## Signal Operations in the Frequency Domain

- Signal processing implies that we apply operations to signals; Examples include:
- Adding two signals
- Delaying a signal
- Multiplying a signal with a complex exponential signal
- Question: What does each of these operation do the spectrum of the signal?
- We will answer that question for some common signal processing operations.


## Scaling a Signal

- Let $x(t)$ be a signal with spectrum $X(f)=\left\{\left(X_{n}, f_{n}\right)\right\}_{n}$.
- Question: If $c$ is a scalar constant, what is the spectrum of the signal $y(t)=c \cdot x(t)$ ?
- Since

$$
\begin{gathered}
x(t)=\sum_{n} X_{n} \cdot e^{j 2 \pi f_{n} t} \\
y(t)=c \cdot x(t)=\sum_{n} c \cdot X_{n} \cdot e^{j 2 \pi f_{n} t} .
\end{gathered}
$$

- Therefore,

$$
Y(f)=\left\{\left(c \cdot X_{n}, f_{n}\right)\right\}_{n} .
$$

- We use the short-hand $Y(f)=c \cdot X(f)$ to denote $\left\{\left(c \cdot X_{n}, f_{n}\right)\right\}_{n}$.

UNIVERSITY

## Adding Two Signals

- Let $x(t)$ and $y(t)$ be signals with spectra $X(f)$ and $Y(f)$.
- Question: What is the spectrum of the signal $z(t)=x(t)+y(t) ?$
- Since

$$
\begin{aligned}
z(t)=x(t)+y(t) & =\sum_{n} X_{n} \cdot e^{j 2 \pi f_{n} t}+\sum_{n} Y_{n} \cdot e^{j 2 \pi f_{n} t} \\
Z(f) & =\left\{\left(X_{n}+Y_{n}, f_{n}\right)\right\}_{n} .
\end{aligned}
$$

- We use the short-hand $Z(f)=X(f)+Y(f)$ to denote $\left\{\left(X_{n}+Y_{n}, f_{n}\right)\right\}$.
- Example: What is the spectrum $Z(f)$ when signals with spectra $X(f)=\{(3,0),(1,1),(1,-1),(2,2),(2,-2)\}$ and $Y(f)=\{(j, 1),(-j,-1),(1,3),(1,-3)\}$ are added?


## Delaying a Signal

- Let $x(t)$ be a signal and $X(f)=\left\{\left(X_{n}, f_{n}\right)\right\}_{n}$ denotes its spectrum.
- Question: What is the spectrum of the signal

$$
y(t)=x(t-\tau) ?
$$

- Since

$$
y(t)=x(t-\tau)=\sum_{n} X_{n} \cdot e^{j 2 \pi f_{n}(t-\tau)}=\sum_{n} X_{n} e^{-j 2 \pi f_{n} \tau} \cdot e^{j 2 \pi f_{n} t}
$$

it follows that

$$
Y(f)=\left\{\left(X_{n} e^{-j 2 \pi f_{n} \tau}, f_{n}\right)\right\}_{n} .
$$

- Notice that delaying a signal induces phase shifts in the spectrum
- The phase shifts are proportional to the delay $\tau$ and the frequencies $f_{n}$.


## Sum of Sinusoidal Signals Time and Frequency-Domain Periodic Signals Time-Frequency Spectrum Operations on Spectrum 00 00 00 00 0000

## Delaying a Signal - Example

- Example: What is the spectrum $Y(f)$ when the signal with spectrum $X(f)=\{(3,0),(1,1),(1,-1),(2,2),(2,-2)\}$ is shifted by $\tau=\frac{1}{4}$ ?
- Answer:

$$
Y(f)=\{(3,0),(-j, 1),(j,-1),(-2,2),(-2,-2)\}
$$

## Multiplying by a Complex Exponential

- Let $x(t)$ be a signal and $X(f)=\left\{\left(c \cdot X_{n}, f_{n}\right)\right\}_{n}$ denotes its spectrum.
- Question: What is the spectrum of the signal $y(t)=x(t) \cdot e^{j 2 \pi f_{c} t}$ ?
- Since
$y(t)=x(t) \cdot e^{j 2 \pi f_{c} t}=\sum_{n} X_{n} \cdot e^{j 2 \pi f_{n} t} \cdot e^{j 2 \pi f_{c} t}=\sum_{n} X_{n} \cdot e^{j 2 \pi\left(f_{n}+f_{c}\right) t}$
it follows that

$$
Y(f)=\left\{X_{n}, f_{n}+f_{c}\right\}
$$

- Notice that the entire spectrum is shifted by $f_{c}$, i.e., $Y(f)=X\left(f+f_{c}\right)$.
- Notice the "symmetry" with the time delay operation - this is called duality.


## Exercise: Spectrum of AM Signal

- We discussed that amplitude modulation processess a message signal to produce the transmitted signal $s(t)$ :

$$
s(t)=(A+m(t)) \cdot \cos \left(2 \pi f_{c} t\right)
$$

- Assume that the spectrum of $m(t)$ is $M(f)$.
- Question: Use the Spectrum Operations we discussed to express the spectrum $S(f)$ in terms of $M(f)$.
- Answer:

$$
S(f)=\frac{1}{2} M\left(f+f_{c}\right)+\frac{1}{2} M\left(f-f_{c}\right)+\left\{\left(\frac{A}{2}, f_{c}\right)+\left\{\left(\frac{A}{2},-f_{c}\right)\right\}\right.
$$

