Introduction

- We have demonstrated that for linear, time-invariant systems
- the output signal $y[n]$
- is the convolution of the input signal $x[n]$ and the impulse response $h[n]$.

$$
\begin{aligned}
y[n] & =x[n] * h[n] \\
& =\sum_{k=0}^{M} h[k] \cdot x[n-k]
\end{aligned}
$$

- Question: Find the output signal $y[n]$ when the input signal is $x[n]=A \exp (j(2 \pi f n+\phi)$.

Response to a Complex Exponential

- Problem: Find the output signal $y[n]$ when the input signal is $x[n]=A \exp (j(2 \pi f n+\phi)$.
- Output $y[n]$ is convolution of input and impulse response

$$
\begin{aligned}
y[n] & =x[n] * h[n] \\
& =\sum_{k=0}^{M} h[k] \cdot x[n-k] \\
& =\sum_{k=0}^{M} h[k] \cdot A \exp (j(2 \pi f(n-k)+\phi) \\
& =A \exp \left(j(2 \pi f n+\phi) \cdot \sum_{k=0}^{M} h[k] \cdot \exp (-j 2 \pi f k)\right. \\
& =A \exp (j(2 \pi f n+\phi) \cdot H(f)
\end{aligned}
$$

- The term

$$
H(f)=\sum_{k=0}^{M} h[k] \cdot \exp (-j 2 \pi f k)
$$

is called the Frequency Response of the system.

Interpreting the Frequency Response

The Frequency Response of an LTI system with impulse response $h[n]$ is

$$
H(f)=\sum_{k=0}^{M} h[k] \cdot \exp (-j 2 \pi f k)
$$

- Observations:
- The response of a LTI system to a complex exponential signal is a complex exponential signal of the same frequency.
- Complex exponentials are eigenfunctions of LTI systems.
- When $x[n]=A \exp (j(2 \pi f n+\phi)$, then $y[n]=x[n] \cdot H(f)$.
- This is true only for complex exponential input signals!

Interpreting the Frequency Response

- Observations:

- $H(f)$ is best interpreted in polar coordinates:

$$
H(f)=|H(f)| \cdot e^{j \angle H(f)}
$$

- Then, for $x[n]=A \exp (j(2 \pi f n+\phi)$

$$
\begin{aligned}
y[n] & =x[n] \cdot H(f) \\
& =A \exp \left(j(2 \pi f n+\phi) \cdot|H(f)| \cdot e^{j \angle H(f)}\right. \\
& =(A \cdot|H(f)|) \cdot \exp (j(2 \pi f n+\phi+\angle H(f))
\end{aligned}
$$

- The amplitude of the resulting complex exponential is the product $A \cdot|H(f)|$.
- Therefore, $|H(f)|$ is called the gain of the system.
- The phase of the resulting complex exponential is the sum $\phi+\angle H(f)$.
- $\angle H(f)$ is called the phase of the system.

Example

- Let $h[n]=\{1,-2,1\}$.
- Then,

$$
\begin{aligned}
H(f) & =\sum_{k=0}^{2} h[k] \cdot \exp (-j 2 \pi f k) \\
& =1-2 \cdot \exp (-j 2 \pi f)+1 \cdot \exp (-j 2 \pi f 2) \\
& =\exp (-j 2 \pi f) \cdot(\exp (j 2 \pi f)-2+\exp (-j 2 \pi f)) \\
& =\exp (-j 2 \pi f) \cdot(2 \cos (2 \pi f)-2) .
\end{aligned}
$$

- Gain: $|H(f)|=\mid(2 \cos (2 \pi f)-2 \mid$

Example

Example

- The filter with impulse response $h[n]=\{1,-2,1\}$ is a high-pass filter.
- It rejects sinusoids with frequencies near $f=0$,
- and passes sinusoids with frequencies near $f=\frac{1}{2}$
- Note how the function of this system is much easier to describe in terms of the frequency response $H(f)$ than in terms of the impulse response $h[n]$.
- Question: Find the output signal when input equals

$$
x[n]=2 \exp (j 2 \pi 1 / 4 n-\pi / 2)
$$

- Solution:
$H\left(\frac{1}{4}\right)=\exp \left(-j 2 \pi \frac{1}{4}\right) \cdot\left(2 \cos \left(2 \pi \frac{1}{4}\right)-2\right)=-2 e^{-j \pi / 2}=2 e^{j \pi / 2}$.
Thus,

$$
y[n]=2 e^{j \pi / 2} \cdot x[n]=4 \exp (j 2 \pi n / 4)
$$

Exercise

1. Find the Frequency Response $H(f)$ for the LTI system with impulse response $h[n]=\{1,-1,-1,1\}$.
2. Find the output for the input signal
$x[n]=2 \exp (j(2 \pi n / 3-\pi / 4))$.
