| 000000000 0 00<br>00000 0000000<br>00000000 0<br>000000 | 0 | Systems<br>o<br>oooooooooo | Special Signals | Linear, Time-invariant Systems | Convolution and Linear, Time-invariant Systems | Impleme<br>000 |
|---------------------------------------------------------|---|----------------------------|-----------------|--------------------------------|------------------------------------------------|----------------|
|---------------------------------------------------------|---|----------------------------|-----------------|--------------------------------|------------------------------------------------|----------------|

# Lecture: Introduction to Systems and FIR filters



|    | Systems   | Special Signals | Linear, Time-invariant Systems | Convolution and Linear, Time-invariant Systems | Impleme |
|----|-----------|-----------------|--------------------------------|------------------------------------------------|---------|
| 00 | 000000000 | 000000          | 0<br>0<br>00000<br>0000000     | 0<br>00<br>00000000<br>0<br>00000              | 000     |

# Systems

- A system is used to process an input signal x[n] and produce the ouput signal y[n].
  - We focus on discrete-time signals and systems;
  - a correspoding theory exists for continuous-time signals and systems.
- Many different systems:
  - Filters: remove undesired signal components,
  - Modulators and demodulators,
  - Detectors.





| 00 | Systems<br>o<br>oooooooooooooooooooooooooooooooooo | Special Signals | Linear, Time-invariant Systems<br>o<br>o<br>ooooo<br>ooooooo | Convolution and Linear, Time-invariant Systems<br>o<br>oo<br>ooooooooooooooooooooooooooooooo | Impleme<br>000 |
|----|----------------------------------------------------|-----------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------|
|    |                                                    |                 |                                                              |                                                                                              |                |

### Representative Examples

The following are examples of systems:

- Squarer:  $y[n] = (x[n])^2$ ;
- Modulator:  $y[n] = x[n] \cdot \cos(2\pi f_d n);$
- Averager:  $y[n] = \frac{1}{M} \sum_{k=0}^{M-1} x[n-k];$

• FIR Filter: 
$$y[n] = \sum_{k=0}^{M} b_k x[n-k]$$

In MATLAB, systems are generally modeled as functions with x[n] as the first input argument and y[n] as the output argument.

**Example:** first two lines of function implementing a squarer.

```
function yy = squarer(xx)
% squarer - output signal is the square of the input signal
```



| Systems<br>○○<br>○●○○○○○○○ | Special Signals<br>0000000 | Linear, Time-invariant Systems<br>o<br>o<br>ooooo<br>ooooooo | Convolution and Linear, Time-invariant Systems<br>o<br>oo<br>ooooooooooooooooooooooooooooooo | Impleme<br>000 |
|----------------------------|----------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------|
|----------------------------|----------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------|

#### Squarer

System relationship between input and output signals:

$$y[n] = (x[n])^2.$$

• **Example:** Input signal: 
$$x[n] = \{1, 2, 3, 4, 3, 2, 1\}$$

• Output signal:  $y[n] = \{1, 4, 9, 16, 9, 4, 1\}$ .



| Systems<br>oo o<br>oooooooo | Special Signals | Linear, Time-invariant Systems<br>o<br>o<br>ooooo<br>oooooooo | Convolution and Linear, Time-invariant Systems<br>o<br>oo<br>ooooooooooooooooooooooooooooooo | Impleme<br>000 |
|-----------------------------|-----------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------|
|                             |                 |                                                               |                                                                                              |                |

# Modulator



$$y[n] = (x[n]) \cdot \cos(2\pi f_d n);$$

where the modulator frequency  $f_d$  is a *parameter* of the system.

- Example:
  - Input signal:  $x[n] = \{1, 2, 3, 4, 3, 2, 1\}$
  - assume  $f_d = 0.5$ , i.e.,  $\cos(2\pi f_d n) = \{\dots, 1, -1, 1, -1, \dots\}$ .
- Output signal:  $y[n] = \{1, -2, 3, -4, 3, -2, 1\}$ .



| Systems<br>○○ ○<br>○○○●○○○○○ | Special Signals | Linear, Time-invariant Systems<br>o<br>o<br>ooooo<br>oooooooo | Convolution and Linear, Time-invariant Systems<br>O<br>OO<br>OOOOOOOOOOOOOOOOOOOOOOOOOOOOO | Impleme<br>000 |
|------------------------------|-----------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------|
|------------------------------|-----------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------|

