Introduction to Sampling

Sampling and Discrete-Time Signals

- MATLAB, and other digital processing systems, can not process continuous-time signals.
- Instead, MATLAB requires the continuous-time signal to be converted into a **discrete-time signal**.
- The conversion process is called **sampling**.
- To sample a continuous-time signal, we evaluate it at a discrete set of times $t_n = nT_s$, where
 - n is a integer,
 - T_s is called the sampling period (time between samples),
 - $f_s = 1 / T_s$ is the sampling rate (samples per second).
Sampling and Discrete-Time Signals

- Sampling results in a sequence of samples
 \[x(nT_s) = A \cdot \cos(2\pi fnT_s + \phi). \]

- Note that the independent variable is now \(n \), not \(t \).

- To emphasize that this is a discrete-time signal, we write
 \[x[n] = A \cdot \cos(2\pi fnT_s + \phi). \]

- Sampling is a straightforward operation.
- We will see that the sampling rate \(f_s \) must be chosen with care!
Sampled Signals in MATLAB

- Note that we have worked with sampled signals whenever we have used MATLAB.

- For example, we use the following MATLAB fragment to generate a sinusoidal signal:

```matlab
fs = 100;
tt = 0:1/fs:3;
xx = 5*cos(2*pi*2*tt + pi/4);
```

- The resulting signal \(xx \) is a discrete-time signal:
 - The vector \(xx \) contains the samples, and
 - the vector \(tt \) specifies the sampling instances: \(0, 1/f_s, 2/f_s, \ldots, 3 \).

- We will now turn our attention to the impact of the sampling rate \(f_s \).
Example: Three Sinuoids

► **Objective:** In MATLAB, compute sampled versions of three sinusoids:

1. \(x(t) = \cos(2\pi t + \pi / 4) \)
2. \(x(t) = \cos(2\pi 9t - \pi / 4) \)
3. \(x(t) = \cos(2\pi 11t + \pi / 4) \)

► The sampling rate for all three signals is \(f_s = 10 \).
MATLAB code

% plot_SamplingDemo - Sample three sinusoidal signals to
demonstrate the impact of sampling

%% set parameters
fs = 10;
dur = 10;

%% generate signals
tt = 0:1/fs:dur;
x1 = cos(2*pi*tt+pi/4);
x2 = cos(2*pi*9*tt-pi/4);
x3 = cos(2*pi*11*tt+pi/4);

%% plot
plot(tt,x1,:o',tt,x2,:x',tt,x3,:+');
xlabel('Time (s)')
grid
legend('f=1','f=9','f=11','Location','EastOutside')
Introduction to Sampling

Resulting Plot

©2009-2019, B.-P. Paris
What happened?

- The samples for all three signals are identical: how is that possible?
- Is there a “bug” in the MATLAB code?
 - No, the code is correct.
- **Suspicion**: The problem is related to our choice of sampling rate.
 - To test this suspicion, repeat the experiment with a different sampling rate.
 - We also reduce the duration to keep the number of samples constant - that keeps the plots reasonable.
MATLAB code

% plot_SamplingDemoHigh - Sample three sinusoidal signals to demonstrate the impact of sampling
%

%% set parameters
fs = 100;
dur = 1;

%% generate signals
tt = 0:1/fs:dur;
xx1 = cos(2*pi*tt+pi/4);
xx2 = cos(2*pi*9*tt-pi/4);
xx3 = cos(2*pi*11*tt+pi/4);

%% plots
plot(tt,xx1,'-*',tt,xx2,'-x',tt,xx3,'-+',... tt(1:10:end), xx1(1:10:end),'ok');
grid
xlabel('Time (s)')
legend('f=1','f=9','f=11','f_s=10','Location','EastOutside')
Introduction to Sampling

Resulting Plot

©2009-2019, B.-P. Paris
The Influence of the Sampling Rate

- Now the three sinusoids are clearly distinguishable and lead to different samples.
- Since the only parameter we changed is the sampling rate f_s, it must be responsible for the ambiguity in the first plot.
- Notice also that every 10-th sample (marked with a black circle) is identical for all three sinusoids.
 - Since the sampling rate was 10 times higher for the second plot, this explains the first plot.
- It is useful to investigate the effect of sampling mathematically, to understand better what impact it has.
 - To do so, we focus on sampling sinusoidal signals.
Sampling a Sinusoidal Signal

▶ A continuous-time sinusoid is given by

\[x(t) = A \cos(2\pi ft + \phi). \]

▶ When this signal is sampled at rate \(f_s \), we obtain the discrete-time signal

\[x[n] = A \cos\left(2\pi \frac{fn}{f_s} + \phi\right). \]

▶ It is useful to define the normalized frequency \(\hat{f}_d = \frac{f}{f_s} \), so that

\[x[n] = A \cos(2\pi \hat{f}_d n + \phi). \]
Three Cases

- We will distinguish between three cases:
 1. $0 \leq \hat{f}_d \leq 1/2$ (Oversampling, this is what we want!)
 2. $1/2 < \hat{f}_d \leq 1$ (Undersampling, folding)
 3. $1 < \hat{f}_d \leq 3/2$ (Undersampling, aliasing)

