Lecture: The Phasor Addition Rule

Problem Statement

- It is often required to add two or more sinusoidal signals.
- When all sinusoids have the same frequency then the problem simplifies.
- This problem comes up very often, e.g., in AC circuit analysis (ECE 280) and later in the class (chapter 5).
- Starting point: sum of sinusoids

$$
x(t)=A_{1} \cos \left(2 \pi f t+\phi_{1}\right)+\ldots+A_{N} \cos \left(2 \pi f t+\phi_{N}\right)
$$

- Note that all frequencies f are the same (no subscript).
- Amplitudes A_{i} phases ϕ_{i} are different in general.
- Short-hand notation using summation symbol (Σ):

$$
x(t)=\sum_{i=1}^{N} A_{i} \cos \left(2 \pi f t+\phi_{i}\right)
$$

The Phasor Addition Rule

- The phasor addition rule implies that there exist an amplitude A and a phase ϕ such that

$$
x(t)=\sum_{i=1}^{N} A_{i} \cos \left(2 \pi f t+\phi_{i}\right)=A \cos (2 \pi f t+\phi)
$$

- Interpretation: The sum of sinusoids of the same frequency but different amplitudes and phases is
- a single sinusoid of the same frequency.
- The phasor addition rule specifies how the amplitude A and the phase ϕ depends on the original amplitudes A_{i} and ϕ_{i}.
- Example: We showed earlier (by means of an unpleasant computation involving trig identities) that:

$$
x(t)=3 \cdot \cos (2 \pi f t)+4 \cdot \cos (2 \pi f t+\pi / 2)=5 \cos \left(2 \pi f t+53^{\circ}\right)
$$

Prerequisites

- We will need two simple prerequisites before we can derive the phasor addition rule.

1. Any sinusoid can be written in terms of complex exponentials as follows

$$
A \cos (2 \pi f t+\phi)=\operatorname{Re}\left\{A e^{j(2 \pi f t+\phi)}\right\}=\operatorname{Re}\left\{A e^{j \phi} e^{j 2 \pi f t}\right\} .
$$

Recall that $A e^{j \phi}$ is called a phasor (complex amplitude).
2. For any complex numbers $X_{1}, X_{2}, \ldots, X_{N}$, the real part of the sum equals the sum of the real parts.

$$
\operatorname{Re}\left\{\sum_{i=1}^{N} X_{i}\right\}=\sum_{i=1}^{N} \operatorname{Re}\left\{X_{i}\right\} .
$$

- This should be obvious from the way addition is defined for complex numbers.

$$
\left(x_{1}+j y_{1}\right)+\left(x_{2}+j y_{2}\right)=\left(x_{1}+x_{2}\right)+j\left(y_{1}+y_{2}\right) .
$$

Deriving the Phasor Addition Rule

- Objective: We seek to establish that

$$
\sum_{i=1}^{N} A_{i} \cos \left(2 \pi f t+\phi_{i}\right)=A \cos (2 \pi f t+\phi)
$$

and determine how A and ϕ are computed from the A_{i} and ϕ_{i}.

Deriving the Phasor Addition Rule

- Step 1: Using the first pre-requisite, we replace the sinusoids with complex exponentials

$$
\begin{aligned}
\sum_{i=1}^{N} A_{i} \cos \left(2 \pi f t+\phi_{i}\right) & =\sum_{i=1}^{N} \operatorname{Re}\left\{A_{i} e^{j\left(2 \pi f t+\phi_{i}\right)}\right\} \\
& =\sum_{i=1}^{N} \operatorname{Re}\left\{A_{i} e^{j \phi_{i}} e^{j 2 \pi f t}\right\} .
\end{aligned}
$$

Deriving the Phasor Addition Rule

- Step 2: The second prerequisite states that the sum of the real parts equals the the real part of the sum

$$
\sum_{i=1}^{N} \operatorname{Re}\left\{A_{i} e^{j \phi_{i}} e^{j 2 \pi f t}\right\}=\operatorname{Re}\left\{\sum_{i=1}^{N} A_{i} e^{j \phi_{i}} e^{j 2 \pi f t}\right\}
$$

Deriving the Phasor Addition Rule

- Step 3: The exponential $e^{i 2 \pi t t}$ appears in all the terms of the sum and can be factored out

$$
\operatorname{Re}\left\{\sum_{i=1}^{N} A_{i} e^{j \phi_{i}} e^{j 2 \pi f t}\right\}=\operatorname{Re}\left\{\left(\sum_{i=1}^{N} A_{i} e^{j \phi_{i}}\right) e^{j 2 \pi t t}\right\}
$$

- The term $\sum_{i=1}^{N} A_{i} e^{i \phi_{i}}$ is just the sum of complex numbers in polar form.
- The sum of complex numbers is just a complex number X which can be expressed in polar form as $X=A e^{j \phi}$.
- Hence, amplitude A and phase ϕ must satisfy

$$
A e^{j \phi}=\sum_{i=1}^{N} A_{i} e^{j \phi_{i}}
$$

Deriving the Phasor Addition Rule

- Note
- computing $\sum_{i=1}^{N} A_{i} e^{j \phi_{i}}$ requires converting $A_{j} e^{j \phi_{i}}$ to rectangular form,
- the result will be in rectangular form and must be converted to polar form $A e^{i \phi}$.

