	Time-Domain and Frequency-Domain	0 0 00000000	Time-Frequency Spec o ooooo oooooo
0000	000000 000000000	0000	000000

Amplitude Modulation

- Amplitude Modulation is used in communication systems.
- The objective of amplitude modulation is to move the spectrum of a signal m(t) from low frequencies to high frequencies.
 - The message signal m(t) may be a piece of music; its spectrum occupies frequencies below 20 KHz.
 - For transmission by an AM radio station this spectrum must be moved to approximately 1 MHz.

Sum of Sinusoidal Sig oo oo oo ooo	gnals Time-Domain and Frequency-Dom	ain Periodic Signals	Time-Frequency Spec o ooooo oooooo
	00000000		

Amplitude Modulation

- Conventional amplitude modulation proceeds in two steps:
 - 1. A constant A is added to m(t) such that A + m(t) > 0 for all t.
 - 2. The sum signal A + m(t) is multiplied by a sinusoid $\cos(2\pi f_c t)$, where f_c is the radio frequency assigned to the station.

Consequently, the transmitted signal has the form:

$$\mathbf{x}(t) = (\mathbf{A} + \mathbf{m}(t)) \cdot \cos(2\pi f_c t).$$

Sum of Sinusoidal Signals	Time-Domain and Frequency-Domain	Periodic Signals o o ooooooooo oooo	Time-Frequency Spec o ooooo oooooo
	00000000		

Amplitude Modulation

- We are interested in the spectrum of the AM signal.
- However, we cannot compute X(f) for arbitrary message signals m(t).
- For the special case $m(t) = cos(2\pi f_m t)$ we can find the spectrum.
 - To mimic the radio case, f_m would be a frequency in the audible range.
- As before, we will first need to express the AM signal x(t) as a sum of sinusoids.

Sum of Sinusoida	Signals Time-Domain and Freque	ency-Domain Periodic Signals	Time-Frequency Spec
00 00 00 00 0000	000 000 000 000000 00000000	0 0 00000000 0000	0 00000 000000

Amplitude Modulated Signal

For $m(t) = \cos(2\pi f_m t)$, the AM signal equals

 $\mathbf{x}(t) = (\mathbf{A} + \cos(2\pi f_m t)) \cdot \cos(2\pi f_c t).$

This simplifies to

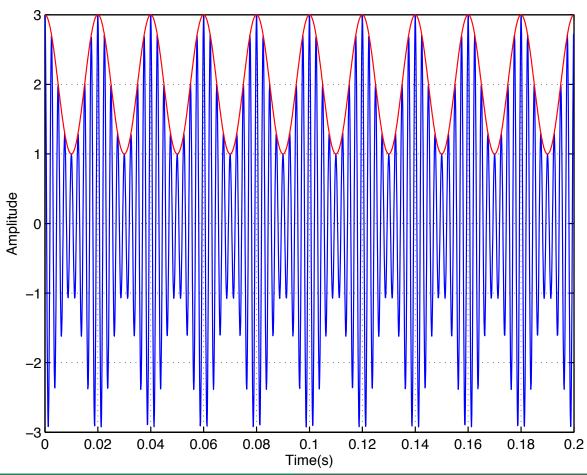
$$\mathbf{x}(t) = \mathbf{A} \cdot \cos(2\pi f_c t) + \cos(2\pi f_m t) \cdot \cos(2\pi f_c t).$$

- Note that the second term of the sum is a beat notes signal with frequencies f_m and f_c.
- We know that beat notes can be written as a sum of sinusoids with frequencies equal to the sum and difference of f_m and f_c:

$$x(t) = A \cdot \cos(2\pi f_c t) + \frac{1}{2}\cos(2\pi (f_c + f_m)t) + \frac{1}{2}\cos(2\pi (f_c - f_m)t).$$

Sur	m of Sinusoidal Signals	Time-Domain and Frequency-Domain	Periodic Signals	Time-Frequency Spec
00 00 00		000	0	0 00000
00	00	000 000000 00000000	0000000 0000	000000

Plot of Amplitude Modulated Signal For A = 2, fm = 50, and fc = 400, the AM signal is plotted below.



