Lecture: Sums of Sinusoids (of different frequency)

Introduction

- To this point we have focused on sinusoids of identical frequency f

$$
x(t)=\sum_{i=1}^{N} A_{i} \cos \left(2 \pi f t+\phi_{i}\right)
$$

- Note that the frequency f does not have a subscript i!
- Showed (via phasor addition rule) that the above sum can always be written as a single sinusoid of frequency f.

Introduction

- We will consider sums of sinusoids of different frequencies:

$$
x(t)=\sum_{i=1}^{N} A_{i} \cos \left(2 \pi f_{i} t+\phi_{i}\right)
$$

- Note the subscript on the frequencies f_{i} !
- This apparently minor difference has dramatic consequences.

Sum of Two Sinusoids

$$
x(t)=\frac{4}{\pi} \cos (2 \pi f t-\pi / 2)+\frac{4}{3 \pi} \cos (2 \pi 3 f t-\pi / 2)
$$

Sum of 25 Sinusoids

$$
x(t)=\sum_{n=0}^{25} \frac{4}{(2 n-1) \pi} \cos (2 \pi(2 n-1) f t-\pi / 2)
$$

Non-sinusoidal Signals as Sums of Sinusoids

- If we allow infinitely many sinusoids in the sum, then the result is a square wave signal.
- The example demonstrates that general, non-sinusoidal signals can be represented as a sum of sinusoids.
- The sinusods in the summation depend on the general signal to be represented.
- For the square wave signal we need sinusoids
- of frequencies $(2 n-1) \cdot f$, and
- amplitudes $\frac{4}{(2 n-1) \pi}$.
- (This is not obvious \rightarrow Fourier Series).

Non-sinusoidal Signals as Sums of Sinusoids

- The ability to express general signals in terms of sinusoids forms the basis for the frequency domain or spectrum representation.
- Basic idea: list the "ingredients" of a signal by specifying
- amplitudes and phases, as well as
- frequencies of the sinusoids in the sum.

The Spectrum of a Sum of Sinusoids

- Begin with the sum of sinusoids introduced earlier

$$
x(t)=A_{0}+\sum_{i=1}^{N} A_{i} \cos \left(2 \pi f_{i} t+\phi_{i}\right)
$$

where we have broken out a possible constant term.

- The term A_{0} can be thought of as corresponding to a sinusoid of frequency zero.
- Using the inverse Euler formula, we can replace the sinusoids by complex exponentials

$$
x(t)=X_{0}+\sum_{i=1}^{N}\left\{\frac{X_{i}}{2} \exp \left(j 2 \pi f_{i} t\right)+\frac{X_{i}^{*}}{2} \exp \left(-j 2 \pi f_{i} t\right)\right\}
$$

where $X_{0}=A_{0}$ and $X_{i}=A_{i} e^{j \phi_{i}}$.

UNIVERSITY

The Spectrum of a Sum of Sinusoids (cont'd)

- Starting with

$$
x(t)=X_{0}+\sum_{i=1}^{N}\left\{\frac{X_{i}}{2} \exp \left(j 2 \pi f_{i} t\right)+\frac{X_{i}^{*}}{2} \exp \left(-j 2 \pi f_{i} t\right)\right\} .
$$

where $X_{0}=A_{0}$ and $X_{i}=A_{i} e^{j \phi_{i}}$.

- The spectrum representation simply lists the complex amplitudes and frequencies in the summation:

$$
X(f)=\left\{\left(X_{0}, 0\right),\left(\frac{X_{1}}{2}, f_{1}\right),\left(\frac{X_{1}^{*}}{2},-f_{1}\right), \ldots,\left(\frac{X_{N}}{2}, f_{N}\right),\left(\frac{X_{N}^{*}}{2},-f_{N}\right)\right\}
$$

Example

- Consider the signal

$$
x(t)=3+5 \cos (20 \pi t-\pi / 2)+7 \cos (50 \pi t+\pi / 4)
$$

- Using the inverse Euler relationship

$$
\begin{aligned}
x(t)=3 & +\frac{5}{2} e^{-j \pi / 2} \exp (j 2 \pi 10 t) \\
& +\frac{5}{2} e^{j \pi / 2} \exp (-j 2 \pi 10 t) \\
& \frac{7}{2} e^{j \pi / 4} \exp (j 2 \pi 25 t)
\end{aligned}+\frac{7}{2} e^{-j \pi / 4} \exp (-j 2 \pi 25 t) .
$$

- Hence,

$$
\begin{aligned}
X(f)=\{(3,0), & \left(\frac{5}{2} e^{-j \pi / 2}, 10\right),\left(\frac{5}{2} e^{j \pi / 2},-10\right) \\
& \left.\left(\frac{7}{2} e^{j \pi / 4}, 25\right),\left(\frac{7}{2} e^{-j \pi / 4},-25\right)\right\}
\end{aligned}
$$

Exercise

Find the spectrum of the signal:

$$
x(t)=6+4 \cos (10 \pi t+\pi / 3)+5 \cos (20 \pi t-\pi / 7)
$$

Time-domain and Frequency-domain

- Signals are naturally observed in the time-domain.
- A signal can be illustrated in the time-domain by plotting it as a function of time.
- The frequency-domain provides an alternative perspective of the signal based on sinusoids:
- Starting point: arbitrary signals can be expressed as sums of sinusoids (or equivalently complex exponentials).
- The frequency-domain representation of a signal indicates which complex exponentials must be combined to produce the signal.
- Since complex exponentials are fully described by amplitude, phase, and frequency it is sufficient to just specify a list of theses parameters.
- Actually, we list pairs of complex amplitudes $\left(A e^{j \phi}\right)$ and frequencies f and refer to this list as $X(f)$.

Time-domain and Frequency-domain

- It is possible (but not necessarily easy) to find $X(f)$ from $x(t)$: this is called Fourier or spectrum analysis.
- Similarly, one can construct $x(t)$ from the spectrum $X(f)$: this is called Fourier synthesis.
- Notation: $x(t) \leftrightarrow X(f)$.
- Example (from earlier):
- Time-domain: signal

$$
x(t)=3+5 \cos (20 \pi t-\pi / 2)+7 \cos (50 \pi t+\pi / 4)
$$

- Frequency Domain: spectrum

$$
\begin{array}{ll}
X(f)=\{(3,0), & \left(\frac{5}{2} e^{-j \pi / 2}, 10\right),\left(\frac{5}{2} e^{j \pi / 2},-10\right), \\
& \left.\left(\frac{7}{2} e^{j \pi / 4}, 25\right),\left(\frac{7}{2} e^{-j \pi / 4},-25\right)\right\}
\end{array}
$$

Plotting a Spectrum

- To illustrate the spectrum of a signal, one typically plots the magnitude versus frequency.
- Sometimes the phase is plotted versus frequency as well.

Why Bother with the Frequency-Domain?

- In many applications, the frequency contents of a signal is very important.
- For example, in radio communications signals must be limited to occupy only a set of frequencies allocated by the FCC.
- Hence, understanding and analyzing the spectrum of a signal is crucial from a regulatory perspective.
- Often, features of a signal are much easier to understand in the frequency domain. (Example on next slides).
- We will see later in this class, that the frequency-domain interpretation of signals is very useful in connection with linear, time-invariant systems.
- Example: A low-pass filter retains low frequency components of the spectrum and removes high-frequency components.

UNIVERSITY

Example: Original signal

Example: Corrupted signal

