Systems Special Signals L oo o ooooooo o oooooooo o c c	inear, Time-invariant Systems	Convolution and Linear, Time-invariant Systems	Impleme 000
---	-------------------------------	--	----------------

Overview

- **Today:** a really important, somewhat challenging, class.
- Key result: for every linear, time-invariant system (LTI system) the output is obtained from input via convolution.
 - Convolution is a very important operation!
- Prerequisites from previous classes:
 - Impulse signal and impulse response,
 - convolution,
 - linearity, and
 - time-invariance.

	Systems	Special Signals	Linear, Time-invariant Systems	Convolution and Linear, Time-invariant Systems	Impleme
00	000000000000000000000000000000000000000	000000	0 0 00000 0000000		000

Reminders: Convolution and Impulse Response

We learned so far:

For FIR filters, input-output relationship

$$y[n] = \sum_{k=0}^{M} b_k x[n-k].$$

If x[n] = δ[n], then y[n] = h[n] is called the impulse response of the system.

For FIR filters:

$$h[n] = \left\{egin{array}{cc} b_n & ext{for } 0 \leq n \leq M \ 0 & ext{else.} \end{array}
ight.$$

Convolution: input-output relationship

$$y[n] = x[n] * h[n] = \sum_{k=-\infty}^{\infty} h[k] \cdot x[n-k] = \sum_{k=-\infty}^{\infty} x[k] \cdot h[n-k].$$

oc	Systems o oooooooooo	Special Signals	Linear, Time-invariant Systems o o ooooo oooooooooooooooooooooooooo	Convolution and Linear, Time-invariant Systems	Impleme 000
				00000	

Reminders: Linearity and Time-Invariance

Linearity:

- For arbitrary input signals $x_1[n]$ and $x_2[n]$, let the ouputs be denoted $y_1[n]$ and $y_2[n]$.
- Further, for the input signal x[n] = x₁[n] + x₂[n], let the output signal be y[n].
- The system is linear if $y[n] = y_1[n] + y_2[n]$.

Time-Invariance:

- For an arbitrary input signal x[n], let the output be y[n].
- For the delayed input $x_d[n] = x[n n_0]$, let the output be $y_d[n]$.
- The system is time-invariant if $y_d[n] = y[n n_0]$.

• **Today:** For any linear, time-invariant system: input-output relationship is y[n] = x[n] * h[n].

Systems oo ooooooooo	Special Signals	Linear, Time-invariant Systems o o ooooo oooooooo	Convolution and Linear, Time-invariant Systems	Impleme 000
			00000	

Preliminaries

- We need a few more facts and relationships for the impulse signal $\delta[n]$.
- To start, recall:
 - lf input to a system is the impulse signal $\delta[n]$,
 - then, the output is called the impulse response,
 - and is denoted by h[n].
- We will derive a method for expressing arbitrary signals x[n] in terms of impulses.

00	Systems o ooooooooo	Special Signals	Linear, Time-invariant Systems o o oooooooooooooooooooooooooooooooo	Convolution and Linear, Time-invariant Systems	Impleme 000
			00000 00000000	0000000 0 00000	

Sifting with Impulses

- ► Question: What happens if we multiply a signal x[n] with an impulse signal δ[n]?
- Because

$$\delta[n] = \left\{ egin{array}{cc} 1 & ext{for } n=0 \ 0 & ext{else,} \end{array}
ight.$$

it follows that

$$x[n] \cdot \delta[n] = x[0] \cdot \delta[n] = \begin{cases} x[0] & \text{for } n = 0 \\ 0 & \text{else} \end{cases}$$

	Systems	Special Signals	Linear, Time-invariant Systems	Convolution and Linear, Time-invariant Systems	Impleme
oc	000000000000000000000000000000000000000	000000			000
			0000000	000000	

Illustration

©2009-2019, B.-P. Paris

ECE 201: Intro to Signal Analysis

00	Systems	Special Signals	Linear, Time-invariant Systems o o ooooo oooooooooooooooooooooooooo	Convolution and Linear, Time-invariant Systems	Impleme 000
			0000000	00000	

Sifting with Impulses

- **Related Question:** What happens if we multiply a signal x[n] with a delayed impulse signal $\delta[n-k]$?
- Recall that $\delta[n k]$ is an impulse located at the *k*-th sampling instance:

$$\delta[n-k] = \begin{cases} 1 & \text{for } n = k \\ 0 & \text{else} \end{cases}$$

