Lecture: Adding Sinusoids of the Same Frequency

Adding Sinusoids

- Adding sinusoids of the same frequency is a problem that arises regularly in
- circuit analysis
- linear, time-invariant systems, e.g., filters
- and many other domains
- We will see that adding sinusoids is much easier with complex exponentials
- Today, we will do it the hard way - with trigonometry

A Circuits Example

- For $v(t)=1 \mathrm{~V} \cdot \cos (2 \pi 1 \mathrm{kHz} \cdot t)$, find the current $i(t)$.

Setting up the Problem

- Resistor: $i_{R}(t)=\frac{v_{R}(t)}{R}$
- Capacitor: $i_{C}(t)=C \frac{d v_{C}(t)}{d t}$
- Kirchhoff's current law: $i(t)=i_{R}(t)+i_{C}(t)$
- Kirchhoff's voltage law: $v(t)=v_{R}(t)=v_{C}(t)$
- Therefore,

$$
\begin{aligned}
i(t) & =\frac{v(t)}{R}+C \cdot \frac{d v(t)}{d t} \\
& =\frac{1 \mathrm{~V}}{1 \mathrm{M} \Omega} \cos (2 \pi 1 \mathrm{kHz} \cdot t)-2 \pi \cdot 1 \mathrm{kHz} \cdot 2 \mathrm{nF} \cdot \sin (2 \pi 1 \mathrm{kHz} \cdot t) \\
& =1 \mu \mathrm{~A} \cos (2 \pi 1 \mathrm{kHz} \cdot t)-4 \pi \mu \mathrm{~A} \sin (2 \pi 1 \mathrm{kHz} \cdot \mathrm{t})
\end{aligned}
$$

Simplifying $i(t)$

- Can we write

$$
i(t)=1 \mu \mathrm{~A} \cos (2 \pi 1 \mathrm{kHz} \cdot t)-4 \pi \mu \mathrm{~A} \sin (2 \pi 1 \mathrm{kHz} \cdot \mathrm{t})
$$

as a single sinusoid?

- Specifically, can we express it in the standard form

$$
i(t)=I \cos (2 \pi f t+\phi)
$$

and, if so, what are I, f, and ϕ ?

Solution

- Use the trig identity
$-\cos (x+y)=\cos (x) \cos (y)-\sin (x) \sin (y)$
to change $i(t)=I \cos (2 \pi f t+\phi)$ to

$$
i(t)=I \cdot \cos (\phi) \cos (2 \pi f t)-I \cdot \sin (\phi) \sin (2 \pi f t)
$$

- Compare to

$$
i(t)=1 \mu \mathrm{~A} \cos (2 \pi 1 \mathrm{kHz} \cdot t)-4 \pi \mu \mathrm{~A} \sin (2 \pi 1 \mathrm{kHz} \cdot \mathrm{t})
$$

- Conclude:
- $f=1 \mathrm{kHz}$ - no change in frequency!
- $I \cdot \cos (\phi)=1 \mu \mathrm{~A}$ and $I \cdot \sin (\phi)=4 \pi \mu \mathrm{~A}$.

Solution

- We still must find I and ϕ from
- $I \cdot \cos (\phi)=1 \mu \mathrm{~A}$ and $I \cdot \sin (\phi)=4 \pi \mu \mathrm{~A}$.
- We can find $/$ from

$$
\begin{aligned}
I^{2} \cdot \cos ^{2}(\phi) & +I^{2} \cdot \sin ^{2}(\phi) \\
(1 \mu \mathrm{~A})^{2} & =(4 \pi \mu \mathrm{~A})^{2}
\end{aligned}=(12.6 \mu \mathrm{~A})^{2}
$$

- Thus, $I=12.6 \mu \mathrm{~A}$.
- Also,

$$
\frac{l \cdot \sin (\phi)}{I \cdot \cos (\phi)}=\tan (\phi)=\frac{4 \pi}{1} .
$$

- Hence, $\phi \approx 0.47 \cdot \pi \approx 85^{\circ}$.
- And, $i(t) \approx 12.6 \mu \mathrm{~A} \cos (2 \pi 1 \mathrm{kHz} \cdot t+0.47 \cdot \pi)$.

Exercise

- Express

$$
x(t)=3 \cdot \cos (2 \pi f t)+4 \cdot \cos (2 \pi f t+\pi / 2)
$$

in the form $A \cdot \cos (2 \pi f t+\phi)$.

- Answer: $x(t) \approx 5 \cos \left(2 \pi f t+53^{\circ}\right)$

Solution to Exercise

- Express

$$
x(t)=3 \cdot \cos (2 \pi f t)+4 \cdot \cos (2 \pi f t+\pi / 2)
$$

in the form $A \cdot \cos (2 \pi f t+\phi)$.

- Solution: Use trig identity $\cos (x+y)=\cos (x) \cos (y)-\sin (x) \sin (y)$ on second term.
- This leads to

$$
\begin{aligned}
x(t)= & 3 \cdot \cos (2 \pi f t)+ \\
& 4 \cdot \cos (2 \pi f t) \cos (\pi / 2)-4 \cdot \sin (2 \pi f t) \sin (\pi / 2) \\
= & 3 \cdot \cos (2 \pi f t)-4 \cdot \sin (2 \pi f t) .
\end{aligned}
$$

- Compare to what we want:

$$
\begin{aligned}
x(t) & =A \cdot \cos (2 \pi f t+\phi) \\
& =A \cdot \cos (\phi) \cos (2 \pi f t)-A \cdot \sin (\phi) \sin (2 \pi f t)
\end{aligned}
$$

Solution cont'd

- We can conclude that A and ϕ must satisfy

$$
A \cdot \cos (\phi)=3 \text { and } A \cdot \sin (\phi)=4
$$

- We can find A from

$$
\begin{array}{cccc}
A^{2} \cdot \cos ^{2}(\phi) & +A^{2} \cdot \sin ^{2}(\phi) & =A^{2} \\
9 & + & 16 & =25
\end{array}
$$

- Thus, $A=5$.
- Also,

$$
\frac{\sin (\phi)}{\cos (\phi)}=\tan (\phi)=\frac{4}{3} .
$$

- Hence, $\phi \approx 53^{\circ}\left(\frac{53}{180} \pi\right)$.
- And, $x(t)=5 \cos \left(2 \pi f t+53^{\circ}\right)$. UNIVERSITY

Summary

- Adding sinusoids of the same frequency is a problem that is frequently encountered in Electrical Engineering.
- We noticed that the frequency of the sum of sinusoids is the same as the frequency of the sinusoids that we added.
- Such problems can be solved using trigonometric identities.
- but, that is very tedious.
- We will see that sums of sinusoids are much easier to compute using complex algebra.