- This captures the three situations addressed by the first example:
 1. $f = 1, f_s = 10 \Rightarrow \hat{f}_d = 1/10$
 2. $f = 9, f_s = 10 \Rightarrow \hat{f}_d = 9/10$
 3. $f = 11, f_s = 10 \Rightarrow \hat{f}_d = 11/10$

- We will see that all three cases lead to identical samples.
Introducing Sampling

Oversampling

- When the sampling rate is such that \(0 \leq \hat{f}_d \leq 1/2 \), then the samples of the sinusoidal signal are given by

\[
x[n] = A \cos(2\pi \hat{f}_d n + \phi).
\]

- This cannot be simplified further.
- It provides our base-line.
- Oversampling is the desired behaviour!
Undersampling, Aliasing

- When the sampling rate is such that $1 < \hat{f}_d \leq 3/2$, then we define the apparent frequency $\hat{f}_a = \hat{f}_d - 1$.
- Notice that $0 < \hat{f}_a \leq 1/2$ and $\hat{f}_d = \hat{f}_a + 1$.
 - For $f = 11$, $f_s = 10 \Rightarrow \hat{f}_d = 11/10 \Rightarrow \hat{f}_a = 1/10$.
- The samples of the sinusoidal signal are given by
 \[x[n] = A \cos(2\pi \hat{f}_d n + \phi) = A \cos(2\pi (1 + \hat{f}_a) n + \phi). \]
- Expanding the terms inside the cosine,
 \[x[n] = A \cos(2\pi \hat{f}_a n + 2\pi n + \phi) = A \cos(2\pi \hat{f}_a n + \phi) \]
- **Interpretation**: The samples are identical to those from a sinusoid with frequency $f = \hat{f}_a \cdot f_s$ and phase ϕ.

©2009-2019, B.-P. Paris
Undersampling, Folding

When the sampling rate is such that $1/2 < \hat{f}_d \leq 1$, then we introduce the apparent frequency $\hat{f}_a = 1 - \hat{f}_d$; again $0 < \hat{f}_a \leq 1/2$; also $\hat{f}_d = 1 - \hat{f}_a$.

- For $f = 9$, $f_s = 10 \Rightarrow \hat{f}_d = 9/10 \Rightarrow \hat{f}_a = 1/10$.
- The samples of the sinusoidal signal are given by

$$x[n] = A \cos(2\pi \hat{f}_d n + \phi) = A \cos(2\pi (1 - \hat{f}_a) n + \phi).$$

- Expanding the terms inside the cosine,

$$x[n] = A \cos(-2\pi \hat{f}_a n + 2\pi n + \phi) = A \cos(-2\pi \hat{f}_a n + \phi)$$

- Because of the symmetry of the cosine, this equals

$$x[n] = A \cos(2\pi \hat{f}_a n - \phi).$$

- **Interpretation:** The samples are identical to those from a sinusoid with frequency $f = \hat{f}_a \cdot f_s$ and phase $-\phi$ (phase reversal).
Sampling Higher-Frequency Sinusoids

- For sinusoids of even higher frequencies f, either folding or aliasing occurs.
- As before, let \hat{f}_d be the normalized frequency f/f_s.
- Decompose \hat{f}_d into an integer part N and fractional part f_p.
 - **Example:** If \hat{f}_d is 5.7 then N equals 5 and f_p is 0.7.
 - Notice that $0 \leq f_p < 1$, always.
- **Phase Reversal** occurs when the phase of the sampled sinusoid is the negative of the phase of the continuous-time sinusoid.
- We distinguish between
 - **Folding** occurs when $f_p > 1/2$. Then the apparent frequency \hat{f}_a equals $1 - f_p$ and phase reversal occurs.
 - **Aliasing** occurs when $f_p \leq 1/2$. Then the apparent frequency is $\hat{f}_a = f_p$; no phase reversal occurs.
Examples

► For the three sinusoids considered earlier:
 1. \(f = 1, \phi = \pi / 4, f_s = 10 \Rightarrow \hat{f}_d = 1/10 \)
 2. \(f = 9, \phi = -\pi / 4, f_s = 10 \Rightarrow \hat{f}_d = 9/10 \)
 3. \(f = 11, \phi = \pi / 4, f_s = 10 \Rightarrow \hat{f}_d = 11/10 \)

► The first case, represents oversampling: The apparent frequency \(\hat{f}_a = \hat{f}_d \) and no phase reversal occurs.

► The second case, represents folding: The apparent \(\hat{f}_a \) equals \(1 - \hat{f}_d \) and phase reversal occurs.

► In the final example, the fractional part of \(\hat{f}_d = 1/10 \). Hence, this case represents aliasing; no phase reversal occurs.
Exercise

The discrete-time sinusoidal signal

\[x[n] = 5 \cos(2\pi 0.2n - \frac{\pi}{4}). \]

was obtained by sampling a continuous-time sinusoid of the form

\[x(t) = A \cos(2\pi ft + \phi) \]

at the sampling rate \(f_s = 8000 \) Hz.

1. Provide three different sets of parameters \(A, f, \) and \(\phi \) for the continuous-time sinusoid that all yield the discrete-time sinusoid above when sampled at the indicated rate. The parameter \(f \) must satisfy \(0 < f < 12000 \) Hz in all three cases.

2. For each case indicate if the signal is undersampled or oversampled and if aliasing or folding occurred.