Sum of Sir	nusoidal Signals Time-Domain and Freque	ncy-Domain Periodic Signal	s Time-Frequency Spec
00 00	000		
00	000		00000
00	000	0000000	000000
0000	000000 000000000	0000	

Lecture: Sums of Sinusoids (of different frequency)

Sum of Sinusoidal Signals	Time-Domain and Frequency-Domain	Periodic Signals o ooooooooo oooooooooooooooooooooooo	Time-Frequency Spece o oooooo ooooooo
---------------------------	----------------------------------	--	--

Introduction

To this point we have focused on sinusoids of identical frequency f

$$\mathbf{x}(t) = \sum_{i=1}^{N} A_i \cos(2\pi f t + \phi_i).$$

Note that the frequency *f* does not have a subscript *i*!
Showed (via phasor addition rule) that the above sum can always be written as a single sinusoid of frequency *f*.

Sum of Sinusoidal Signals ○○ ○○ ○○ ○○	Time-Domain and Frequency-Domain	Periodic Signals o oooooooooooooooooooooooooooooooooo	Time-Frequency Spec o ooooo oooooo
---	----------------------------------	---	---

Introduction

We will consider sums of sinusoids of different frequencies:

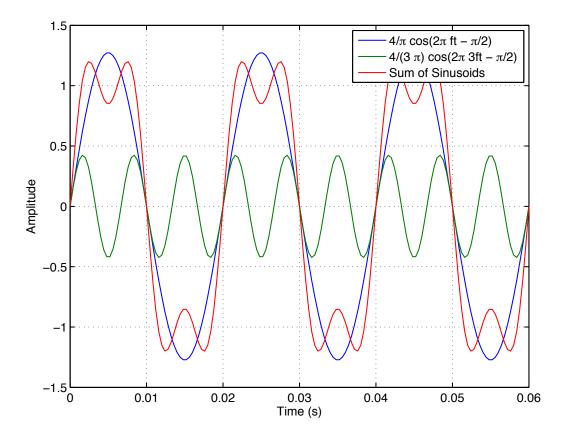
$$x(t) = \sum_{i=1}^{N} A_i \cos(2\pi f_i t + \phi_i).$$

Note the subscript on the frequencies f_i!
This apparently minor difference has dramatic consequences.

	Sum of Sinusoidal Signals	Time-Domain and Frequency-Domain	Periodic Signals	Time-Frequency Spec
00	00	000		0
	OO		0 00000000	00000 000000
	0000	000000 000000000	00000	000000

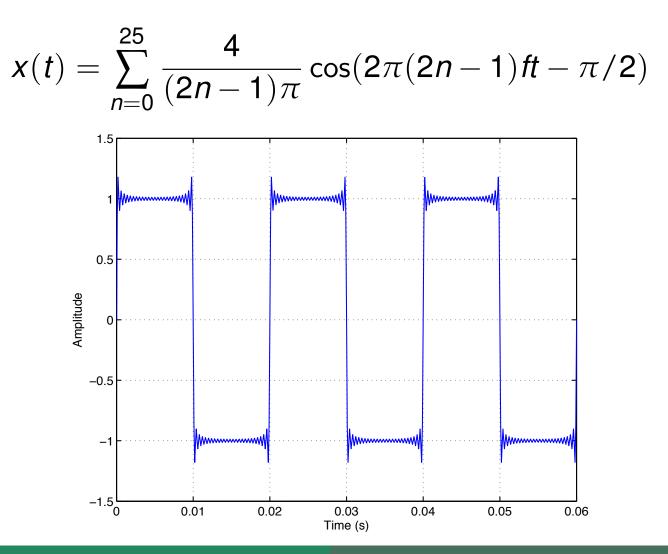
Sum of Two Sinusoids

$$x(t) = \frac{4}{\pi}\cos(2\pi ft - \pi/2) + \frac{4}{3\pi}\cos(2\pi 3ft - \pi/2)$$



Sum of Sinusoidal Signals	Time-Domain and Frequency-Domain	Periodic Signals	Time-Frequency Spec
$\circ\circ\circ\circ\circ$	000	0 0	0 00000
00 0000	000 000000 000000000	00000000 0000	000000

Sum of 25 Sinusoids



©2009-2019, B.-P. Paris

ECE 201: Intro to Signal Analysis

Sum of Sinusoidal Signals	Time-Domain and Frequency-Domain	Periodic Signals	Time-Frequency Spec
00 00 ●0 0000	000 000 000 000000 00000000	0 0 00000000 0000	0 00000 000000

Non-sinusoidal Signals as Sums of Sinusoids

- If we allow infinitely many sinusoids in the sum, then the result is a square wave signal.
- The example demonstrates that general, non-sinusoidal signals can be represented as a sum of sinusoids.
 - The sinusods in the summation depend on the general signal to be represented.
 - For the square wave signal we need sinusoids
 - of frequencies $(2n-1) \cdot f$, and amplitudes $\frac{4}{(2n-1)\pi}$.

