longer than the input
signal x[n].
» Note, synthetic multiplication works only for short,
finite-duration signal. Faconae
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Exercise

1. Find the output signal y[n] for an FIR filter

M—1
ylnl = Y bx-x[n—K]
k=0

with filter coefficients by = {1, —1,2} when the input signal
is x[n] = {1,2,4,2,4,2,1}.

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis
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Unit Step Sequence and Unit Step Response
» The signal with samples

uln] = 1 forn>0,
10 forn<O

is called the unit-step sequence or unit-step signal.

» The output of an FIR filter when the input is the unit-step
signal (x[n] = u[n]) is called the unit-step response r[n].

un] — ' FIRFiter "Nl
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Unit-Step Response of the 3-Point Averager

» Input signal: x[n] = u[n].
> Output signal: r[n] = 1 Y-2_o u[n— k.

n[-1 0 1 2 3
un| 0 1 1 1 1
Sual [0 1 55

+%u[n—1] 0 0 2 33

+iuln-2]|o o o I 1
rinf] o % 5 1 1

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis

Special Signals
[e]e] lele]ele)

Unit-Impulse Sequence and Unit-Impulse Response
» The signal with samples

5[] = 1 forn=0,
1 0 forn#0

is called the unit-impulse sequence or unit-impulse signal.
» The output of an FIR filter when the input is the
unit-impulse signal (x[n] = [n]) is called the unit-impulse
response, denoted h[n].
» Typically, we will simply call the above signals simply
impulse signal and impulse response.
» We will see that the impulse-response captures all
characteristics of a FIR filter.
» This implies that impulse response is a very important Z e
conceptt  UlAsSO N
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Unit-Impulse Response of a FIR Filter

» Input signal: x[n] = J[n].
» Output signal: h[n] = Y¥- bkd[n — k|.

ni-1 0 1 2 3 M

snf|o 1 0 0 0 0

bo-o[n] | 0 by O 0 O 0
+by-6n—1]]0 0 by 0 O 0
+bo-6n—2]|0 0 0 b O 0
+by-S[n—M |0 0 0 0 O by
h[n 0 bo b1 b2 b3 bM
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Important Insights

» For an FIR filter, the impulse response equals the
sequence of filter coefficients:

[ by forn=0,1,..., M—1
h[n]_{ 0 else.

» Because of this relationship, the system relationship for an
FIR filter can also be written as

yln = TV bex[n— k]
= L. hlk]x[n— k]
= Y™ h[k]x[n— K].

» The operation y[n] = h[n] « x[n] = Y% h[k]|x[n— k] is P
called convolution; it is a very, very important operation. MAS6N

vvvvvvvvvv
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Exercise

1. Find the impulse response h[n]| for the FIR filter with
difference equation

y[n] =2-x[n]+x[n—1] =3 - x[n—3].
2. Compute the output signal, when the input signal is
x[n] = u[n].

3. Compute the output signal, when the input signal is
x[n] = exp(—an) - u[n].
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Lecture: Linear, Time-Invariant Systems
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Introduction

» We have introduced systems as devices that process an
input signal x[n] to produce an output signal y[n].
» Example Systems:
> Squarer: y[n| = (x[n]
> Modulator: y[n] = x[n] - cos(2mfyn), with 0 < fy < 5.
> FIR Filter:

2

M—1
ylnl =Y hik]-xn— k]
k=0
Recall that h[k] is the impulse response of the filter and that
the above operation is called convolution of h[n] and x[n].
» Objective: Define important characteristics of systems
and determine which systems possess these
characteristics. MEsox
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Causal Systems
» Definition: A system is called causal when it uses only the
present and past samples of the input signal to compute
the present value of the output signal.
» Causality is usually easy to determine from the system
equation:
> The output y[n] must depend only on input samples
x[n],x[n—1],x[n—2],....
» Input samples x[n+ 1], x[n+ 2], ... must not be used to
find y[n.
» Examples:
> All three systems on the previous slide are causal.
» The following system is non-causal:

t x[n—k| =
=1

k=—

(x[n+ 1]+ x[n] + x[n—1]).

W[ =
o\
g
2

w| =

yln =
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Linear Systems
» The following test procedure defines linearity and shows
how one can determine if a system is linear:
1. Reference Signals: For i = 1, 2, pass input signal x;[n]
through the system to obtain output y;[n].
2. Linear Combination: Form a new signal x[n] from the
linear combination of xq[n] and xz[n]:

x[n] = x [n] + xz[n].

Then, Pass signal x[n] through the system and obtain y[n].
3. Check: The system is linear if

y[n] = y1[n] + yz[n]

» The above must hold for all inputs x4 [n] and x2[n]. P
» For a linear system, the superposition principle holds. MaSoRN
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[llustration

X1 [n

S
=

System )

System

These two outputs
must be identical

System
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Example: Squarer

» Squarer: y[n] = (x[n])?
1. References: y;[n] = (x;[n])? fori=1,2.
2. Linear Combination: x[n] = xq[n] 4+ x2[n] and

yln] = (x[n])? = (x1[n] + x2[n])?
(x1[n))2 + (%2[n])? + 2x¢ [n] X2 [n].

3. Check:

y[n) # yiln) + ya[n] = (x1[n))® + (x2[n])2.

» Conclusion: not linear.

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis

Linear, Time-invariant Systems

[e]e]e] Te]

Example: Modulator

» Modulator: y[n] = x[n] - cos(27tfyn)
1. References: y;[n| = x;[n] - cos(2mtfyn) fori=1,2.
2. Linear Combination: x[n] = x{[n] + x2[n] and

x[n] - cos(27tfyn)
(x1[n] + x2[n]) - cos(2mtfyn).

y[n]

3. Check:

y[n] = y1[n] + y2[n] = xq[n] - cos(27tfyn) + X2 [n] - cos(27tfyn).

» Conclusion: linear.
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Example: FIR Filter

> FIR Filter: y[n] = V" hlk] - x[n — k]

1. References: y;[n] = Y1 hik] - x;[n— k] for i = 1, 2.
2. Linear Combination: x[n] = xq[n] + x2[n] and

M—1 M—1
ylnj =) hlkl-x[n—k] =} hlk]-(x1[n—k] +xz[n—K]).
k=0 k=0

3. Check:
M1 M—1
y[n] = yiln]+ya[n] = Y hlk]-xi[n—k]+ Y_ h[K]-x2[n—K].
k=0 k=0
> C lusion: i }
onclusion: linear Miss
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Time-invariance

» The following test procedure defines time-invariance and
shows how one can determine if a system is time-invariant:

1. Reference: Pass input signal x[n] through the system to
obtain output y[n].

2. Delayed Input: Form the delayed signal x4[n] = x[n — ng].
Then, Pass signal x4[n] through the system and obtain
Yaln].

3. Check: The system is time-invariant if

yln—no] = yq[n]

» The above must hold for all inputs x[n] and all delays n.
> Interpretation: A time-invariant system does not change, _
over time, the way it processes the input signal. ~ J1ASON
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lllustration
X System yin Delay ng yln = o]
These two outputs
must be identical
du Delay ng X[n = o] System yd[/
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Example: Squarer

» Squarer: y[n] = (x[n])?
1. Reference: y[n] = (x[n])?.
2. Delayed Input: xy[n] = x[n— ny] and

yaln] = (xg[n])? = (x[n — no])2.

3. Check:
yin—no] = (x[n— ng])? = yg[n].

» Conclusion: time-invariant.
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Example: Modulator

» Modulator: y[n] = x[n] - cos(27tfyn).
1. Reference: y[n] = x[n] - cos(27tfyn).
2. Delayed Input: xy[n] = x[n — ny] and

Ya[n) = xq[n] - cos(27tfyn) = x[n — ng] - cos(2mtfyn).
3. Check:

y[n—ng] = x[n— ng| - cos(2mfy(n— o)) # ya[n].

