Lecture: Complex Exponentials

Introduction

- The complex exponential signal is defined as

$$
x(t)=A \exp (j(2 \pi f t+\phi))
$$

- As with sinusoids, A, f, and ϕ are (real-valued) amplitude, frequency, and phase.
- By Euler's relationship, it is closely related to sinusoidal signals

$$
x(t)=A \cos (2 \pi f t+\phi)+j A \sin (2 \pi f t+\phi)
$$

- We will leverage the benefits the complex representation provides over sinusoids:
- Avoid trigonometry,
- Replace with simple algebra,
- Visualization in the complex plane.

Plot of Complex Exponential

$$
x(t)=1 \cdot \exp (j(2 \pi / 8 t+\pi / 4))
$$

Since $x(t)$ is complex-valued, both real and imaginary parts are functions of time.

Complex Plane

$$
x(t)=1 \cdot e^{j(2 \pi / 8 t+\pi / 4)}
$$

We can think of a complex expontial as signals that rotate along a circle in the complex plane.

Expressing Sinusoids through Complex Exponentials

- There are two ways to write a sinusoidal signal in terms of complex exponentials.
- Real part:

$$
A \cos (2 \pi f t+\phi)=\operatorname{Re}\{A \exp (j(2 \pi f t+\phi))\} .
$$

- Inverse Euler:

$$
A \cos (2 \pi f t+\phi)=\frac{A}{2}(\exp (j(2 \pi f t+\phi))+\exp (-j(2 \pi f t+\phi)))
$$

- Both expressions are useful and will be important throughout the course.

Phasors

- Phasors are not directed-energy weapons first seen in the original Star Trek movie.
- That would be phasers!
- Phasors are the complex amplitudes of complex exponential signals:

$$
x(t)=A \exp (j(2 \pi f t+\phi))=A e^{j \phi} \exp (j 2 \pi f t) .
$$

- The phasor of this complex exponential is $X=A e^{j \phi}$.
- Thus, phasors capture both amplitude A and phase ϕ - in polar coordinates.
- The real and imaginary parts of the phasor $X=A e^{j \phi}$ are referred to as the in-phase (I) and quadrature (Q) components of X, respectively:

$$
X=I+j Q=A \cos (\phi)+j A \sin (\phi)
$$

Phasor Notation for Complex Exponentials

- The complex exponential signal

$$
x(t)=A \exp (j(2 \pi f t+\phi))=A e^{j \phi} \exp (j 2 \pi f t)
$$

is characterized completely by the combination of

- phasor $X=A e^{j \phi}$
- frequency f
- We will frequently use this observation to denote a complex exponential by providing the pair of phasor and frequency:

$$
\left(A e^{i \phi}, f\right)
$$

- We will refer to this notation as the spectrum representation of the complex exponential $x(t)$

From Sinusoids to Phasors

- A sinusoid can be written as

$$
A \cos (2 \pi f t+\phi)=\frac{A}{2}(\exp (j(2 \pi f t+\phi))+\exp (-j(2 \pi f t+\phi)))
$$

- This can be rewritten to provide

$$
A \cos (2 \pi f t+\phi)=\frac{A e^{j \phi}}{2} \exp (j 2 \pi f t)+\frac{A e^{-j \phi}}{2} \exp (-j 2 \pi f t) .
$$

- Thus, a sinusoid is composed of two complex exponentials
- One with frequency f and phasor $\frac{A e^{i \phi}}{2}$,
- rotates counter-clockwise in the complex plane;
- one with frequency $-f$ and phasor $\frac{A e^{-j \phi}}{2}$.
- rotates clockwise in the complex plane;
- Note that the two phasors are conjugate complexes of each other.

UNIVERSITY

Exercise

- Write

$$
x(t)=3 \cos (2 \pi 10 t-\pi / 3)
$$

as a sum of two complex exponentials.

- For each of the two complex exponentials, find the frequency and the phasor.
- Repeat for

$$
y(t)=2 \sin (2 \pi 10 t+\pi / 4)
$$

- What are the in-phase and quadrature signals of

$$
z(t)=5 e^{j \pi / 3} \exp (j 2 \pi 10 t)
$$

Answers to Exercise

$$
\begin{aligned}
x(t) & =3 \cos (2 \pi 10 t-\pi / 3) \\
& =\frac{3}{2} e^{-j \pi / 3} e^{j 2 \pi 10 t}+\frac{3}{2} e^{j \pi / 3} e^{-j 2 \pi 10 t}
\end{aligned}
$$

as a sum of two complex exponentials.

- Phasor-frequency pairs: $\left(\frac{3}{2} e^{-j \pi / 3}, 10\right)$ and $\left(\frac{3}{2} e^{j \pi / 3},-10\right)$

$$
\begin{aligned}
y(t) & =2 \sin (2 \pi 10 t+\pi / 4)=2 \cos (2 \pi 10 t-\pi / 4) \\
& =1 e^{-j \pi / 4} e^{j 2 \pi 10 t}+1 e^{j \pi / 4} e^{-j 2 \pi 10 t}
\end{aligned}
$$

$$
z(t)=5 e^{j \pi / 3} \exp (j 2 \pi 10 t)=\left(\frac{5}{2}+j \frac{5 \sqrt{2}}{2}\right) \exp (j 2 \pi 10 t)
$$

Thur I-5 and $\longrightarrow-5 \sqrt{2}$

