Introduction

- We have discussed:
- Sinusoidal and complex exponential signals,
- Spectrum representation of signals:
- arbitrary signals can be expressed as the sum of sinusoidal (or complex exponential) signals.
- Linear, time-invariant systems.
- Next: complex exponential signals as input to linear, time-invariant systems.

Example: 3-Point Averaging Filter

- Consider the 3-point averager:

$$
y[n]=\frac{1}{3} \sum_{k=0}^{2} x[n-k]=\frac{1}{3} \cdot(x[n]+x[n-1]+x[n-2]) .
$$

- Question: What is the output $y[n]$ if the input is $x[n]=\exp \left(j 2 \pi f_{d} n\right)$?
- Recall that f_{d} is the normalized frequency f / f_{s}; we are assuming the signal is oversampled, $\left|f_{d}\right|<\frac{1}{2}$
- Initially, assume $A=1$ and $\phi=0$; generalization is easy.

Delayed Complex Exponentials

- The 3-point averager involves delayed versions of the input signal.
- We begin by assessing the impact the delay has on the complex exponential input signal.
- For

$$
x[n]=\exp \left(j 2 \pi f_{d} n\right)
$$

a delay by k samples leads to

$$
\begin{aligned}
x[n-k] & =\exp \left(j 2 \pi f_{d}(n-k)\right) \\
& =e^{j\left(2 \pi f_{d} n-2 \pi f_{d} k\right)}=e^{j 2 \pi f_{d} n} \cdot e^{-j 2 \pi f_{d} k} \\
& =e^{j\left(2 \pi f_{d} n+\phi_{k}\right)}=e^{j 2 \pi f_{d} n} \cdot e^{j \phi_{k}}
\end{aligned}
$$

where $\phi_{k}=-2 \pi f_{d} k$ is the phase shift induced by the k sample delay.

Average of Delayed Complex Exponentials

- Now, the output signal $y[n]$ is the average of three delayed complex exponentials

$$
\begin{aligned}
y[n] & =\frac{1}{3} \sum_{k=0}^{2} x[n-k] \\
& =\frac{1}{3} \sum_{k=0}^{2} e^{j\left(2 \pi f_{d} n-2 \pi f_{d} k\right)}
\end{aligned}
$$

- This expression involves the sum of complex exponentials of the same frequency; the phasor addition rule applies:

$$
y[n]=e^{j 2 \pi f_{d} n} \cdot \frac{1}{3} \sum_{k=0}^{2} e^{-j 2 \pi f_{d} k}
$$

- Important Observation: The output signal is a complex exponential of the same frequency as the input signal.
- The amplitude and phase are different.

Frequency Response of the 3-Point Averager

- The output signal $y[n]$ can be rewritten as:

$$
\begin{aligned}
y[n] & =e^{j 2 \pi f_{d} n} \cdot \frac{1}{3} \sum_{k=0}^{2} e^{-j 2 \pi f_{d} k} \\
& =e^{j 2 \pi f_{d} n} \cdot H\left(e^{j 2 \pi f_{d}}\right) .
\end{aligned}
$$

where

$$
\begin{aligned}
H\left(e^{j 2 \pi f_{d}}\right) & =\frac{1}{3} \sum_{k=0}^{2} e^{-j 2 \pi f_{d} k} \\
& =\frac{1}{3} \cdot\left(1+e^{-j 2 \pi f_{d}}+e^{-j 2 \pi 2 f_{d}}\right) \\
& =\frac{1}{3} \cdot e^{-j 2 \pi f_{d}}\left(e^{j 2 \pi f_{d}}+1+e^{-j 2 \pi f_{d}}\right) \\
& =\frac{e^{-j 2 \pi f_{d}}}{3}\left(1+2 \cos \left(2 \pi f_{d}\right)\right) .
\end{aligned}
$$

Interpretation

- From the above, we can conclude:
- If the input signal is of the form $x[n]=\exp \left(j 2 \pi f_{d} n\right)$,
- then the output signal is of the form

$$
y[n]=H\left(e^{j 2 \pi f_{d}}\right) \cdot \exp \left(j 2 \pi f_{d} n\right) .
$$

- The function $H\left(e^{j 2 \pi f_{d}}\right)$ is called the frequency response of the system.
- Note: If we know $H\left(e^{j 2 \pi f_{d}}\right)$, we can easily compute the output signal in response to a complex expontial input signal.

Examples

- Recall:

$$
H\left(e^{j 2 \pi f_{d}}\right)=\frac{e^{-j 2 \pi f_{d}}}{3}\left(1+2 \cos \left(2 \pi f_{d}\right)\right)
$$

- Let $x[n]$ be a complex exponential with $f_{d}=0$.
- Then, all samples of $x[n]$ equal to one.
- The output signal $y[n]$ also has all samples equal to one.
- For $f_{d}=0$, the frequency response $H\left(e^{j 2 \pi 0}\right)=1$.
- And, the output $y[n]$ is given by

$$
y[n]=H\left(e^{j 2 \pi 0}\right) \cdot \exp (j 2 \pi 0 n)
$$

i.e., all samples are equal to one.

Examples

- Let $x[n]$ be a complex exponential with $f_{d}=\frac{1}{3}$.
- Then, the samples of $x[n]$ are the periodic repetition of

$$
\left\{1,-\frac{1}{2}+\frac{j \sqrt{3}}{2},-\frac{1}{2}-\frac{j \sqrt{3}}{2}\right\} .
$$

- The 3-point average over three consecutive samples equals zero; therefore, $y[n]=0$.
- For $f_{d}=\frac{1}{3}$, the frequency response $H\left(e^{j 2 \pi f_{d}}\right)=0$.
- Consequently, the output $y[n]$ is given by

$$
y[n]=H\left(\frac{1}{3}\right) \cdot \exp \left(j 2 \pi \frac{1}{3} n\right)=0
$$

Thus, all output samples are equal to zero.

Plot of Frequency Response

General Complex Exponential

- Let $x[n]$ be a complex exponential of the from $A e^{j\left(2 \pi f_{d} n+\phi\right)}$.
- This signal can be written as

$$
x[n]=X \cdot e^{j 2 \pi f_{d} n},
$$

where $X=A e^{j \phi}$ is the phasor of the signal.

- Then, the output $y[n]$ is given by

$$
y[n]=H\left(e^{j 2 \pi f_{d}}\right) \cdot X \cdot \exp \left(j 2 \pi f_{d} n\right) .
$$

- Interpretation: The output is a complex exponential of the same frequency f_{d}
- The phasor for the output signal is the product $H\left(e^{j 2 \pi f_{d}}\right) \cdot X$.

Exercise

Assume that the signal $x[n]=\exp \left(j 2 \pi f_{d} n\right)$ is input to a 4-point averager.

1. Give a general expression for the output signal and identify the frequenchy response of the system.
2. Compute the output signals for the specific frequencies $f_{d}=0, f_{d}=1 / 4$, and $f_{d}=1 / 2$.