» Conclusion: not time-invariant.
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Example: Modulator

» Alternatively, to show that the modulator is not
time-invariant, we construct a counter-example.

> Letx[n] ={0,1,2,8,...},i.e, x[n] = n,forn> 0.
> Also, let fy = 1, so that

1 for neven
cos(27tfgn) = { —1 for nodd

v

Then, y[n] = x[n] - cos(2rtfyn) = {0, —1,2, -3, ...}.
» With ng =1, x4[n] = x[n—1] ={0,0,1,2,3,...}, we get
yaln] = {0,0,1,—-2,3,...}.

» Clearly, yq[n] # y[n—1].
» not time-invariant

vvvvvvvvvv
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Example: FIR Filter

> Reference: y[n] =Y M hlk] - x[n— K].
» Delayed Input: x4[n] = x[n — ng], and

M—1 M1
yaln] = Y hlk] - xqln—k] = Y _ hlk] - x[n—ng— K].
k=0 k=0

» Check:
M—1
yln—no] = Y hlk]-x[n—no— k] = yg[n]
k=0

» time-invariant
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Exercise
» Let u[n] be the unit-step sequence (i.e., u[n] =1forn>0
and u[n] = 0, otherwise).

» The system is a 3-point averager:

(x[n] + x[n— 1] + x[n — 2]).

w| =

ylnl =

Find the output y4 [n] when the input x4 [n] = u[n].

Find the output y»[n] when the input x2[n] = u[n — 2].

Find the output y[n] when the input x[n] = u[n] — u[n—2].
How are linearity and time-invariance evident in your
results?

o~
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Lecture: Convolution and Linear, Time-Invariant
Systems
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Overview

» Today: a really important, somewhat challenging, class.

> Key result: for every linear, time-invariant system (LTI
system) the output is obtained from input via convolution.
» Convolution is a very important operation!
» Prerequisites from previous classes:
> Impulse signal and impulse response,
» convolution,
> linearity, and
> time-invariance.
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Reminders: Convolution and Impulse Response

» We learned so far:
> For FIR filters, input-output relationship

M
y[n] =Y bkx[n—K].
k=0
» If x[n] = é[n], then y[n] = h[n] is called the impulse
response of the system.
> For FIR filters:
[ by for0<n<M
Al _{ 0 else.
> Convolution: input-output relationship

[ee]

yin = x(n«hinl = Y hikl-xin—K| = Y xIk]-hln— k|
k=—00 k=—00 Nﬁssonas
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Reminders: Linearity and Time-Invariance

> Linearity:
> For arbitrary input signals x4 [n] and x»[n], let the ouputs be
denoted y;[n] and y»[n].
» Further, for the input signal x[n] = x4 [n] + x2[n], let the
output signal be y[n].
» The system is linear if y[n] = y1[n] + y2[n].
» Time-Invariance:
> For an arbitrary input signal x[n], let the output be y[n].
> For the delayed input x4[n] = x[n — ng], let the output be
yaln].
> The system is time-invariant if yy[n] = y[n — ng].
» Today: For any linear, time-invariant system: input-output
relationship is y[n] = x[n] * h[n]. Z.
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Preliminaries

» We need a few more facts and relationships for the impulse
signal o[n].
» To start, recall:
> If input to a system is the impulse signal 5[n],
> then, the output is called the impulse response,
» and is denoted by h[n].
» We will derive a method for expressing arbitrary signals
x[n] in terms of impulses.
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Sifting with Impulses

» Question: What happens if we multiply a signal x[n] with
an impulse signal 6[n]?

» Because
5] = 1 forn=0
1 0 else,
> it follows that

x[0] forn=0

x[n] -8[n] = x[0] - 6[n] = { 0 else
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[llustration

=]

x[n] CB[n]
=
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Sifting with Impulses

» Related Question: What happens if we multiply a signal
x[n] with a delayed impulse signal 6[n — k|?

» Recall that §[n — k] is an impulse located at the k-th
sampling instance:

1 forn=k
oln = k] :{ 0 else

> It follows that

x[k] forn=k

x[n]-é[n—k]ZX[k]‘5[”_k]:{ 0 else
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[llustration

6 T T T T T T T T T

4t 4

x[n]

3n-2]
o
(4]

=]

N
T
Il

x[n] (B[n-2]
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Decomposing a Signal with Impulses

» Question: What happens if we combine (add) signals of
the form x[n] - 6[n — k]?
» Specifically, what is

[

Y x[K]-6[n— K]?

k=—o00

> Notice that the above sum represents the convolution of
x[n] and é[n], 8[n] = x[n].
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Decomposing a Signal with Impulses
ni ... -1 0 1 2
x[n] || ... | x[-1] | x[0] | x[1] | x[2]
5[n] ..l 0o | 1 ]o0] o0
x[—1]- [n+1] x[:1] 0 0 0
x[0]-é[n] || ...| O |x[0]| O 0
x[1]-6[n—=1] | ...| O 0 [x[1]| O
x[2] - é[n— ] 0 0 0 | x[2]
| Xk oo X[K] - 6[n — K] || | X[ 1 | X[0] | X[1] | X[2] | |
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Decomposing a Signal with Impulses

» From these considerations we conclude that

[ee)

Y x[K]-6[n— K] = x[n].

k=—o0

> Notice that this implies
x[n] % é[n] = x[n].

» We now have a way to write a signal x[n] as a sum of
scaled and delayed impulses.

> Next, we exploit this relationship to derive our main result.
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Applying Linearity and Time-Invariance

> We know already that input 6[n] produces output h[n]
(impulse repsonse). We write:

o[n] — h[n].
» For a time-invariant system:
5[n— k| — h[n— K].
» And for a linear system:

x[k] - 8[n — k] ~ x[k] - hjn— k].

/5 EEEEE

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis

Convolution and Linear, Time-invariant Systems

Derivation of the Convolution Sum

» Linearity: linear combination of input signals produces
output equal to linear combination of individual outputs.

| Input +~ Output

x[—1]~5[n—|—1]: »—> x[—1] - h[n+1]
x[0]-6[n] +— x[0]- h[n]
x[1]-6[n—1] —  x[1]-h[n—1]
x[2]-é6[n—1] — x[2]-h[n—2]
R e = DR S VN Rt A
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Summary and Conclusions
» We just derived the convolution sum formula:

y[n] = x[n] x h[n] = i x[k] - h[n— K].

k=—o00

» We only assumed that the system is linear and
time-invariant.

» Therefore, we can conclude that for any linear,
time-invariant system, the output is the convolution of input
and impulse response.

> Needless to say: convolution and impulse response are p
enormously important concepts. ON
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|dentity System

» From our discussion, we can draw another conclusion.

» Question: How can we characterize a LTI system for
which the output y[n] is the same as the input x[n].

P> Such a system is called the identity system.

» Specifically, we want the impulse response h[n] of such a
system.

> As always, one finds the impulse response h[n] as the
output of the LTI system when the impulse 4[n] is the input.
» Since the ouput is the same as the input for an identity
system, we find the impulse response of the identity
system
h[n] = é[n].
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|deal Delay Systems
» Closely Related Question: How can one characterize a
LTI system for which the output y[n| is a delayed version of
the input x[n]:
yln] = x[n — no]
where ng is the delay introduced by the system
> Such a system is called an ideal delay system.
» Again, we want the impulse response h[n] of such a
system.
> As before, one finds the impulse response h[n| as the
output of the LTI system when the impulse é[n] is the input.
» Since the ouput is merely a delayed version of the input,
we find
h[n] = é[n— no].
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Exercise

» Show that convolution is a commutative operation, i.e., that
x[n] = h[n] equals h[n] x x[n].
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Lecture: Convolution and Linear, Time-Invariant
Systems
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Building Blocks

» Recall that the input-output relationship for an FIR filter is
given by
M
ylnl =) bix[n—k].
k=0

» Digital systems implementing this relationships are easily
constructed from simple building blocks:

yln] x[n]
x[n] 2[n] b yin] x(n] Unit yin]
] Delay ]
Adder Multiplier Unit—delay
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Operation of Building Blocks

yIn] x[n]
x[n] z[n] b yin] x[n] Unit
- Delay
Adder Multiplier Unit-delay

» Adder: sum of two signals
z[n] = x[n] + y[n].
» Multiplier: product of signal with a scalar

y[n] = b-x[n]
» Unit-delay: delays input by one sample:
yln] = x[n—1]
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Part VI

Frequency Response
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Introduction

» We have discussed:

> Sinusoidal and complex exponential signals,
> Spectrum representation of signals:

> arbitrary signals can be expressed as the sum of sinusoidal
(or complex exponential) signals.

