## Introduction

- We have introduced systems as devices that process an input signal $x[n]$ to produce an output signal $y[n]$.
- Example Systems:
- Squarer: $y[n]=(x[n])^{2}$
- Modulator: $y[n]=x[n] \cdot \cos \left(2 \pi f_{d} n\right)$, with $0<f_{d} \leq \frac{1}{2}$.
- FIR Filter:

$$
y[n]=\sum_{k=0}^{M-1} h[k] \cdot x[n-k] .
$$

Recall that $h[k]$ is the impulse response of the filter and that the above operation is called convolution of $h[n]$ and $x[n]$.

- Objective: Define important characteristics of systems and determine which systems possess these characteristics. UNIVERSITY


## Causal Systems

- Definition: A system is called causal when it uses only the present and past samples of the input signal to compute the present value of the output signal.
- Causality is usually easy to determine from the system equation:
- The output $y[n]$ must depend only on input samples

$$
x[n], x[n-1], x[n-2], \ldots .
$$

- Input samples $x[n+1], x[n+2], \ldots$ must not be used to find $y[n]$.


## - Examples:

- All three systems on the previous slide are causal.
- The following system is non-causal:

$$
y[n]=\frac{1}{3} \sum_{k=-1}^{1} x[n-k]=\frac{1}{3}(x[n+1]+x[n]+x[n-1]) .
$$

## Linear Systems

- The following test procedure defines linearity and shows how one can determine if a system is linear:

1. Reference Signals: For $i=1,2$, pass input signal $x_{i}[n]$ through the system to obtain output $y_{i}[n]$.
2. Linear Combination: Form a new signal $x[n]$ from the linear combination of $x_{1}[n]$ and $x_{2}[n]$ :

$$
x[n]=x_{1}[n]+x_{2}[n] .
$$

Then, Pass signal $x[n]$ through the system and obtain $y[n]$.
3. Check: The system is linear if

$$
y[n]=y_{1}[n]+y_{2}[n]
$$

- The above must hold for all inputs $x_{1}[n]$ and $x_{2}[n]$.
- For a linear system, the superposition principle holds.



## Illustration

 must be identical



## Example: Squarer

- Squarer: $y[n]=(x[n])^{2}$

1. References: $y_{i}[n]=\left(x_{i}[n]\right)^{2}$ for $i=1,2$.
2. Linear Combination: $x[n]=x_{1}[n]+x_{2}[n]$ and

$$
\begin{aligned}
y[n] & =(x[n])^{2}=\left(x_{1}[n]+x_{2}[n]\right)^{2} \\
& =\left(x_{1}[n]\right)^{2}+\left(x_{2}[n]\right)^{2}+2 x_{1}[n] x_{2}[n] .
\end{aligned}
$$

3. Check:

$$
y[n] \neq y_{1}[n]+y_{2}[n]=\left(x_{1}[n]\right)^{2}+\left(x_{2}[n]\right)^{2} .
$$

- Conclusion: not linear.



## Example: Modulator

- Modulator: $y[n]=x[n] \cdot \cos \left(2 \pi f_{d} n\right)$

1. References: $y_{i}[n]=x_{i}[n] \cdot \cos \left(2 \pi f_{d} n\right)$ for $i=1,2$.
2. Linear Combination: $x[n]=x_{1}[n]+x_{2}[n]$ and

$$
\begin{aligned}
y[n] & =x[n] \cdot \cos \left(2 \pi f_{d} n\right) \\
& =\left(x_{1}[n]+x_{2}[n]\right) \cdot \cos \left(2 \pi f_{d} n\right)
\end{aligned}
$$

3. Check:

$$
y[n]=y_{1}[n]+y_{2}[n]=x_{1}[n] \cdot \cos \left(2 \pi f_{d} n\right)+x_{2}[n] \cdot \cos \left(2 \pi f_{d} n\right) .
$$

- Conclusion: linear.



## Example: FIR Filter

- FIR Filter: $y[n]=\sum_{k=0}^{M-1} h[k] \cdot x[n-k]$

1. References: $y_{i}[n]=\sum_{k=0}^{M-1} h[k] \cdot x_{i}[n-k]$ for $i=1,2$.
2. Linear Combination: $x[n]=x_{1}[n]+x_{2}[n]$ and

$$
y[n]=\sum_{k=0}^{M-1} h[k] \cdot x[n-k]=\sum_{k=0}^{M-1} h[k] \cdot\left(x_{1}[n-k]+x_{2}[n-k]\right) .
$$

3. Check:

$$
y[n]=y_{1}[n]+y_{2}[n]=\sum_{k=0}^{M-1} h[k] \cdot x_{1}[n-k]+\sum_{k=0}^{M-1} h[k] \cdot x_{2}[n-k] .
$$

Conclusion: linear.

