Amplitude Modulation

- Amplitude Modulation is used in communication systems.
- The objective of amplitude modulation is to move the spectrum of a signal $m(t)$ from low frequencies to high frequencies.
- The message signal $m(t)$ may be a piece of music; its spectrum occupies frequencies below 20 KHz .
- For transmission by an AM radio station this spectrum must be moved to approximately 1 MHz .

Amplitude Modulation

- Conventional amplitude modulation proceeds in two steps:

1. A constant A is added to $m(t)$ such that $A+m(t)>0$ for all t.
2. The sum signal $A+m(t)$ is multiplied by a sinusoid $\cos \left(2 \pi f_{c} t\right)$, where f_{c} is the radio frequency assigned to the station.

- Consequently, the transmitted signal has the form:

$$
x(t)=(A+m(t)) \cdot \cos \left(2 \pi f_{c} t\right)
$$

Amplitude Modulation

- We are interested in the spectrum of the AM signal.
- However, we cannot compute $X(f)$ for arbitrary message signals $m(t)$.
- For the special case $m(t)=\cos \left(2 \pi f_{m} t\right)$ we can find the spectrum.
- To mimic the radio case, f_{m} would be a frequency in the audible range.
- As before, we will first need to express the AM signal $x(t)$ as a sum of sinusoids.

Amplitude Modulated Signal

- For $m(t)=\cos \left(2 \pi f_{m} t\right)$, the AM signal equals

$$
x(t)=\left(A+\cos \left(2 \pi f_{m} t\right)\right) \cdot \cos \left(2 \pi f_{c} t\right)
$$

- This simplifies to

$$
x(t)=A \cdot \cos \left(2 \pi f_{c} t\right)+\cos \left(2 \pi f_{m} t\right) \cdot \cos \left(2 \pi f_{c} t\right)
$$

- Note that the second term of the sum is a beat notes signal with frequencies f_{m} and f_{c}.
- We know that beat notes can be written as a sum of sinusoids with frequencies equal to the sum and difference of f_{m} and f_{c} :

$$
x(t)=A \cdot \cos \left(2 \pi f_{c} t\right)+\frac{1}{2} \cos \left(2 \pi\left(f_{c}+f_{m}\right) t\right)+\frac{1}{2} \cos \left(2 \pi\left(f_{c}-\underset{\substack{m \\ \text { MGORGE} \\ \text { MSON }}}{f_{m}} t\right)\right.
$$

Plot of Amplitude Modulated Signal
For $A=2, f m=50$, and $f c=400$, the AM signal is plotted below.

Spectrum of Amplitude Modulated Signal

- The AM signal is given by

$$
x(t)=A \cdot \cos \left(2 \pi f_{c} t\right)+\frac{1}{2} \cos \left(2 \pi\left(f_{c}+f_{m}\right) t\right)+\frac{1}{2} \cos \left(2 \pi\left(f_{c}-f_{m}\right) t\right)
$$

- Thus, its spectrum is

$$
\begin{aligned}
X(f)=\{ & \left(\frac{A}{2}, f_{c}\right),\left(\frac{A}{2},-f_{c}\right), \\
& \left.\left(\frac{1}{4}, f_{c}+f_{m}\right),\left(\frac{1}{4},-f_{c}-f_{m}\right),\left(\frac{1}{4}, f_{c}-f_{m}\right),\left(\frac{1}{4},-f_{c}+f_{m}\right)\right\}
\end{aligned}
$$

Spectrum of Amplitude Modulated Signal

For $A=2, f m=50$, and $f c=400$, the spectrum of the AM signal is plotted below.

Spectrum of Amplitude Modulated Signal

- It is interesting to compare the spectrum of the signal before modulation and after multiplication with $\cos \left(2 \pi f_{c} t\right)$.
- The signal $s(t)=A+m(t)$ has spectrum

$$
S(f)=\left\{(A, 0),\left(\frac{1}{2}, 50\right),\left(\frac{1}{2},-50\right)\right\}
$$

- The modulated signal $x(t)$ has spectrum

$$
X(f)=\left\{\begin{array}{l}
\left(\frac{A}{2}, 400\right),\left(\frac{A}{2},-400\right), \\
\\
\\
\left.\left(\frac{1}{4}, 450\right),\left(\frac{1}{4},-450\right),\left(\frac{1}{4}, 350\right),\left(\frac{1}{4},-350\right)\right\}
\end{array}\right.
$$

- Both are plotted on the next page.

Spectrum before and after AM

Spectrum before and after AM

- Comparison of the two spectra shows that amplitude modulation indeed moves a spectrum from low frequencies to high frequencies.
- Note that the shape of the spectrum is precisely preserved.
- Amplitude modulation can be described concisely by stating:
- Half of the original spectrum is shifted by f_{C} to the right, and the other half is shifted by f_{c} to the left.
- Question: How can you get the original signal back so that you can listen to it.
- This is called demodulation.

UNIVERSITY