> Linear, time-invariant systems.

» Next: complex exponential signals as input to linear,
time-invariant systems.

Aexp(j2rtfgn+ ¢) — System y[n] =?

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis
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Example: 3-Point Averaging Filter

» Consider the 3-point averager:

2

yinl = 5 - xln K] =

- (x[n] + x[n—1] + x[n—2]).

w| =

> Question: What is the output y[n] if the input is
x[n] = exp(j2mtfyn)?
> Recall that fy is the normalized frequency f/fs; we are
assuming the signal is oversampled, |fy| < %
> Initially, assume A = 1 and ¢ = 0; generalization is easy.
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Delayed Complex Exponentials
» The 3-point averager involves delayed versions of the input
signal.
» We begin by assessing the impact the delay has on the
complex exponential input signal.
» For
x[n] = exp(j2mtfyn)
a delay by kK samples leads to
x[n—kKk] =exp(j2rtfy(n— k))
— e/(271fdn—271fdk) — e/'27rfdn . e—j27‘rfdk
— l@rfantox) — gi2nfan . gk

where ¢ = —27tfyk is the phase shift induced by the k
sampledelay. . Das oN
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Average of Delayed Complex Exponentials

» Now, the output signal y[n] is the average of three delayed
complex exponentials

ylnl =3 Xk-oX[n— K]
— %Zizo e[(27'[fdn—27'[fdk)

» This expression involves the sum of complex exponentials
of the same frequency; the phasor addition rule applies:

}/[ e/2nfdn - i —j2rnfyk
3 L .

» Important Observation: The output signal is a complex
exponential of the same frequency as the input signal.

» The amplitude and phase are different. ~ DIASON
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Frequency Response of the 3-Point Averager

» The output signal y[n] can be rewritten as:

y[n] — e/:27'[fdn . %Zizo e—j27‘cfdk
— e}27‘[fdn . H(e’zﬂfd).

where

H(ePma) =1 Zﬁ:o g J2nisk

= g . (1 + e—j27rfd + e—j27‘£2fd)

= % . *f27de(e/27de 14+ efj27rfd)
j2r

=25 s (1 + 2cos(27fy)).
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Interpretation

» From the above, we can conclude:
> If the input signal is of the form x[n] = exp(j27rtfyn),
> then the output signal is of the form
y[n] = H(&?™d) . exp(j2rfyn).
» The function H(e>™) is called the frequency response of
the system.

> Note: If we know H(e/?), we can easily compute the

output signal in response to a complex expontial input
signal.
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Examples
> Recall:

. e‘jznfd
H(e?™) = —5— (1 +2cos(271fy))

> Let x[n] be a complex exponential with fy = 0.
> Then, all samples of x[n] equal to one.

» The output signal y[n] also has all samples equal to one.
» For fy = 0, the frequency response H(&2™) = 1.
» And, the output y[n] is given by

yln] = H(&2™) - exp(j270n),

. Z
i.e., all samples are equal to one. ON

uuuuuuuuuu
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Examples

> Let x[n] be a complex exponential with fy = 1.
> Then, the samples of x[n] are the periodic repetition of
-3+ 50 -3 -5
» The 3-point average over three consecutive samples
equals zero; therefore, y[n] = 0.
> For fy = 1, the frequency response H(e/?™) = 0.
» Consequently, the output y[n] is given by

yln = H(3) - exp(j2man) = 0.

Thus, all output samples are equal to zero.
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Plot of Frequency Response

] ]
0.1 0 0.1 0.3 0.4 0.5
Frequency (f d)

N
T

Phase of H(fd)
o

|
N
T

|
1N

uuuuuuuuuu

i i i i i i i i i
-05 -04 -03 -02 -01 0 0.1 0.2 0.3 0.4 0.5
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General Complex Exponential
> Let x[n] be a complex exponential of the from Ae/(27/n+¢),
> This signal can be written as

x[n] —X. ej27rfdn,

where X = Aél? is the phasor of the signal.
» Then, the output y[n] is given by

y[n] = H(&?™) . X - exp(j2rfyn).

> Interpretation: The output is a complex exponential of the
same frequency fy

» The phasor for the output signal is the product
H(elzﬂ'fd) M X /GEORGE
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Exercise

Assume that the signal x[n] = exp(j27tfyn) is input to a 4-point
averager.
1. Give a general expression for the output signal and identify
the frequenchy response of the system.

2. Compute the output signals for the specific frequencies
deO, fd:1/4,and fd: 1/2.
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Lecture: The Frequency Response of LTI
Systems
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Introduction

» We have demonstrated that for linear, time-invariant
systems

> the output signal y[n]
> is the convolution of the input signal x[n] and the impulse
response h[n].

yln] = x[n] % hn]
= Y M o hik] - x[n— K]

> Question: Find the output signal y[n] when the input
signal is x[n] = Aexp(j(27tfyn+ ¢)).
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Response to a Complex Exponential
» Problem: Find the output signal y[n] when the input signal
is x[n] = Aexp(j(27tfyn+ ¢)).
» Output y[n] is convolution of input and impulse response
yln] = x[n] = hin]

= Yko hlk] - X[n — K]
= YkLo hlk] - Aexp(j(27tfg(n — k) +¢))
= Aexp(j(27tTqn+ ¢)) - TiLo h[K] - exp(—j27tfsk)
= Aexp(j(2rtfyn+ ¢)) - H(e?™)

» The term

H(e?a) = % h[K] - exp(—j2rtfyk)
k=0

is called the Frequency Response of the system.  JIASON
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Interpreting the Frequency Response

The Frequency Response of an LTI system with impulse
response h[n] is

H(e?a) = % hlk] - exp(—j27tfyk)
k=0

> Observations:
> The response of a LTI system to a complex exponential
signal is a complex exponential signal of the same
frequency.
» Complex exponentials are eigenfunctions of LTI systems.
» When x[n] = Aexp(j(2mtfyn+ ¢)), then
yln) = x[n] - H(&?™). o
> This is true only for complex exponential input signals! mSON
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Interpreting the Frequency Response
> Observations:
> H(el2™) is best interpreted in polar coordinates:

H(e/'27'(fd) _ |H(e/'27tfd)| . e/AH(eiznfd)_

» Then, for x[n] = Aexp(j(2rtfgn+ ¢))
yln] = x[n]- H(e#™)
= Aexp(j(2rfyn + ¢)) - |H(e2™H)| - el <H(E"10)
= (A-|H(e%™)|) - exp(j(2rfyn + ¢ + LH(e/27)))
» The amplitude of the resulting complex exponential is the
product A - |H(e/2a)|.
> Therefore, |H(e/?™)] is called the gain of the system.
> The phase of the resulting complex exponential is the sum
¢+ LH(elP7), p
> /H(e?™) is called the phase of the system. ~ ASON
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Example

» Let h[n] = {1,-2,1}.
» Then,
H(eP™s) = Y2 4 hik] - exp(—j2rifk)
=1-2. exp(—j27'[fd) +1- exp(—j27'[fd2)

= exp(—j27tfy) - (exp(j27fy) — 2 + exp(—j27ly))
= exp(—j2rfy) - (2cos(27tfy) — 2).