 - (This is not obvious \rightarrow Fourier Series).

Sum of Sinusoidal Signals	Time-Domain and Frequency-Domain	Periodic Signals o o oooooooo oooo	Time-Frequency Spec o ooooo oooooo
0000	000000 000000000	0000	

Non-sinusoidal Signals as Sums of Sinusoids

- The ability to express general signals in terms of sinusoids forms the basis for the frequency domain or spectrum representation.
- **Basic idea:** list the *"ingredients"* of a signal by specifying
 - amplitudes and phases, as well as
 - frequencies of the sinusoids in the sum.

Sum of Sinusoidal Signals	Time-Domain and Frequency-Domain	Periodic Signals	Time-Frequency Spec
00 00	000 000	0	0 00000
00 0000	000 000000 000000000	00000000 0000	000000

The Spectrum of a Sum of Sinusoids

Begin with the sum of sinusoids introduced earlier

$$x(t) = A_0 + \sum_{i=1}^N A_i \cos(2\pi f_i t + \phi_i).$$

where we have broken out a possible constant term.

- The term A₀ can be thought of as corresponding to a sinusoid of frequency zero.
- Using the *inverse Euler formula*, we can replace the sinusoids by complex exponentials

$$x(t) = X_0 + \sum_{i=1}^{N} \left\{ \frac{X_i}{2} \exp(j2\pi f_i t) + \frac{X_i^*}{2} \exp(-j2\pi f_i t) \right\}$$

where $X_0 = A_0$ and $X_i = A_i e^{j\phi_i}$.

	Sum of Sinusoidal Signals	Time-Domain and Frequency-Domain	Periodic Signals	Time-Frequency Spec
00	00 00 00	000 000 000	0 0 00000000	0 00000 000000
	0000	000000 000000000	0000	

The Spectrum of a Sum of Sinusoids (cont'd)

Starting with

$$x(t) = X_0 + \sum_{i=1}^N \left\{ \frac{X_i}{2} \exp(j2\pi f_i t) + \frac{X_i^*}{2} \exp(-j2\pi f_i t) \right\}.$$

where $X_0 = A_0$ and $X_i = A_i e^{j\phi_i}$.

The spectrum representation simply lists the complex amplitudes and frequencies in the summation:

$$X(f) = \{ (X_0, 0), (\frac{X_1}{2}, f_1), (\frac{X_1^*}{2}, -f_1), \dots, (\frac{X_N}{2}, f_N), (\frac{X_N^*}{2}, -f_N) \}$$

Sum of Sinusoidal Signals	Time-Domain and Frequency-Domain	Periodic Signals	Time-Frequency Spec
	000		0 00000
	000 000000 000000000	00000000 0000	000000

Example

Consider the signal

$$x(t) = 3 + 5\cos(20\pi t - \pi/2) + 7\cos(50\pi t + \pi/4).$$

Using the inverse Euler relationship

$$\begin{aligned} x(t) &= \mathbf{3} + \frac{5}{2} e^{-j\pi/2} \exp(j2\pi 10t) + \frac{5}{2} e^{j\pi/2} \exp(-j2\pi 10t) \\ &+ \frac{7}{2} e^{j\pi/4} \exp(j2\pi 25t) + \frac{7}{2} e^{-j\pi/4} \exp(-j2\pi 25t). \end{aligned}$$

► Hence,

$$X(f) = \{(3,0), (\frac{5}{2}e^{-j\pi/2}, 10), (\frac{5}{2}e^{j\pi/2}, -10), (\frac{7}{2}e^{j\pi/4}, 25), (\frac{7}{2}e^{-j\pi/4}, -25)\}$$

Sum of Sinusoidal Signals	000 000 000 00000	Periodic Signals o o ooooooooo oooo	Time-Frequency Spec o oooooo oooooo
0000	000000 000000000	0000	

Exercise

Find the spectrum of the signal:

$$x(t) = 6 + 4\cos(10\pi t + \pi/3) + 5\cos(20\pi t - \pi/7).$$

Sum of Sinusoidal Signals	Time-Domain and Frequency-Domain	Periodic Signals o o ooooooooo oooo	Time-Frequency Spec o ooooo oooooo
---------------------------	----------------------------------	---	---

Time-domain and Frequency-domain

- Signals are *naturally* observed in the time-domain.
- A signal can be illustrated in the time-domain by plotting it as a function of time.
- The frequency-domain provides an alternative perspective of the signal based on sinusoids:
 - Starting point: arbitrary signals can be expressed as sums of sinusoids (or equivalently complex exponentials).
 - The frequency-domain representation of a signal indicates which complex exponentials must be combined to produce the signal.
 - Since complex exponentials are fully described by amplitude, phase, and frequency it is sufficient to just specify a list of theses parameters.
 - Actually, we list pairs of complex amplitudes $(Ae^{j\phi})$ and frequencies f and refer to this list as X(f).