## Time-invariance

- The following test procedure defines time-invariance and shows how one can determine if a system is time-invariant:

1. Reference: Pass input signal $x[n]$ through the system to obtain output $y[n]$.
2. Delayed Input: Form the delayed signal $x_{d}[n]=x\left[n-n_{0}\right]$. Then, Pass signal $x_{d}[n]$ through the system and obtain $y_{d}[n]$.
3. Check: The system is time-invariant if

$$
y\left[n-n_{0}\right]=y_{d}[n]
$$

- The above must hold for all inputs $x[n]$ and all delays $n_{0}$.
- Interpretation: A time-invariant system does not change, over time, the way it processes the input signal.


## Illustration



# These two outputs must be identical 



Mienas
MASON


## Example: Squarer

- Squarer: $y[n]=(x[n])^{2}$

1. Reference: $y[n]=(x[n])^{2}$.
2. Delayed Input: $x_{d}[n]=x\left[n-n_{0}\right]$ and

$$
y_{d}[n]=\left(x_{d}[n]\right)^{2}=\left(x\left[n-n_{0}\right]\right)^{2} .
$$

3. Check:

$$
y\left[n-n_{0}\right]=\left(x\left[n-n_{0}\right]\right)^{2}=y_{d}[n] .
$$

- Conclusion: time-invariant.



## Example: Modulator

- Modulator: $y[n]=x[n] \cdot \cos \left(2 \pi f_{d} n\right)$.

1. Reference: $y[n]=x[n] \cdot \cos \left(2 \pi f_{d} n\right)$.
2. Delayed Input: $x_{d}[n]=x\left[n-n_{0}\right]$ and

$$
y_{d}[n]=x_{d}[n] \cdot \cos \left(2 \pi f_{d} n\right)=x\left[n-n_{0}\right] \cdot \cos \left(2 \pi f_{d} n\right)
$$

3. Check:

$$
y\left[n-n_{0}\right]=x\left[n-n_{0}\right] \cdot \cos \left(2 \pi f_{d}\left(n-n_{0}\right)\right) \neq y_{d}[n] .
$$

Conclusion: not time-invariant.

## Example: Modulator

- Alternatively, to show that the modulator is not time-invariant, we construct a counter-example.
- Let $x[n]=\{0,1,2,3, \ldots\}$, i.e., $x[n]=n$, for $n \geq 0$.
- Also, let $f_{d}=\frac{1}{2}$, so that

$$
\cos \left(2 \pi f_{d} n\right)=\left\{\begin{array}{cc}
1 & \text { for } n \text { even } \\
-1 & \text { for } n \text { odd }
\end{array}\right.
$$

- Then, $y[n]=x[n] \cdot \cos \left(2 \pi f_{d} n\right)=\{0,-1,2,-3, \ldots\}$.
- With $n_{0}=1, x_{d}[n]=x[n-1]=\{0,0,1,2,3, \ldots\}$, we get $y_{d}[n]=\{0,0,1,-2,3, \ldots\}$.
- Clearly, $y_{d}[n] \neq y[n-1]$.
- not time-invariant

UNIVERSITY

## Example: FIR Filter

- Reference: $y[n]=\sum_{k=0}^{M-1} h[k] \cdot x[n-k]$.
- Delayed Input: $x_{d}[n]=x\left[n-n_{0}\right]$, and

$$
y_{d}[n]=\sum_{k=0}^{M-1} h[k] \cdot x_{d}[n-k]=\sum_{k=0}^{M-1} h[k] \cdot x\left[n-n_{0}-k\right] .
$$

- Check:

$$
y\left[n-n_{0}\right]=\sum_{k=0}^{M-1} h[k] \cdot x\left[n-n_{0}-k\right]=y_{d}[n]
$$

- time-invariant


## Exercise

- Let $u[n]$ be the unit-step sequence (i.e., $u[n]=1$ for $n \geq 0$ and $u[n]=0$, otherwise).
- The system is a 3-point averager:

$$
y[n]=\frac{1}{3}(x[n]+x[n-1]+x[n-2])
$$

1. Find the output $y_{1}[n]$ when the input $x_{1}[n]=u[n]$.
2. Find the output $y_{2}[n]$ when the input $x_{2}[n]=u[n-2]$.
3. Find the output $y[n]$ when the input $x[n]=u[n]-u[n-2]$.
4. How are linearity and time-invariance evident in your results?