> Gain: |H(e/?™)| = |2 cos(27tfy) — 2|
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Example

L L L L L L L
-05 -04 -03 -02 -01 0.2 0.3 0.4 0.5

. 0 0.1
Frequency (fd)

Phase of H(f)

vvvvvvvvvv

L L L L L L L L L
-05 -04 -03 -02 -0.1 0 0.1 0.2 0.3 0.4 0.5
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Example

» The filter with impulse response h[n] = {1, -2,1}is a

high-pass filter.
> It rejects sinusoids with frequencies near fy = 0,
> and passes sinusoids with frequencies near fy = %

» Note how the function of this system is much easier to
describe in terms of the frequency response H(€2™¢) than
in terms of the impulse response h|n].

» Question: Find the output signal when input equals
x[n] = 2exp(j2rt1/4n— 11/2).

» Solution:
H(}) = expl(—j2my) - (2cos(2my) ~2) = ~2e I7/2 = 26772
Thus, '
y[n] = 262 . x|n] = 4exp(j2rtn/4). G
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Exercise

1. Find the Frequency Response H(e/?™) for the LTI system
with impulse response h[n] = {1, -1, —1,1}.

2. Find the output for the input signal
x[n] = 2exp(j(2tn/3 — 1t/4)).
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Computing Frequency Response in MATLAB

function HH = FreqResp( hh, ff )
FreqgResp - compute frequency response of LTI system

inputs:
hh - vector of impulse repsonse coefficients
ff - vector of frequencies at which to evaluate frequency respon

output:
HH - frequency response at frequencies in ff.

Syntax:
HH = FregResp( hh, ff )

do oo oo oo oo oo oo oo oo oo oo

HH = zeros( size(ff) );
for kk = 1l:length (hh)

HH = HH + hh(kk)*xexp (—Jj*x2+pix (kk—-1)x£ff);
end
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Lecture: Comprehensive Example
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Introduction

» Objective: Apply many of the things we covered to the
solution of a “real-world” problem.

» Problem: Design and implement a decoder for
“touch-tone” dialing.

» When dialing a digit on a telphone touch-pad a two-tone
signal is emitted. These are called dual tone
multifrequency (DTMF) signals.

| Frequencies (Hz) || 1209 | 1336 | 1477 |

697 1 2 3
770 4 5 6
852 7 8 9
941 ’ 0 #
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Generating DTMF Signals

» Generating DTMF signals for a given digit is
straightforward.

> Determine the frequencies that the signal contains,
> Generate two sinusoids of these frequencies,
> Add sinusoids.

» Repeat for each digit to be dialed.

» The following MATLAB code extracts digits to be dialed
from a string and forms the signal.

» Function signature:

function tones = dtmfdial( string, fs, tonedur, pausedur)
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Parsing the Dial-String

%% lookup table to translate digits string into numbers
Digits = double (’123456789x0#");

InverseDigits = zeros(1l,length(Digits) );

for kk=1:12

InverseDigits( Digits (kk) ) = kk;
end
RawNumbers = double( string );
numbers = InverseDigits ( RawNumbers );

% ensure numbers are integers between 1 and 12

numbers round ( numbers ); % silently discard fractional part
if ( min( numbers ) < 1 || max( numbers ) > 12 )

(
error ( ’input_numbers_must be_integers_between_1, and 12’ );
end

©2009-2019, B.-P. Paris : o Signal Analysis
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Generating the DTMF Signal

% construct signal

convert durations to number of samples
Ntone = round( fsxtonedur );

Npause = round( fsxpausedur);

=3
°
=3
°

% figure out how long the output signal will be
Nnumbers length ( numbers );
Nsamples = Nnumbers* (Ntone + Npause);

tones = zeros(l, Nsamples );
pause = zeros(l, Npause);

% associate numbers with DTMF pairs, record normalized frequencies!
dtmfpairs = ...
[ 697 697 697 770 770 770 852 852 852 941 941 941;
1209 1336 1477 1209 1336 1477 1209 1336 1477 1209 1336 1477 1/fs
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Generating the DTMF Signal

o

% loop over all numbers

for kk = 1l:length (numbers)

Start = (kk-1)* (Ntone + Npause) + 1;
End kk* (Ntone + Npause);

freqgs = dtmfpairs( :, numbers(kk) );

currtone = 0.5+ cos( 2+pixfregs(l)*(0:Ntone-1) ) +
0.5%xcos ( 2xpixfregs (2)x(0:Ntone-1) );
tones (Start:End) = [ currtone pause ];

end
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Spectrogram of Signal
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Plan for Recovering the Dial String

» Use bandpass-filters for each of the possible frequencies
> Intent: Isolate the different tones.

» Detect the strongest two tones in each dialing period.
» Map tones to digits (decoding)

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis
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A simple bandpass filter

» We discussed the M-point averager and showed that it has
low-pass filter characteristics.

> Note that the averager’s impulse response consists of M
samples of a constant signal.
» Analogously, a simple bandpass filter centered at
frequency fy has impulse response equal to
> M samples of 2/ M cos(27tfyn).
» The following MATLAB function implements this design
strategy.
> Alternatively, we could use MATLAB's filter design tools.
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usage:
hh = makeBPF( fd, N )

inputs:

output:

o oo oo oo oo oo oo o oo oo oo

o

sample locations
nn = —(N-1)/2:1:(N-1)/2;

% impulse response
hh = 2/Nxcos (2xpixfd+nn);

MATLAB function makeBPF.m

function hh = makeBPF( fd, N )
makeBPF - design simple bandpass filter

fd - center frequency of pass band (normalized by fs)
N - number of filter coefficients

hh - vector of filter coefficients

o Signal Analysis

A comprehensive Example
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Frequency Response of Bandpass Filters
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Output of Bandpass Filters

= ok

i

ok

o
o
13
-
=
o
N
N
I3

= ok

O r koK

1477 Hz 1336 Hz 1209 Hz 941 Hz 852Hz 770Hz 691 Hz
|
o' —5 o ' QHT

= ok
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The presence or absence is fairly easy to see in the output
of the bandpass filters.

However a single metric is needed to determine the
presence or absence of each tone.

Good strategy: for each filter output k = 1,...,7 and each
dialing-period m =1, ..., 10, compute the following score s
s(k,m) = Y (vie[n])?,

n in m-th dialing period

where y, denotes the output of the k-th bandpass filter.
> Note that this operation assumes that we know exactly
where each digit starts.

MATLAB code for computing scores follows.

vvvvvvvvvv
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MATLAB code for Computing Scores

pause

% decision logic
% decompose samples into periods for each number

Nnumbers = floor( length (xx)/ (fsx (tonedur+pausedur)) );
NTonePlusPause = round(fsx (tonedur+pausedur)) ;
NPause = round (fsxpausedur);

% score for each tone period: sum of squares in period

score = zeros (Nnumbers, length (DTMFFreqgs));

for nn=1:Nnumbers
Startnn = (nn-1)*NTonePlusPause + 1 + floor (LBPF/2);
Endnn = nn*NTonePlusPause — NPause - floor (LBPF/2);
for kk = 1l:length(DTMFFreqgs)

o Signal Analysis

A comprehensive Example

0000000800

Scores

Score

Tone 1 Digit period
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Decoding

» It remains to find the two highest scores in each dialing
period.

> More specifically, the highest score among the lower four
frequencies and the highest score among the higher three
frequencies.
» The combination of frequencies yielding the highest score
indicates which digit was dialed in that dialing period.