©2009-2019, B.-P. Paris

ECE 201: Intro to Signal Analysis

00	00 00 00	Time-Domain and Frequency-Domain	0 0 00000000	Time-Frequency Spec o ooooo oooooo
	0000	000000 000000000	0000	

Spectrum of Amplitude Modulated Signal

The AM signal is given by

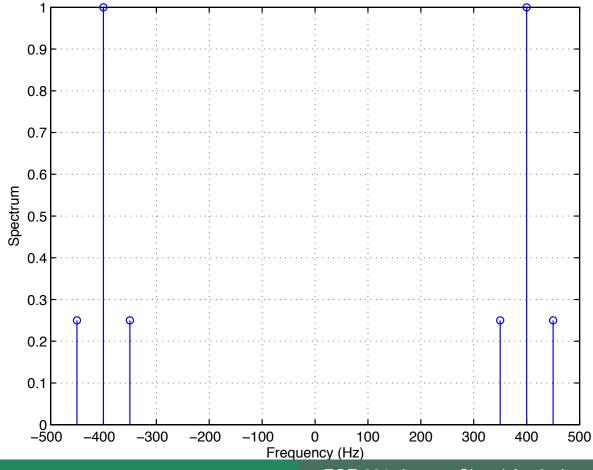
$$x(t) = A \cdot \cos(2\pi f_c t) + \frac{1}{2}\cos(2\pi (f_c + f_m)t) + \frac{1}{2}\cos(2\pi (f_c - f_m)t).$$

► Thus, its spectrum is

$$X(f) = \{ \begin{array}{c} (\frac{A}{2}, f_{c}), (\frac{A}{2}, -f_{c}), \\ (\frac{1}{4}, f_{c} + f_{m}), (\frac{1}{4}, -f_{c} - f_{m}), (\frac{1}{4}, f_{c} - f_{m}), (\frac{1}{4}, -f_{c} + f_{m}) \} \end{array}$$

	Sum of Sinusoidal Signals	Time-Domain and Frequency-Domain	Periodic Signals	Time-Frequency Spec
00	00	000		0
			0 00000000	00000 000000
	0000	000000 0000000000	000000000	000000

Spectrum of Amplitude Modulated Signal For A = 2, fm = 50, and fc = 400, the spectrum of the AM signal is plotted below.



©2009-2019, B.-P. Paris

ECE 201: Intro to Signal Analysis

	Sum of Sinusoidal Signals	Time-Domain and Frequency-Domain	Periodic Signals	Time-Frequency Spec
00	00 00	000		0 00000
	ÕÕ	000	00000000	000000
	0000	000000 000000000	0000	

Spectrum of Amplitude Modulated Signal

- ► It is interesting to compare the spectrum of the signal before modulation and after multiplication with $cos(2\pi f_c t)$.
- ► The signal s(t) = A + m(t) has spectrum

$$S(f) = \{(A, 0), (\frac{1}{2}, 50), (\frac{1}{2}, -50)\}.$$

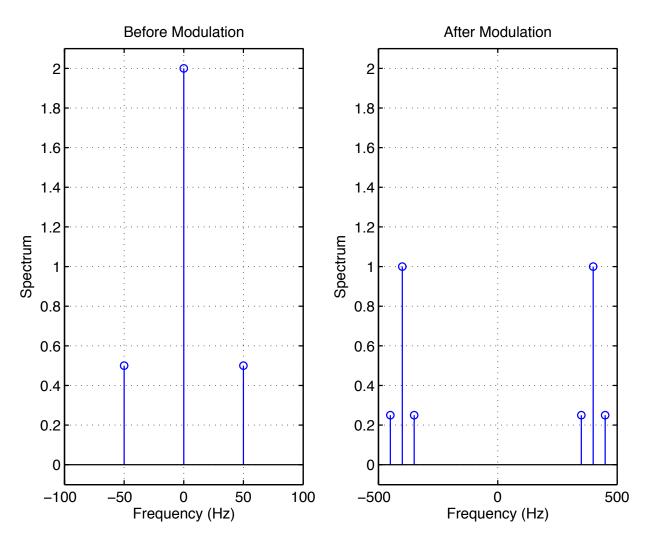
The modulated signal x(t) has spectrum

$$X(f) = \{ \begin{array}{c} (\frac{A}{2}, 400), (\frac{A}{2}, -400), \\ (\frac{1}{4}, 450), (\frac{1}{4}, -450), (\frac{1}{4}, 350), (\frac{1}{4}, -350) \} \end{array}$$

Both are plotted on the next page.

	Sum of Sinusoidal Signals	Time-Domain and Frequency-Domain	Periodic Signals	Time-Frequency Spec
00	00	000		0
	00	000		00000
	00	000	0000000	000000
	0000	000000	0000	
		000000000		

Spectrum before and after AM



	00		Time-Domain and Frequency-Domain	Periodic Signals o o oooooooooooooooooooooooooooooooo	Time-Frequency Spec o oooooo oooooo
--	----	--	----------------------------------	--	--

Spectrum before and after AM

- Comparison of the two spectra shows that amplitude modulation indeed moves a spectrum from low frequencies to high frequencies.
- Note that the shape of the spectrum is precisely preserved.
- Amplitude modulation can be described concisely by stating:
 - ► Half of the original spectrum is shifted by f_c to the right, and the other half is shifted by f_c to the left.
- Question: How can you get the original signal back so that you can listen to it.
 - This is called demodulation.