#### Averager

System relationship between input and output signals:

$$y[n] = \frac{1}{M} \sum_{k=0}^{M-1} x[n-k] \\ = \frac{1}{M} \cdot (x[n] + x[n-1] + \dots + x[n-(M-1)]) \\ = \sum_{k=0}^{M-1} \frac{1}{M} \cdot x[n-k].$$

- This system computes the *sliding average* over the *M* most recent samples.
- **Example:** Input signal:  $x[n] = \{1, 2, 3, 4, 3, 2, 1\}$
- For computing the output signal, a table is very useful.
  - synthetic multiplication table.



|    | Systems          | Special Signals | Linear, Time-invariant Systems | Convolution and Linear, Time-invariant Systems | Impleme |
|----|------------------|-----------------|--------------------------------|------------------------------------------------|---------|
| 00 | ) 0<br>0000●0000 | 000000          | 0<br>0<br>00000<br>0000000     |                                                | 000     |

### 3-Point Averager (M = 3)



► 
$$y[n] = \{\frac{1}{3}, 1, 2, 3, \frac{10}{3}, 3, 2, 1, \frac{1}{3}\}$$



| Systems Specia | al Signals Linear, Time-invariant S<br>000 0<br>0<br>00000<br>0000000 | Systems Convolution and Linear, Time-invariant System | ns Implemen<br>000 |
|----------------|-----------------------------------------------------------------------|-------------------------------------------------------|--------------------|
|----------------|-----------------------------------------------------------------------|-------------------------------------------------------|--------------------|

# General FIR Filter

- The M-point averager is a special case of the general FIR filter.
  - FIR stands for Finite Impulse Response; we will see what this means later.
- The system relationship between the input x[n] and the output y[n] is given by

$$y[n] = \sum_{k=0}^{M-1} b_k \cdot x[n-k].$$

- M is the number of filter coefficients.
- $\blacktriangleright$  *M* 1 is called the order of the filter.



|    | Systems    | Special Signals | Linear, Time-invariant Systems | Convolution and Linear, Time-invariant Systems | Impleme |
|----|------------|-----------------|--------------------------------|------------------------------------------------|---------|
| oc | 0000000000 | 000000          | 0<br>0<br>00000<br>0000000     | 0<br>00<br>00000000<br>0<br>00000              | 000     |

#### General FIR Filter

System relationship:

$$y[n] = \sum_{k=0}^{M-1} b_k \cdot x[n-k].$$

- The filter coefficients  $b_k$  determine the characteristics of the filter.
  - Much more on the relationship between the filter coefficients b<sub>k</sub> and the characteristics of the filter later.
- Clearly, with  $b_k = \frac{1}{M}$  for k = 0, 1, ..., M 1 we obtain the M-point averager.
- Again, computation of the output signal can be done via a synthetic multiplication table.

• **Example:**  $x[n] = \{1, 2, 3, 4, 3, 2, 1\}$  and  $b_k = \{1, -2, 1\}$ .



| Systems    | Special Signals | Linear, Time-invariant Systems | Convolution and Linear, Time-invariant Systems | Impleme |
|------------|-----------------|--------------------------------|------------------------------------------------|---------|
| 00 0000000 | 000000          | 0<br>0<br>00000<br>0000000     |                                                | 000     |

# FIR Filter ( $b_k = \{1, -2, 1\}$ )

| n                                | -1 | 0 | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8 |
|----------------------------------|----|---|----|----|----|----|----|----|----|---|
| x[ <i>n</i> ]                    | 0  | 1 | 2  | 3  | 4  | 3  | 2  | 1  | 0  | 0 |
| <b>1</b> · <i>x</i> [ <i>n</i> ] | 0  | 1 | 2  | 3  | 4  | 3  | 2  | 1  | 0  | 0 |
| $-2 \cdot x[n-1]$                | 0  | 0 | -2 | -4 | -6 | -8 | -6 | -4 | -2 | 0 |
| $+1 \cdot x[n-2]$                | 0  | 0 | 0  | 1  | 2  | 3  | 4  | 3  | 2  | 1 |
| y[n]                             | 0  | 1 | 0  | 0  | 0  | -2 | 0  | 0  | 0  | 1 |

$$\flat y[n] = \{1, 0, 0, 0, -2, 0, 0, 0, 1\}$$

- Note that the output signal y[n] is longer than the input signal x[n].
- Note, synthetic multiplication works only for short, finite-duration signal.



| Systems | Special Signals | Linear, Time-invariant Systems<br>o<br>ooooo<br>oooooooooo | Convolution and Linear, Time-invariant Systems | Impleme<br>000 |
|---------|-----------------|------------------------------------------------------------|------------------------------------------------|----------------|
|---------|-----------------|------------------------------------------------------------|------------------------------------------------|----------------|