» MATLAB code follows

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis
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MATLAB code for Decoding Scores

o)
o
o
7]
(1)

oo

Decisions
in each row of the score matrix find the biggest entry among the fir
four and final three columns
for nn=1:Nnumbers
[ smax, imax_low(nn)] = max( score(nn, 1:4) );
[ smax, imax_high(nn)] = max( score(nn, 5:7) );

oo oo oo

end

% decode
% lookup table to translate numbers string into numbers
Digits = double (’123456789x0#"); % table of ASCII codes for dial-
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Introduction

» We will take a closer look at transforming signals into the
frequency domain.
> Discrete-Time Fourier Transform (DTFT): applies to
arbitrarily long signals; continuous in discrete frequency fy.
> z-Transform: Generalization of DTFT; basis is a complex
variable z instead of &7,
> Discrete-Fourier Transform: applies to finite-length
signals; computed for discrete set of frequencies; fast
algorithms.
» Transforms are useful because:
> They provide perspectives on signals and systems that aid
in signal analysis (e.g., bandwidth)
> They simplify many problems that are difficult in the
time-domain, especially convolution. Mg

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis

Recall: Frequency Response

> Passing a complex exponential signal x[n] = exp(j27tfyn)
through a linear, time-invariant system with impulse
ersponse h|n] yields the output signal

y[n] = H(&™) - exp(j27tfn).

» The frequency response H(e2™) is given by:

M—1
H(e™@) = Y h[k] - exp(—j2mfgk)
k=0

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis
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Discrete-Time Fourier Transform
» Analogously, we can define for a signal x[n|

X (&) = i x[K] - exp(—j2rfyk)

k=—o0

> X(e") is the Discrete-Time Fourier Transform (DTFT) of
the signal x[n]; we write

x[n] &5 X (e27a).

> Note that the limits of the sum range from —co to co.
» To ensure that this infinite sum has a finite value, we must
require that

Y [x[K]| < oo

k=—o0

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis

Two Quick Observations

» Linearity: The DTFT is a linear operation.

> Assume that ]
xi[n] <55 X (e27a)

and that .
Xo[n] &5 X (e27a).

> Then,
X1 [n] + xo[n] &5 X (€271) 4 Xp(/27)
> Periodicity: The DTFT is periodic in the variable fy:

X(e?™) = X (&2 M) for any integer n.

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis

v

vvvvvvvvv




DTFT
[eloTeYe] }

Continuous-Time Fourier Transform

» In ECE 220, you will learn that the (continuous-time)
Fourier transform for a signal x(t) is defined as

X(f) = / °:° X(t) - exp(—j2rft)at

» Notice the strong similarity between the contrinuous and
discrete-time transforms.

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis

DTFT of Delayed Impulse

> Let x[n| be a delayed impulse, x[n] = 5[n — ng].
> Note that x[n] has a single non-zero sample at n = ny.
» Therefore,

X(e?) = i x[K] - exp(—j2rtfyk)

k=—o00
= exp(—J27tfgno)

» In summary,

6[n — ng] &5 exp(—j27tfyn,).
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DTFT of a Finite-Duration Signal

» Combining Linearity and the DTFT for a delayed impulse,
we can easily find the DTFT of a signalk with finitely many
samples.

Z X[K] - 6[n— k] &% Y x[K] - exp(—j2rtfyk).
k=0
» Example: The DTFT of the signal x[n] = {1,2,3,4} is
1 +29/2ﬂfd +36j471’fd +4e['67'[fd.

> le.,

{1,2,3,4} &5 1 + 262 4 3¢/47s 1 46007

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis

DTFT of a Rectangular Pulse

» Let x[n] be a rectangular pulse of L samples, i.e.,
x[n] = u[n] — uln— L].
» Then, the DTFT of x[n] is given by

L1
X(e/27rfd) — Z 1. ej27rfdk'
k=0
» Using the geometric sum formula

L
SZa —4

1—a

X (g2 — 11— e_lznde _ sin(mfgl) o Ira(L-1)
1 — e /2l sin(7tfy) '
» Thus, £

©2009-2019, B.-P. Paris ECE 201: Intro to Slgnal AnalyS|s
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DTFT of a Right-sided Exponential
> Let x[n] = a&" - u[n] with |a|] < 1.
» Then, the DTFT of x[n] is given by

X(&27%) — i 2 ulK] - e 2lek — i 2. g2k
k=—0c0 k=0

» With the geometric sum formula, we find

X (627 — 1—;%
> Thus, if |a] < 1
a'-uln) &= = atljznfd -
ON

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis
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Inverse DTFT

> The inverse DTFT is used to find the signal x[n] that
corresponds to a given transform X (e/2%).

» The inverse DTFT is given by

1

x[n] = / * X(2)iangly,

N

> Note: The DTFT is unique, i.e., for each signal x[n] there is
exactly one transform X(e/2™4) and vice versa.

> Explicitly using the inverse transform can often be avoided;
instead known DTFT pairs and properties of the DTFT are
used; some examples follow.

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis
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Inverse DTFT of e /27"
» We showed that the following is a DTFT pair

8[n— ng] &5 exp(—j2mtyny).

» Thus, the inverse DTFT of exp(—j27tfyn,) must be
d[n— ng). Check:
» For n= ng:

3 1
xln] = / " exp(—j27tigno) €2 dify = / “dfy =1.
. ;

> For n # ng:

ECE 201: Intro to Signal Analysis
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Bandlimited Signals

» The inverse DTFT is useful to find signals that are strictly

bandlimited.
> A signal is strictly bandlimited to bandwidth f, < % when its

DTFT is given by
1 for |fd| <fp
X(e/27rfd) _

0 forfy < |fd| S%

» The strictly bandlimited signal is then

xin] = [ x(eP) e andty —

1
2

ECE 201: Intro to Signal Analysis
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/ ? expl(—j2rfyne) &2 andfy — /  e2mla(n-m) gy = .
-5 MasoR

Sin(27‘[fbn) .
—— =2f- 27tfpn).
i 2fp - sinc(27tfpn)
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Table of DTFT Pairs

DTFT

o[n] <—

6[n — ng] &5 exp(—j2mtyn,)

.1

uln) — ufn — 1) &7 SNTAL) | gyt

Sin(T[fd)
1
n. /DTFT\
a’-uln] < T aeoh

DTFT

1 for |fd| < fb
2fp - sinc(2mtfpn) <— 1

0 forfy,< |fd| < >

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis
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Exercise

» Find the DTFT of the signals
1.
x1[n] =48[n] —é[n—1]+6[n—2] —[n—3].

> Answer: X(el2™a) =1 — g=2mla | g=j4mla _ g=jbrta,

el = 28 (1Y

mTn

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis
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Lecture: Properties of the DTFT

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis
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Properties of the DTFT

» Direct evaluation of the DTFT or the inverse DTFT is often
tedious.
» In many cases, transforms can be determined through a
combination of
> Known, tabulated transform pairs
> Properties of the DTFT
» Properties of the DTFT describe what happens to the
transform when common operations are applied in the time
domain (e.g., delay, multiplication with a complex
exponential, etc.)

» Very important, a property exists for convolution.

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis
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Linearity

» Linearity: The DTFT is a linear operation.
> Assume that ]
xq[n] &5 Xy (27)

and that

Xo[n] &5 X (e27a).