It follows that

$$x[n] \cdot \delta[n-k] = x[k] \cdot \delta[n-k] = \begin{cases} x[k] & \text{for } n = k \\ 0 & \text{else} \end{cases}$$

	Systems	Special Signals	Linear, Time-invariant Systems	Convolution and Linear, Time-invariant Systems	Impleme
00	0 0 00000000	000000	0 0 00000 0000000		000

Illustration

©2009-2019, B.-P. Paris

ECE 201: Intro to Signal Analysis

00	Systems	Special Signals	Linear, Time-invariant Systems o o ooooo oooooooo	Convolution and Linear, Time-invariant Systems	Impleme 000
				00000	

Decomposing a Signal with Impulses

- **Question:** What happens if we combine (add) signals of the form $x[n] \cdot \delta[n-k]$?
- Specifically, what is

$$\sum_{k=-\infty}^{\infty} x[k] \cdot \delta[n-k]?$$

Notice that the above sum represents the convolution of x[n] and δ[n], δ[n] * x[n].

	Systems	Special Signals	Linear, Time-invariant Systems	Convolution and Linear, Time-invariant Systems	Impleme
00	000000000000000000000000000000000000000	000000	0 0 00000	0 00 000000000	000
			0000000	0 00000	

Decomposing a Signal with Impulses

00	Systems o ooooooooo	Special Signals	Linear, Time-invariant Systems o o ooooo oooooooooo	Convolution and Linear, Time-invariant Systems	Impleme 000
			0000000	0 00000	

Decomposing a Signal with Impulses

From these considerations we conclude that

$$\sum_{k=-\infty}^{\infty} x[k] \cdot \delta[n-k] = x[n].$$

Notice that this implies

$$x[n] * \delta[n] = x[n].$$

- We now have a way to write a signal x[n] as a sum of scaled and delayed impulses.
- Next, we exploit this relationship to derive our main result.

	Systems	Special Signals	Linear, Time-invariant Systems	Convolution and Linear, Time-invariant Systems	Impleme
oc	0 000000000	000000	0 0 00000 0000000	0 00 00000000 0 00000	000

Applying Linearity and Time-Invariance

We know already that input δ[n] produces output h[n] (impulse repsonse). We write:

 $\delta[n] \mapsto h[n].$

For a time-invariant system:

$$\delta[\mathbf{n}-\mathbf{k}]\mapsto \mathbf{h}[\mathbf{n}-\mathbf{k}].$$

And for a linear system:

$$x[k] \cdot \delta[n-k] \mapsto x[k] \cdot h[n-k].$$

00	Systems o oooooooooo	Special Signals	Linear, Time-invariant Systems	Convolution and Linear, Time-invariant Systems	Impleme
				00000	

Derivation of the Convolution Sum

Linearity: linear combination of input signals produces output equal to linear combination of individual outputs.

oc	Systems	Special Signals	Linear, Time-invariant Systems	Convolution and Linear, Time-invariant Systems	Impleme 000
				●0000	

Summary and Conclusions

We just derived the convolution sum formula:

$$y[n] = x[n] * h[n] = \sum_{k=-\infty}^{\infty} x[k] \cdot h[n-k].$$

- We only assumed that the system is linear and time-invariant.
- Therefore, we can conclude that for any linear, time-invariant system, the output is the convolution of input and impulse response.
 - Needless to say: convolution and impulse response are enormously important concepts.

	00	000
--	----	-----

Identity System

- From our discussion, we can draw another conclusion.
- Question: How can we characterize a LTI system for which the output y[n] is the same as the input x[n].
 - Such a system is called the identity system.
- Specifically, we want the impulse response h[n] of such a system.
- As always, one finds the impulse response h[n] as the output of the LTI system when the impulse δ[n] is the input.
- Since the ouput is the same as the input for an identity system, we find the impulse response of the identity system

$$h[n] = \delta[n].$$

oc	Systems o oooooooooo	Special Signals	Linear, Time-invariant Systems o o oooooo ooooooooooooooooooooooooo	Convolution and Linear, Time-invariant Systems	Impleme
				õo●00	

Ideal Delay Systems

Closely Related Question: How can one characterize a LTI system for which the output y[n] is a delayed version of the input x[n]:

$$y[n] = x[n-n_0]$$

where n_0 is the delay introduced by the system

- Such a system is called an ideal delay system.
- Again, we want the impulse response h[n] of such a system.
- As before, one finds the impulse response h[n] as the output of the LTI system when the impulse δ[n] is the input.
- Since the ouput is merely a delayed version of the input, we find

$$h[n] = \delta[n - n_0].$$