Deriving the Phasor Addition Rule

- Step 4: Using $A e^{j \phi}=\sum_{i=1}^{N} A_{i} e^{i \phi_{i}}$ in our expression for the sum of sinusoids yields:

$$
\begin{aligned}
\operatorname{Re}\left\{\left(\sum_{i=1}^{N} A_{i} e^{j \phi_{i}}\right) e^{j 2 \pi f t}\right\} & =\operatorname{Re}\left\{A e^{j \phi} e^{j 2 \pi t t}\right\} \\
& =\operatorname{Re}\left\{A e^{j(2 \pi t t+\phi)}\right\} \\
& =A \cos (2 \pi f t+\phi) .
\end{aligned}
$$

- Note: the above result shows that the sum of sinusoids of the same frequency is a sinusoid of the same frequency.

Applying the Phasor Addition Rule

- Applicable only when sinusoids of same frequency need to be added!
- Problem: Simplify

$$
x(t)=A_{1} \cos \left(2 \pi f t+\phi_{1}\right)+\ldots A_{N} \cos \left(2 \pi f t+\phi_{N}\right)
$$

- Solution: proceeds in 4 steps

1. Extract phasors: $X_{i}=A_{i} e^{i \phi_{i}}$ for $i=1, \ldots, N$.
2. Convert phasors to rectangular form:

$$
X_{i}=A_{i} \cos \phi_{i}+j A_{i} \sin \phi_{i} \text { for } i=1, \ldots, N .
$$

3. Compute the sum: $X=\sum_{i=1}^{N} X_{i}$ by adding real parts and imaginary parts, respectively.
4. Convert result X to polar form: $X=A e^{j \phi}$.

- Conclusion: With amplitude A and phase ϕ determined in the final step

$$
x(t)=A \cos (2 \pi f t+\phi)
$$

Example

- Problem: Simplify

$$
x(t)=3 \cdot \cos (2 \pi f t)+4 \cdot \cos (2 \pi f t+\pi / 2)
$$

- Solution:

1. Extract Phasors: $X_{1}=3 e^{j 0}=3$ and $X_{2}=4 e^{j \pi / 2}$.
2. Convert to rectangular form: $X_{1}=3 X_{2}=4 j$.
3. Sum: $X=X_{1}+X_{2}=3+4 j$.
4. Convert to polar form: $A=\sqrt{3^{2}+4^{2}}=5$ and $\phi=\arctan \left(\frac{4}{3}\right) \approx 53^{\circ}\left(\frac{53}{180} \pi\right)$.

- Result:

$$
x(t)=5 \cos \left(2 \pi f t+53^{\circ}\right)
$$

The Circuits Example

- For $v(t)=1 \mathrm{~V} \cdot \cos (2 \pi 1 \mathrm{kHz} \cdot t)$, find the current $i(t)$.

Problem Formulation with Phasors

- Source:

$$
\begin{aligned}
& v(t)=1 \mathrm{~V} \cdot \cos (2 \pi 1 \mathrm{kHz} \cdot t)=\operatorname{Re}\{1 \mathrm{~V} \cdot \exp (j 2 \pi 1 \mathrm{kHz} \cdot t)\} \\
& \Rightarrow \text { phasor: } V=1 \mathrm{~V} e^{j 0}
\end{aligned}
$$

- Kirchhoff's voltage law: $v(t)=v_{R}(t)=v_{C}(t)$;
\Rightarrow phasors: $V=V_{R}=V_{C}$.
- Resistor: $i_{R}(t)=\frac{v_{R}(t)}{R}$;
\Rightarrow phasor: $I_{R}=\frac{V_{R}}{R}$
- Capacitor: $i_{C}(t)=C \frac{d v_{C}(t)}{d t}$;
\Rightarrow phasor: $I_{C}=C \cdot V \cdot j 2 \pi \cdot 1 \mathrm{kHz}$
- Because $\frac{d \exp (j 2 \pi 1 \mathrm{kHz} \cdot t)}{d t}=j 2 \pi 1 \mathrm{kHz} \cdot \exp (j 2 \pi 1 \mathrm{kHz} \cdot t)$
- Kirchhoff's current law: $i(t)=i_{R}(t)+i_{C}(t)$;
\Rightarrow phasors: $I=I_{R}+I_{C}$.

Problem Formulation with Phasors

- Therefore,

$$
\begin{aligned}
I & =\frac{V}{R}+C \cdot V \cdot j 2 \pi \cdot 1 \mathrm{kHz} \\
& =\frac{1 \mathrm{~V}}{1 \mathrm{M} \Omega}+j 2 \pi \cdot 1 \mathrm{kHz} \cdot 2 \mathrm{nF} \cdot 1 \mathrm{~V} \\
& =1 \mu \mathrm{~A}+j 4 \pi \mu \mathrm{~A}
\end{aligned}
$$

- Convert to polar form:

$$
1 \mu \mathrm{~A}+j 4 \pi \mu \mathrm{~A}=12.6 \mu \mathrm{~A} \cdot \mathrm{e}^{j 0.47 \pi}
$$

Using:

$$
-\sqrt{1^{2}+(4 \pi)^{2}} \approx 12.6
$$

$$
\tan ^{-1}((4 \pi)) \approx 0.47 \pi
$$

- Thus, $i(t) \approx 12.6 \mu \mathrm{~A} \cos (2 \pi 1 \mathrm{kHz} \cdot t+0.47 \cdot \pi)$.

Exercise

- Simplify

$$
\begin{gathered}
x(t)=10 \cos \left(20 \pi t+\frac{\pi}{4}\right)+ \\
10 \cos \left(20 \pi t+\frac{3 \pi}{4}\right)+ \\
20 \cos \left(20 \pi t-\frac{3 \pi}{4}\right)
\end{gathered}
$$

- Answer:

$$
x(t)=10 \sqrt{2} \cos (20 \pi t+\pi) .
$$