» Then,

X1 0]+ xa[n] &5 X, (€275) + Xp(e27H)

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis
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Example

» The DTFT of

1\" sin(2rtn/4)
xlnl = <§) e
is the sum of the transforms of the two individual signals:
1 for|fy] < !
, 1 dl = 7
27'I.'fd — 4
X () PRSP %e—jhfd + 1 ’

— < _
0 for4<|fd|_2

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis
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Time Delay
>
Let DTFT 27ty
x[n] &= X (&),
» Find the DTFT of y[n] = x[n — nyl:

[ee)

e/27'cfd) Z y —/27rfdn Z x[n— nd] . e—j27rfdn

n=—oo n=—oo

» Substituting m = n— ny and, therefore, n = m+ ny yields

Y(e/'27rfd) _ Z x[m] . e—j2nfd(m+nd) _ e—j271fdnn _X(e/27rfd)

m=—oo
» Hence, the Time Delay property is:

x[n o nd] DTFT e—j2nfdn,-, . X(e/'27'cfd)

©2009-2019, B.-P. Paris
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Example

» Find the DTFT of a shifted rectangular pulse from 1 to
L+1

x[n]=uln—1]—u[n—(L+1)].
» Combining the DTFT of a rectangular pulse

DTFT Sln(ﬂde)

uln| —uln—L] +— sin(hy)

. e ma(L=1)
with the time delay property leads to

i o sin(hal) - jrgy(a)
uln—1]—uln—(L+1)] +— sin(7tf,)

©2009-2019, B.-P. Paris
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Frequency Shift Property
> Let
x[n] DTFT (elzn_—fd)
> Find the DTFT of y[n] = x[n] - €277

e/27rfd _ Z y —/2m‘dn Z X[n].e—jZTrfon_e—jandn

n=—oo n=-—oo

» Combining the exponentials yields

Y(e/'27rfd) — i y[n] i efj27r(fdff0)n — X(el'zﬂ(fd*fo))

n=—oo

» Frequency shift property

x[n] - @270 2T x (g2 (fa=ho)) Zooncr

©2009-2019, B.-P. Paris
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Example

» The impulse response of an ideal bandpass filter with
bandwidth B and center frequency f; is obtained by
> frequency shifting by f;
> an ideal lowpass with cutoff frequency B/2
» Using the transform for the ideal lowpass
1 for |fd| < fb
2f, - sinc(27tfyn) & 1
0 forfy, < |fd| < 5

the inverse DTFT of the ideal band pass is given by

x[n] = B.sinc(zngn) . gl2nfon

> This technique is very useful to convert lowpass filters into
bandpass or highpass filters. N

vvvvvvvvvv
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Convolution Property
» The convolution property follows from linearity and the time

delay property.
» Recall that the convolution of signals x[n] and h[n] is
defined as
y[n] = x[n] = h[n] Z h[k] - x[n — K].

k=—c0

» With the time-delay property and linearity, the right hand
side transforms to

e/27rfd _ Z h[k —j27‘[fde e/27rfd)

k=—c0
> Since Y2 h[k] - e /27lak — H(gl27),
X[n] » h[n] DTFT (e/2nfd) . H(e/'27tfd) Nﬁss"(")ﬁ

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis
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Example

» Convolution of two right sided exponentials (|a|, |b| < 1
and a # b)

yln] = (&"- u[n]) « (6" - u[n))
has DTFT

1 1
1— ae /2t 1 — be—/27s

Y(e/'27rfd) —

> Question: What is the inverse transform of Y (e/2™)? |.e.,
is there a closed form expression for y[n]?

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis
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Example continued
» The expression

1 1
_ ae—jzn'fd 1 — be—jZﬂ.’fd

Y(e/and) — 1

can be rewritten as

a 1 b 1
a-b 1—ae?a a—b 1—be 2l

Y(e/'27rfd) —

» The inverse transform of Y (&2 is

a
a-»b

-a”'u[n]—L~b”~u[n].

y[n] = 2 b

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis
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Parseval’'s Theorem

» The Energy of a discrete-time signal x[n] is defined as

E= Y |xnlP

k=—o00

» Parseval’s theorem states that the energy can also be
computed using the DTFT

1

E= Y Il [° Ix(e2%) oty

k=—c0 2

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis
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Example

» Find the energy of the sinc pulse
x[n] = 2fy - sinc(27tfpn).

» This is impossible in the time domain and trivial in the
frequency domain

o 1
E= Y Ixnll” [° X&)%ty = 21,

1
k=—o00 -2

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis
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Lecture: The z-Transform
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Introduction
» Question: What is the output of an LTI system when the
input is an exponential signal x[n] = z"?
> zis complex-valued.

x[n] = z"——> LTI System y[n) =?

> Answer:

y[n] = H(z)-2" with H(z) = i hln]-z="

n=—oo

> H(z) is the z-Transform of the LTI system with impulse

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis
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Definitions and Observations

> Analogously, we can define the z-Transform of a signal x[n]

0]

X(z)= ), x[n-z7"

n=-—oo

response h|n]. D

vvvvvvvv

> Notation:
x[n] <& X(2).

» Note: we can think of the ztransform as a generalization of
the DTFT.
» The DTFT arises when z = 27,

» The z-Transform is a linear operation.

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis
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Examples

» The z-Transforms of the following signals generalize easily
from the DTFTs computed earlier.

5[] <=1
S[n—ng] <>z~
. 1—z7t
uln] —uln— L] <> T
n- z —_—
a’-u[n] < rpp—

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis
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z-Transform of a Finite Duration Signal

» The z-Transform of a signal with finitely many samples is
easily computed

M-—1 M—1
Y x[k]-o[n—k] <= Y x[k]-z 7K.
k=0 k=0

» Example: The DTFT of the signal x[n] = {1,2,3,4} is
{1,2,3,4} <& 1+227 ' +3272 44278

» The z transform of a finite-duration signal is a polynomial in
—1
z .
> The coefficients of the polynomial are the samples of the
signal.
» The inverse z-transform is trivial to determine when it is Z
given as a polynomial.

vvvvvvvvvv
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Properties of the z-Transform

Linearity
x1[n] + xa[n] <= Xz(2) + Xa(2)
Delay
x[n—my) <> z7™ - X(2)
Convolution

x[n] = h[n] <& X(2) - H(z2)

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis
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Unit Delay System

» The unit delay system is an LTI system

yln] = x[n—1]

> Its impulse response and z-Transform are is
hln| =én—1] H(z)=2z""
» In terms of the z-transform:
Y(z)=z" X(2)
» In the z-domain, a unit delay corresponds to multiplication

by z=1.
» In block diagrams, delays are often labeled z~ .

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis
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Equivalence of Convolution and Polynomial

Multiplcation
» The convolution property states
x[n] * h[n] <& X(z) - H(z).

» We saw that the z-Transforms of finite duration signals are
polynomials. Hence, convolution is equivalent to
polynomial multiplaction.

» Example: x[n] = {1,2,1} and h[n] = {1,1}; by
convolution

x[n]«h[n] ={1,3,3,,1}.
» In terms of z-Transforms:
X(z)-Hz)=(1+2z"41z2). 1 +1z7")
=143z 148224273 (e

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis
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Zeros of H(z)

» An important use of the z-Transform is providing insight
into the properties of a filter.
» Of particular interest are the zeros of a filter’s z-Transform
H(z).
» Example: The L-point averager has the z-Transform
1 1-z1

1 L—1 )
_ 1 1=z" 1 _ a—j2mk/L | —k
H(z) T T 5(1 e z ).

» The factorization shows that zeros of H(z) occur when
7 — gj2mk/L
» Note that
» zeros occur along the unit circle |z| = 1
> at angles that correspond to frequencies fy = k/L for
k - 1 ..... L - 1 Coeonae

> Zeros are evenly spaced in the stop-band of the filter. """
©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis
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Roots of H(z) for L-Point Averager
05 /;a’/ ‘6\\5\
Roots of H(z) and magnitude of Frequency Response for
L = 11-point Averager. (e

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis
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Roots of H(z) for a very good Lowpass Filter

» A very-good lowpass filter with

» normalized cutoff frequency f; = 0.2 (end of pass
passband)

> width of transition band Af = 0.1 (stop band starts at
fe + of).

can be designed in MATLAB with:

o

% parameters

L = 30;
fc = 0.2; % cutoff frequency - relative to Nyquist frequency
df = 0.1; % width of transition band

%% generate impulse response
h = firpm(L, (0, fc, fc+df, 0.5]/0.5, [1, 1, O, 01);

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis
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Roots of H(z) for a very good Lowpass Filter

1 <
05 f}ﬂO&’ OO\\ o
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Roots of H(z) and magnitude of Frequency Response for a
very good LPF. Zeros are on the unit-circle in the stop band. In _
the pass band, pairs of roots form a “channel” to keep the MAS6N
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lIR Filter

» Question: Can we realize a filter with the infinite impulse
response (lIR) h[n] = a" - u[n]?