1. Find the output signal y[n] for an FIR filter

$$y[n] = \sum_{k=0}^{M-1} b_k \cdot x[n-k]$$

with filter coefficients  $b_k = \{1, -1, 2\}$  when the input signal is  $x[n] = \{1, 2, 4, 2, 4, 2, 1\}$ .



| Systems<br>oo o<br>ooooooo | Special Signals<br>•000000 | Linear, Time-invariant Systems<br>o<br>o<br>ooooo<br>oooooooo | Convolution and Linear, Time-invariant Systems<br>o<br>oo<br>ooooooooooooooooooooooooooooooo | Impleme<br>000 |
|----------------------------|----------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------|
|----------------------------|----------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------|

# Unit Step Sequence and Unit Step Response

The signal with samples

$$u[n] = \left\{egin{array}{cc} 1 & ext{for } n \geq 0, \ 0 & ext{for } n < 0 \end{array}
ight.$$

is called the unit-step sequence or unit-step signal.

The output of an FIR filter when the input is the unit-step signal (x[n] = u[n]) is called the unit-step response r[n].



| 00 | Systems<br>o<br>oooooooooo | Special Signals<br>o●ooooo | Linear, Time-invariant Systems | Convolution and Linear, Time-invariant Systems | Impleme<br>000 |
|----|----------------------------|----------------------------|--------------------------------|------------------------------------------------|----------------|
|----|----------------------------|----------------------------|--------------------------------|------------------------------------------------|----------------|

## Unit-Step Response of the 3-Point Averager

- lnput signal: x[n] = u[n].
- Output signal:  $r[n] = \frac{1}{3} \sum_{k=0}^{2} u[n-k]$ .





| Systems Special Signals Linear, Time-invariant Systems C<br>OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO | Convolution and Linear, Time-invariant Systems<br>o<br>oo<br>ooooooooo<br>o<br>ooooooooooooooooooo | Impleme<br>000 |
|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------|
|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------|

Unit-Impulse Sequence and Unit-Impulse Response

The signal with samples

$$\delta[n] = \begin{cases} 1 & \text{for } n = 0, \\ 0 & \text{for } n \neq 0 \end{cases}$$

is called the unit-impulse sequence or unit-impulse signal.

- ► The output of an FIR filter when the input is the unit-impulse signal (x[n] = δ[n]) is called the unit-impulse response, denoted h[n].
- Typically, we will simply call the above signals simply impulse signal and impulse response.
- We will see that the impulse-response captures all characteristics of a FIR filter.
  - This implies that impulse response is a very important concept!



| 00 0 | Systems<br>o<br>oooooooooo | Special Signals<br>000●000 | Linear, Time-invariant Systems<br>o<br>o<br>ooooo<br>ooooooo | Convolution and Linear, Time-invariant Sy<br>o<br>oo<br>ooooooooooooooooooooooooooooooo | vstems Impleme<br>000 |
|------|----------------------------|----------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------|
|------|----------------------------|----------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------|

### Unit-Impulse Response of a FIR Filter

- Input signal:  $x[n] = \delta[n]$ .
- Output signal:  $h[n] = \sum_{k=0}^{M-1} b_k \delta[n-k]$ .





| Systems<br>0 0<br>000000000 | Special Signals<br>0000●00 | Linear, Time-invariant Systems<br>o<br>o<br>ooooo<br>oooooooo | Convolution and Linear, Time-invariant Systems<br>o<br>oo<br>ooooooooooooooooooooooooooooooo | Impleme<br>000 |
|-----------------------------|----------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------|
|                             |                            | 0000000                                                       | ŏoooo                                                                                        |                |

### Important Insights

For an FIR filter, the impulse response equals the sequence of filter coefficients:

$$h[n] = \begin{cases} b_n & \text{for } n = 0, 1, \dots, M-1 \\ 0 & \text{else.} \end{cases}$$

Because of this relationship, the system relationship for an FIR filter can also be written as

$$y[n] = \sum_{k=0}^{M-1} b_k x[n-k]$$
  
= 
$$\sum_{k=0}^{M-1} h[k] x[n-k]$$
  
= 
$$\sum_{-\infty}^{\infty} h[k] x[n-k].$$

► The operation  $y[n] = h[n] * x[n] = \sum_{-\infty}^{\infty} h[k]x[n-k]$  is called convolution; it is a **very**, **very** important operation.

