Sum of Sinusoidal Signals	Time and Frequency-Domain	Periodic Signals	Time-Frequency Spectrum	Operations on Spectrum
00 00 00 00 0000	000 000 000 000000 00000000	0 0 00000000 0000	0 00000 000000	000000

Signal Operations in the Frequency Domain

- Signal processing implies that we apply operations to signals; Examples include:
 - Adding two signals
 - Delaying a signal
 - Multiplying a signal with a complex exponential signal
- Question: What does each of these operation do the spectrum of the signal?
 - We will answer that question for some common signal processing operations.

Sum of Sinusoidal Signals	Time and Frequency-Domain	Periodic Signals	Time-Frequency Spectrum	Operations on Spectrum
00	000	0	0	0
00	000		00000	●00000
00	000	0000000	000000	
00	000000	0000		
0000	000000000			

Scaling a Signal

- ► Let x(t) be a signal with spectrum $X(f) = \{(X_n, f_n)\}_n$.
- Question: If c is a scalar constant, what is the spectrum of the signal $y(t) = c \cdot x(t)$?

Since

$$x(t) = \sum_{n} X_{n} \cdot e^{j2\pi f_{n}t}$$
$$y(t) = c \cdot x(t) = \sum c \cdot X_{n} \cdot e^{j2\pi f_{n}t}.$$

$$Y(f) = \{(\boldsymbol{c} \cdot \boldsymbol{X}_n, f_n)\}_n.$$

n

• We use the short-hand
$$Y(f) = c \cdot X(f)$$
 to denote $\{(c \cdot X_n, f_n)\}_n$.

Sum of Sinusoidal Signals	Time and Frequency-Domain	Periodic Signals	Time-Frequency Spectrum	Operations on Spectrum
00	000	0	0	0
00	000		00000	00000
00	000	00000000	000000	
00	000000	0000		
0000	000000000			

Adding Two Signals

Let x(t) and y(t) be signals with spectra X(f) and Y(f).

• **Question:** What is the spectrum of the signal z(t) = x(t) + y(t)?

Since

$$z(t) = x(t) + y(t) = \sum_{n} X_{n} \cdot e^{j2\pi f_{n}t} + \sum_{n} Y_{n} \cdot e^{j2\pi f_{n}t}$$
$$Z(t) = \{(X_{n} + Y_{n}, f_{n})\}_{n}.$$

• We use the short-hand Z(f) = X(f) + Y(f) to denote $\{(X_n + Y_n, f_n)\}.$

• **Example:** What is the spectrum Z(f) when signals with spectra $X(f) = \{(3,0), (1,1), (1,-1), (2,2), (2,-2)\}$ and $Y(f) = \{(j,1), (-j,-1), (1,3), (1,-3)\}$ are added?

Sum of Sinusoidal Signals	Time and Frequency-Domain	Periodic Signals	Time-Frequency Spectrum	Operations on Spectrum
00	000			
00	000		00000	00000
00	000	00000000	000000	
00	000000	0000		
0000	000000000			

Delaying a Signal

Let x(t) be a signal and $X(f) = \{(X_n, f_n)\}_n$ denotes its spectrum.

• **Question:** What is the spectrum of the signal $y(t) = x(t - \tau)$?

Since

$$y(t) = x(t-\tau) = \sum_{n} X_n \cdot e^{j2\pi f_n(t-\tau)} = \sum_{n} X_n e^{-j2\pi f_n\tau} \cdot e^{j2\pi f_n\tau}$$

it follows that

$$Y(f) = \{ (X_n e^{-j2\pi f_n \tau}, f_n) \}_n.$$

- Notice that delaying a signal induces phase shifts in the spectrum
- The phase shifts are proportional to the delay τ and the frequencies f_n .

©2009-2019, B.-P. Paris

Sum of Sinusoidal Signals	Time and Frequency-Domain	Periodic Signals o o oooooooooooooooooooooooooooooooo	Time-Frequency Spectrum o ooooo oooooo	Operations on Spectrum 000000
õõoo	000000000			

Delaying a Signal – Example

• **Example:** What is the spectrum Y(f) when the signal with spectrum $X(f) = \{(3,0), (1,1), (1,-1), (2,2), (2,-2)\}$ is shifted by $\tau = \frac{1}{4}$?

$$Y(f) = \{(3,0), (-j,1), (j,-1), (-2,2), (-2,-2)\}$$

Sum of Sinusoidal Signals	Time and Frequency-Domain	Periodic Signals	Time-Frequency Spectrum	Operations on Spectrum
00	000			
00	000		00000	000000
00	000	00000000	000000	
00	000000	0000		
0000	000000000			

Multiplying by a Complex Exponential

- Let x(t) be a signal and $X(f) = \{(c \cdot X_n, f_n)\}_n$ denotes its spectrum.
- **Question:** What is the spectrum of the signal $y(t) = x(t) \cdot e^{j2\pi f_c t}$?
- Since

$$y(t) = x(t) \cdot e^{j2\pi f_c t} = \sum_n X_n \cdot e^{j2\pi f_n t} \cdot e^{j2\pi f_c t} = \sum_n X_n \cdot e^{j2\pi (f_n + f_c)t}$$

it follows that

$$Y(f) = \{X_n, f_n + f_c\}$$

- Notice that the entire spectrum is shifted by f_c , i.e., $Y(f) = X(f + f_c)$.
- Notice the "symmetry" with the time delay operation this is called duality.

Sum of Sinusoidal Signals	Time and Frequency-Domain	Periodic Signals	Time-Frequency Spectrum	Operations on Spectrum
00	000			
00	000		00000	00000
00	000	00000000	000000	
00	000000	0000		
0000	000000000			

Exercise: Spectrum of AM Signal

We discussed that amplitude modulation *processess* a message signal to produce the transmitted signal s(t):

$$\boldsymbol{s}(t) = (\boldsymbol{A} + \boldsymbol{m}(t)) \cdot \cos(2\pi f_c t).$$

- Assume that the spectrum of m(t) is M(f).
- Question: Use the Spectrum Operations we discussed to express the spectrum S(f) in terms of M(f).

Answer:

$$S(f) = \frac{1}{2}M(f + f_c) + \frac{1}{2}M(f - f_c) + \{(\frac{A}{2}, f_c) + \{(\frac{A}{2}, -f_c)\}\}$$