» Recall that
a’- U[n] < m
» Hence,
Y(2) = X(Z)—— or Y(z2)-(1—az") = X(2).

ezt

» In the time domain,

y|n] —ay[n—1] =x[n] or y[n] = x[n]+ay[n—1].

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis
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Lecture: Discrete Fourier Transform (DFT)

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis

Introduction
» The Discrete Fourier Transform (DFT) is a work horse of
Digital Signal Processing.
» Its primary uses include:
> Measuring the spectrum of a signal from samples
» Fast algorithms for convolution or correlation
» The DFT is computed from a block of N samples
x[0], ..., x[N—1].
» It computes the DTFT at N evenly spaced, discrete
frequencies:

X[K] = X (e K/NM) fork =0,...,N—1

» Fast algorithms (Fast Fourier Transform (FFT)) exist to
compute the DFT.

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis
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Definitions
» (Forward) Discrete Fourier transform: for a block of N
samples x[n|, the DFT X[k] is given by

» Inverse Discrete Fourier transform: a block of N
samples x[n], is obtained from the DFT X[k] by

N—1
x[n]:1NZX[k]-exp(jZn-k/N-n) forn=0,..., N -1
k=0

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis

Observations

» The DFT is discrete in both time and frequency.
> In contrast, the DTFT is discrete in time but continuous in
frequency.
» The signal x[n] is implicitly assumed to repeat periodically
with period N.

x[n+ N] = X[k] -exp(j2t-k/N - (n+ N))
X[k] -exp(j2rt - k/N - n) - exp(j2m - k) = x[n|

> This observation has ramifications for the delay and Z.
convolution properties of the DFT. MaS

vvvvvvvvvv
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The signal with DFT X[k] is implicitly periodic; the period
equals the block length N.
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Example
» The DFT' of the length N = 4 signal {1,1,0,0}:

X[0]=1e 7% 4170 + 0670 + 0e/°
=14+1+0+0=2

X[1] =10 +1e727/4 1 0g F47/% 1 g /om/4
=1+ (—j)+0+0=+v2e /"4

X[2] =1e7 10+ 1 /47/4 4 0e/87/% 4 Qg /127/4
=14+(-1)+0+0=0

X[3] = 1670 4 1e7167/4 | ge=i127/4 4 ggi187/4
=1+ ()+0+0=v2e"*

Thus, X[k] = {2,v/2e7/7/4,0,/2¢/"/4}

"Exponentials are e /2knm/N
©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis
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Fast Transform (FFT)

» The main practical benefit of the DFT stems from the fact
that a computationally efficient algorithm exists.
» A naive (brute-force) implementation of the DFT requires
N2 complex multioplications and additions.
» N outputs must be computed
> Each requires N multiplications and additions
» The Fast Fourier Transform algorithm (FFT) reduces the
number of complex multiplications and additions to
N -logs(N).
> It recursively splits the DFT of length N into 2 DFTs of
length N/2 (divide-and-conquer)
> Until length-2 DFTs can be computed trivially.
» A naive DFT of length N = 1024 requires approximately
10° multiplications and additions; the FFT requires only
approximatelty 10+. ~~ Mas ON
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DFT of a Shifted Impulse

» The finite, length N duration of the signal block and the
associated, implicit assumption that x[n] is periodic with
period N has some unexpected consequences.

» We showed that the DTFT of a shifted impulse is

5[” _ nd] DTFT e_]27~[fdnd

» DFT with shift ny < N: assume N=8and ny =3
X[k] = e J2k/Nng — g=f3m/4k

» DFT with shift ny > N: assume N =8 and ny = 11
X[k] = g J2mk/Nng _ g=11r/4k _ o=f37/4K g o — g f3m/4k

» Delays induce phase shifts proportional to ny mod N:

X[K| = @ J2k/Nng _ o—j2mk/N(ng mod N) sV
©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis
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Delay Property

» The same phenomenon affects the delay property.
> When the implicitly periodic signal is delayed, the block of N
samples is filled with periodic samples.
> For example, when the signal x[n] = {1,2, 3,4} is shifted
by ny = 2 positions it becomes
x[(n—ng) mod N| = {3,4,1,2}.
> This is refered to as circular shifting.

» For the DFT, the delay property is therefore

x[(n— ng) mod N| & X[k] - g J2rtk/Nng

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis
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Implicit Periodicity
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Shifting the implicitly periodic signal induces a circular shift over
the block of N samples. Fonce

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis




DFT

[e]e]e] lelele)

Convolution Property

» Similarly, the convolution property for the DFT is different
from that for the DTFT or z-Transform.

» A modified form of convolution, called circular convolution
has a product-form transform.

» Let x[n] and h[n| be length-N signals with DFT X[k] and
H[k], respectively.
» Then, the (circular) convolution property is

Nf h[m]x[(n— m) mod N] &5 X[k] - HIK]

m=0

> Note that circular convolution is very different from normal

convolution.
> Question: How can the (circular) convolution property be -
used for fast convolution? MAS6R
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Zero-Padding

» Turning circular convolution into regular convolution is
straightforward:

» The signals x[n] and h[n] to be convolved must be
extended by appending zeros such that

»> They have the same length N, and
> if x[n] has length Ny and h[n] has length N}, then
N > Ny + Np —1.

> This is called zero-padding.
» Example: Let x[n] = {1,2,3,4} and h[n] = {3,2,1}, then
the zero-padded signals are

x[n] = {1,2,3,4,0,0} x[n] = {3,2,1,0,0,0}
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Implicit Periodicity
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With zero-padding, the shifting of the implicitly periodic signal
introduces only zero samples in the block of N samples. Foconce
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Convolution with FFTs

» Fast convolution based on FFTs of zero-padded signals
can be implemented as follows:

do

signals
= [1,2,3];
= [1,11;

ooX

o

zero-padding to length 4
[x, 0];
[h, 0, 0];

P
P

0o

% transforms
£ft (xp);
£ft (hp);

% multiply and inverse transform
y = ifft (Xp.xHp) Z
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Part IX

Review of Complex Algebra
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Lecture: Introduction to Complex Numbers
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Why Complex Numbers?

» Complex numbers are closely related to sinusoids.
» They eliminate the need for trigonometry ...
> ... and replace it with simple algebra.
> Complex algebra is really simple - this is not an oxymoron.
» Complex numbers can be represented as vectors.
> Used to visualize the relationship between sinusoids.
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The Basics

» Complex unity: j = +/—1.
» Complex numbers can be written as

Z=X+]-Yy.

This is called the rectangular or cartesian form.
> x is called the real part of z: x = Re{z}.
> yis called the imaginary part of z: y = Im{z}.
» Zz can be thought of a vector in a two-dimensional plane.

> Cordinates are x and y.
> Coordinate system is called the complex plane.
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lllustration - The Complex Plane
Im

=
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Euler's Formulas

» Euler’s formula provides the connection between complex
numbers and trigonometric functions.

e/? = cos(¢) +j - sin(¢).