Sum of Sinusoidal Signals 00 00 00 00 000	Time-Domain and Frequency-Domain	Periodic Signals o oooooooooooooooooooooooooooooooooo	Time-Frequency Spec o ooooo oooooo
---	----------------------------------	---	---

Time-domain and Frequency-domain

- It is possible (but not necessarily easy) to find X(f) from x(t): this is called Fourier or spectrum analysis.
- Similarly, one can construct x(t) from the spectrum X(f): this is called Fourier synthesis.
- ▶ Notation: $x(t) \leftrightarrow X(f)$.
- Example (from earlier):
 - Time-domain: signal

$$x(t) = 3 + 5\cos(20\pi t - \pi/2) + 7\cos(50\pi t + \pi/4).$$

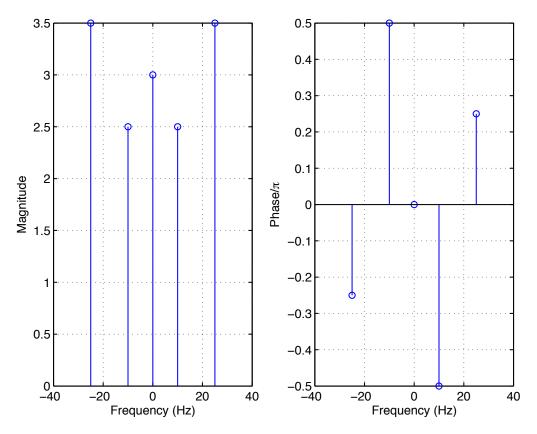
Frequency Domain: spectrum

$$\begin{aligned} X(f) &= \{ (3,0), \quad (\frac{5}{2}e^{-j\pi/2},10), (\frac{5}{2}e^{j\pi/2},-10), \\ &\quad (\frac{7}{2}e^{j\pi/4},25), (\frac{7}{2}e^{-j\pi/4},-25) \} \end{aligned}$$

Sum of Sinusoidal Signals	Time-Domain and Frequency-Domain	Periodic Signals o o ooooooooo oooo	Time-Frequency Spec o ooooo oooooo
	000000000		

Plotting a Spectrum

- To illustrate the spectrum of a signal, one typically plots the magnitude versus frequency.
- Sometimes the phase is plotted versus frequency as well.



©2009-2019, B.-P. Paris

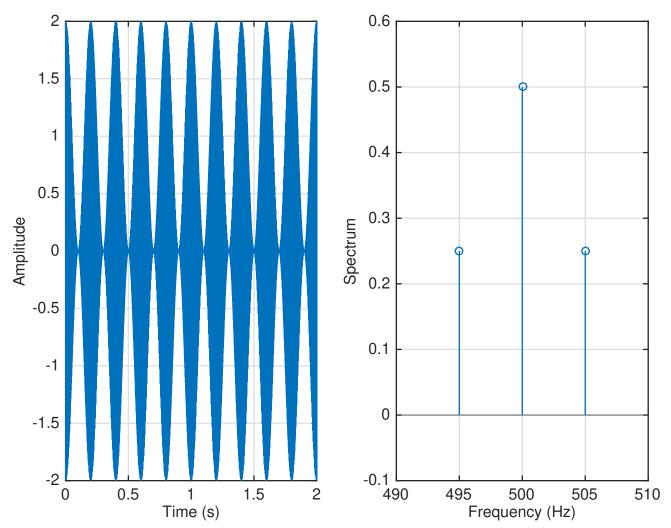
00	Time-Domain and Frequency-Domain	Periodic Signals o o ooooooooo oooo	Time-Frequency Spec o ooooo oooooo

Why Bother with the Frequency-Domain?

- In many applications, the frequency contents of a signal is very important.
 - For example, in radio communications signals must be limited to occupy only a set of frequencies allocated by the FCC.
 - Hence, understanding and analyzing the spectrum of a signal is crucial from a regulatory perspective.
- Often, features of a signal are much easier to understand in the frequency domain. (Example on next slides).
- We will see later in this class, that the frequency-domain interpretation of signals is very useful in connection with linear, time-invariant systems.
 - Example: A low-pass filter retains low frequency components of the spectrum and removes high-frequency components.

	Sum of Sinusoidal Signals	Time-Domain and Frequency-Domain	Periodic Signals	Time-Frequency Spec
00	00	000		0
	00	000		00000
	00	000	00000000	000000
	0000	000000 000000000	0000	

Example: Original signal



	Sum of Sinusoidal Signals	Time-Domain and Frequency-Domain	Periodic Signals	Time-Frequency Spec
00	00	000	0	0
	00	000		00000
	00	000	0000000	000000
	0000	000000 000000000	0000	

Example: Corrupted signal

