Synthesis: From Frequency to Time-Domain

- Synthesis is a straightforward process; it is a lot like following a recipe.
- Ingredients are given by the spectrum

$$
X(f)=\left\{\left(X_{0}, 0\right),\left(X_{1}, f_{1}\right),\left(X_{1}^{*},-f_{1}\right), \ldots,\left(X_{N}, f_{N}\right),\left(X_{N}^{*},-f_{N}\right)\right\}
$$

Each pair indicates one complex exponential component by listing its frequency and complex amplitude.

- Instructions for combining the ingredients and producing the (time-domain) signal:

$$
x(t)=\sum_{n=-N}^{N} x_{n} \exp \left(j 2 \pi f_{n} t\right)
$$

- Always simplify the expression you obtain!

Example

- Problem: Find the signal $x(t)$ corresponding to

$$
\begin{aligned}
X(f)=\{(3,0), & \left(\frac{5}{2} e^{-j \pi / 2}, 10\right),\left(\frac{5}{2} e^{j \pi / 2},-10\right), \\
& \left.\left(\frac{7}{2} e^{j \pi / 4}, 25\right),\left(\frac{7}{2} e^{-j \pi / 4},-25\right)\right\}
\end{aligned}
$$

- Solution:

$$
\begin{aligned}
x(t)=3 & +\frac{5}{2} e^{-j \pi / 2} e^{j 2 \pi 10 t}+\frac{5}{2} e^{j \pi / 2} e^{-j 2 \pi 10 t} \\
& +\frac{7}{2} e^{j \pi / 4} e^{j 2 \pi 25 t}+\frac{7}{2} e^{-j \pi / 4} e^{-j 2 \pi 25 t}
\end{aligned}
$$

- Which simplifies to:

$$
x(t)=3+5 \cos (20 \pi t-\pi / 2)+7 \cos (50 \pi t+\pi / 4)
$$

Sum of Sinusoidal Signals Time-Domain and Frequency-Domain 000 000
 000000
 0000000000

 Time-Frequency Spe ○,000 000000

Exercise

- Find the signal with the spectrum:

$$
\begin{aligned}
X(f)=\{(5,0), & \left(2 e^{-j \pi / 4}, 10\right),\left(2 e^{i \pi / 4},-10\right), \\
& \left(\frac{5}{2} e^{j \pi / 4}, 15\right),\left(\frac{5}{2} e^{-j \pi / 4},-15\right)
\end{aligned}
$$

Analysis: From Time to Frequency-Domain

- The objective of spectrum or Fourier analysis is to find the spectrum of a time-domain signal.
- We will restrict ourselves to signals $x(t)$ that are sums of sinusoids

$$
x(t)=A_{0}+\sum_{i=1}^{N} A_{i} \cos \left(2 \pi f_{i} t+\phi_{i}\right) .
$$

- We have already shown that such signals have spectrum:
$X(f)=\left\{\left(X_{0}, 0\right),\left(\frac{1}{2} X_{1}, f_{1}\right),\left(\frac{1}{2} X_{1}^{*},-f_{1}\right), \ldots,\left(\frac{1}{2} X_{N}, f_{N}\right),\left(\frac{1}{2} X_{N}^{*},-f_{N}\right)\right.$ where $X_{0}=A_{0}$ and $X_{i}=A_{i} e^{j \phi_{i}}$.
- We will investigate some interesting signals that can be written as a sum of sinusoids.

Beat Notes

- Consider the signal

$$
x(t)=2 \cdot \cos (2 \pi 5 t) \cdot \cos (2 \pi 400 t)
$$

- This signal does not have the form of a sum of sinusoids; hence, we can not determine it's spectrum immediately.

MATLAB Code for Beat Notes

```
% Parameters
fs = 8192;
dur = 2;
f1 = 5;
f2 = 400;
A = 2;
NP = round(2*fs/f1); % number of samples to plot
% time axis and signal
tt=0:1/fs:dur;
xx = A*cos(2*pi*f1*tt).*cos(2*pi*f2*tt);
plot(tt(1:NP), xx(1:NP),tt(1:NP),A*Cos(2*pi*f1*tt(1:NP)),'r')
xlabel('Time(s)')
ylabel('Amplitude')
grid
```


Beat Notes as a Sum of Sinusoids

- Using the inverse Euler relationships, we can write

$$
\begin{aligned}
x(t) & =2 \cdot \cos (2 \pi 5 t) \cdot \cos (2 \pi 400 t) \\
& =2 \cdot \frac{1}{2} \cdot\left(e^{j 2 \pi 5 t}+e^{-j 2 \pi 5 t}\right) \cdot \frac{1}{2} \cdot\left(e^{j 2 \pi 400 t}+e^{-j 2 \pi 400 t}\right)
\end{aligned}
$$

- Multiplying out yields:

$$
x(t)=\frac{1}{2}\left(e^{j 2 \pi 405 t}+e^{-j 2 \pi 405 t}\right)+\frac{1}{2}\left(e^{j 2 \pi 395 t}+e^{-j 2 \pi 395 t}\right) .
$$

- Applying Euler's relationship, lets us write:

$$
x(t)=\cos (2 \pi 405 t)+\cos (2 \pi 395 t)
$$

Spectrum of Beat Notes

- We were able to rewrite the beat notes as a sum of sinusoids

$$
x(t)=\cos (2 \pi 405 t)+\cos (2 \pi 395 t)
$$

- Note that the frequencies in the sum, 395 Hz and 405 Hz , are the sum and difference of the frequencies in the original product, 5 Hz and 400 Hz .
- It is now straightforward to determine the spectrum of the beat notes signal:

$$
X(f)=\left\{\left(\frac{1}{2}, 405\right),\left(\frac{1}{2},-405\right),\left(\frac{1}{2}, 395\right),\left(\frac{1}{2},-395\right)\right\}
$$

Spectrum of Beat Notes