» Euler’s formula allows conversion between trigonometric
functions and exponentials.
> Exponentials have simple algebraic rules!
» Inverse Euler’s formulas:

et + eIt

cos(§p) = ——5——
. elP — eIt
sin(¢) = T
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Polar Form
» Recallz=x+j-y
» From the diagram it Im
follows that ‘
ir
z = rcos(¢) + jrsin(¢). —J
> And by Euler's 1y = rsing
relationship: , | Re
- —r X =rcos¢”
z = r-(cos(@) +jsin(g)) N\
= r.g¢
» This is called the polar —Jr
form. | ASON
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Converting from Polar to Cartesian Form
» Some problems are best solved in rectangular coordinates,
while others are easier in polar form.
> Need to convert between the two forms.
» A complex number polar form z = r - & is easily
converted to cartesian form.

z = rcos(¢) + jrsin(¢).

» Example:
4.7/3 — 4c05(7'[/3)—{—j45m(7'[/3)
—aegany
— 2+].2.\/§ Fecorae
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Converting from Cartesian to Polar Form
» A complex number z = x + jy in cartesian form is
converted to polar form via

r=./x2+y?

and y
tan(¢) = X

» The computation of the angle ¢ requires some care.
» One must distinguish between the cases x < 0 and x > 0.
arctan(%) if x >0
¢= arctan(£) + 7 ifx <0
X

» If x =0, ¢ equals +7/2 or —mt/2 depending on the sign
of y. MAS6R
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Exercise

» Convert to polar form

1. z=1+4+j
2.z=3-j
3. z=-1—j

» Convert to cartesian form
1. z =3e /37/4

» in MATLAB, plot cos(jx) for —2 < x < 2 then explain the
shape of the resulting graph.
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Lecture: Complex Algebra
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Introduction

» All normal rules of algebra apply to complex numbers!
» One thing to look for: j-j = —1.

» Some operations are best carried out in rectangular
coordinates.

> Addition and subtraction
> Multiplication and division aren’t very hard, either.

» Others are easier in polar coordinates.

> Multiplication and division.
» Powers and roots

» New operation: conjugate complex.
> A little more subtle: absolute value.
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Conjugate Complex

» The conjugate complex z* of a complex number z has

> the same real part as z: Re{z} = Re{z*}, and
> the opposite imaginary part: Im{z} = —Im{z*}.

» Rectangular form:

If z=x+jy then z* = x — jy.
» Polar form:

lfz=r-e?thenz* =r-e /.

» Note, z and z* are mirror images of each other in the
complex plane with respect to the real axis.
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lllustration - Conjugate Complex
Im
=
Z
y=rsing
p 9 ' Re
B —y = —rsing
\ |
Z*
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Addition and Subtraction

» Addition and subtraction can only be done in rectangular
form.
> If the complex numbers to be added are in polar form
convert to rectangular form, first.

> Letzy = xq +jy; and Zo = X2 + jyo.
» Addition:

z1+ 22 = (X1 +Xx2) +j(y1 + y2)

» Subtraction:

zy— 2o = (X1 — X2) +j(y1 — ¥2)

» Complex addition works like vector addition. ~ DAS ON
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lllustration - Complex Addition

Im

=

Zy + 2o

Re
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Multiplication
» Multiplication of complex numbers is possible in both polar
and rectangular form.
» Polar Form: Let z; = ry - €% and z, = r» - €2, then

z1-Zp=1r1-r-exp(j(P1+ ¢2)).

» Rectangular Form: Let z; = xqy + jy; and 2o = xo + jiyo,
then

2122 = (X1+jy1)- (X2 +jy2)
= XiXo + 2Y1)e +/f(1 Yo + [Xo ¥4
= (X1X2 — y1¥2) +j(X1)2 + Xo¥1).

» Polar form provides more insight: multiplication involves
rotation in the complex plane (because of ¢1 + ¢2). MESN
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Absolute Value
» The absolute value of a complex number z is defined as

|z| = Vz- 2z, thus, |z]2 = z- 2"

> Note, |z| and |z|? are real-valued.
> In MATLAB, abs (z) computes |z|.

» Polar Form: Let z = r - &,
z2=r-&?.r- et =r2

> Hence, |z| = .
» Rectangular Form: Let z = x + jy,

212 = (x+jy):(x=Jy)
= x2—2y?— jxy + jxy 2 e
xX+y2. N
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Division
» Closely related to multiplication
zy 21z Z1Zp
2z 27 |zl

» Polar Form: Let z; = r; - €% and z, = r» - €2, then

% = 2 -exp(f(p1 — P2)).

> Rectangular Form: Let z; = x; + jy; and zo = xo + jyo,

then )
2 A%
z |z
_ (i) (e—jye)
- X5+yz2
_ xixetyiye)Hi(=Xiyet+Xey1) Z
X22+y22 . GEDHGNj

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis

Complex Numbers

00000000 e0000000

Exercises

» For z; = 36/™/* and z, = 2e/™/2 compute

1. z1 + 2o,
2. 2420, and
3. |Z1|.

Give your results in both polar and rectangular forms.
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Lecture: Complex Algebra - Continued
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Good to know ...

» You should try and remember the following relationships
and properties.

> 2T =1

> g = —1

> /2 =j

> efjn/2 _ _j

> |e%| =1 for all values of ¢
> exp(j(¢ +2m)) = &
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Powers of Complex Numbers

» A complex number z is easily raised to the n-th power if z
is in polar form.
» Specifically, .
" = (r-en
= rh.gng

» The magnitude r is raised to the n-th power
> The phase ¢ is multiplied by n.
» The above holds for arbitrary values of n, including
> naninteger (e.g., z°),
» na fraction (e.g., z'/? = /2)
> nanegative number (e.g., z' =1/2)
» nacomplex number (e.g., Z/) fises
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Roots of Unity
» Quite often all complex numbers z solving the following
equation must be found
N
=1.

> Here N is an integer.
> There are N different complex numbers solving this
equation.

» The solutions have the form
z=¢e?"Nforn=0,1,2,...,N—1.

> Note that zV = /27" = 1|
» The solutions are called the N-th roots of unity.
> In the complex plane, all solutions lie on the unit circle and Mzssk

vvvvvvvvvv
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Roots of a Complex Number

» The more general problem is to find all solutions of the
equation ‘
N =r.e?.

» In this case, the N solutions are given by

z:r”N-exp(j(PJr—linn)forn:0,1,2,...,N—1.
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Example: Roots of a Complex Number

» Example: Find all solutions of z° = —1.
» Solution:
> Note —1 =¢/7,ie,r=1and ¢ = 7.
» There are N = 5 solutions:

> All have magnitude 1.
» The five angles are /5, 37t/5, 57/5, 7n/5, 97t/5.
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Roots of a Complex Number

1

0.8

0.6F

0.4f

0.2

Imaginary
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Two Ways to Express cos(¢)
> First relationship: cos(¢) = Re{e?}

» Second relationship (inverse Euler):

et + e P
cos(¢p) = —

» The first form is best suited as the starting point for
problems involving the cosine or sine of a sum.
> cos(a+ B)
» The second form is best when products of sines and
cosines are needed
> cos(a) - cos(B)
» Rule of thumb: look to create products of exponentials. Z once
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Example

» Show that cos(x + y) equals cos(x) cos(y) — sin(x) sin(y):

cos(x +y) = Re{e)} =Re{e*. eV}
= Re{(cos(x) +sin(x)) - (cos(y) + jsin(y))}
= Re{(cos(x) cos(y) —sin(x)sin(y))+
J(cos(x)sin(y) +sin(x)cos(y))}
= cos(x)cos(y) —sin(x)sin(y).
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Example

> Show that cos(x) cos(y) equals 3 cos(x + ) + 5 cos(x — ¥):

& te X e re k¥
ei(xgy)+ei(fX27y)+e/(Xfy)+ei(fX+}/)
e/(X+y).ze—/(X+y) 4 + e/(X—y).ze—/'(X—y)
= Jcos(x+y)+ 3 cos(x —y).

cos(Xx)cos(y) =
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Exercises

» Simplify
1. (V2-v2))8
2. (V2—-v2j)
» Advanced
1./
2. cos(f)
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