Sinusoidal	Signals
000	

0000 0000 Sums of Sinusoids

Lecture: Adding Sinusoids of the Same Frequency

Sinusoidal	Signals
000	
000000	
0000	

Complex Exponential Signals

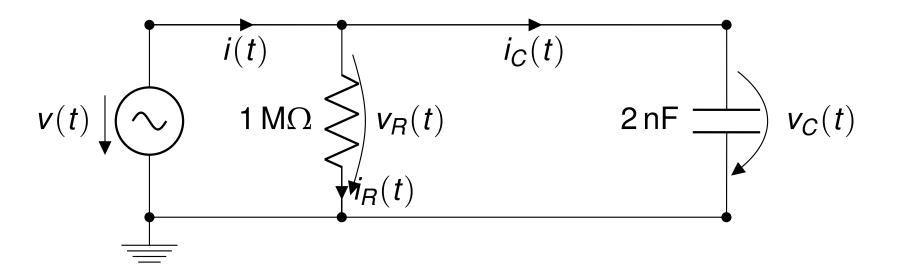
Adding Sinusoids

- Adding sinusoids of the same frequency is a problem that arises regularly in
 - circuit analysis
 - linear, time-invariant systems, e.g., filters
 - and many other domains
- We will see that adding sinusoids is much easier with complex exponentials
 - Today, we will do it the hard way with trigonometry

Sinusoidal Signals
000
000000
0000

Complex Exponential Signals

A Circuits Example



For $v(t) = 1 V \cdot \cos(2\pi 1 \text{ kHz} \cdot t)$, find the current i(t).

Sinusoidal Signals
000
000000
0000

Complex Exponential Signals

Setting up the Problem

- Resistor: $i_R(t) = \frac{v_R(t)}{R}$
- Capacitor: $i_C(t) = C \frac{dv_C(t)}{dt}$
- Kirchhoff's current law: $i(t) = i_R(t) + i_C(t)$
- Kirchhoff's voltage law: $v(t) = v_R(t) = v_C(t)$

Therefore,

$$i(t) = \frac{v(t)}{R} + C \cdot \frac{dv(t)}{dt}$$

= $\frac{1 \text{ V}}{1 \text{ M}\Omega} \cos(2\pi 1 \text{ kHz} \cdot t) - 2\pi \cdot 1 \text{ kHz} \cdot 2 \text{ nF} \cdot \sin(2\pi 1 \text{ kHz} \cdot t)$
= $1 \mu A \cos(2\pi 1 \text{ kHz} \cdot t) - 4\pi \mu A \sin(2\pi 1 \text{ kHz} \cdot t)$

Sinusoidal S	Signals
000	
000000	
0000	

Simplifying *i*(*t*)

Can we write

 $i(t) = 1 \,\mu A \cos(2\pi 1 \,\mathrm{kHz} \cdot t) - 4\pi \,\mu A \sin(2\pi 1 \,\mathrm{kHz} \cdot t)$

as a single sinusoid?

Specifically, can we express it in the standard form

$$i(t) = I\cos(2\pi f t + \phi)$$

and, if so, what are *I*, *f*, and ϕ ?


```
Sinusoidal Signals
o
ooo
oooooo
ooooo
```

Complex Exponential Signals

Solution

 Use the trig identity
 cos(x + y) = cos(x) cos(y) - sin(x) sin(y) to change i(t) = I cos(2πft + φ) to

$$i(t) = I \cdot \cos(\phi) \cos(2\pi f t) - I \cdot \sin(\phi) \sin(2\pi f t)$$

Compare to

$$i(t) = 1 \, \mu \mathsf{A} \cos(2\pi 1 \, \mathsf{kHz} \cdot t) - 4\pi \, \mu \mathsf{A} \sin(2\pi 1 \, \mathsf{kHz} \cdot t)$$

Conclude:

•
$$f = 1 \text{ kHz}$$
 - no change in frequency!

• $I \cdot \cos(\phi) = 1 \,\mu A$ and $I \cdot \sin(\phi) = 4\pi \,\mu A$.

Sinusoidal Signals o ooo oooooo ooooo Sums of Sinusoids

Solution

• We still must find I and ϕ from

•
$$I \cdot \cos(\phi) = 1 \,\mu A$$
 and $I \cdot \sin(\phi) = 4\pi \,\mu A$.

We can find / from

$$l^{2} \cdot \cos^{2}(\phi) + l^{2} \cdot \sin^{2}(\phi) = l^{2}$$

 $(1 \,\mu A)^{2} + (4 \pi \,\mu A)^{2} \approx (12.6 \,\mu A)^{2}$

Also,

$$\frac{I \cdot \sin(\phi)}{I \cdot \cos(\phi)} = \tan(\phi) = \frac{4\pi}{1}.$$

• Hence, $\phi \approx 0.47 \cdot \pi \approx 85^{o}$.

• And, $i(t) \approx 12.6 \,\mu A \cos(2\pi 1 \,\mathrm{kHz} \cdot t + 0.47 \cdot \pi)$.

Sinusoidal Signals 0 000 000000 00000 Sums of Sinusoids

Exercise

Express

$$x(t) = \mathbf{3} \cdot \cos(2\pi f t) + \mathbf{4} \cdot \cos(2\pi f t + \pi/2)$$

in the form $A \cdot \cos(2\pi ft + \phi)$.

• Answer: $x(t) \approx 5\cos(2\pi ft + 53^{o})$

Sinusoidal	Signals
000	
000000	
0000	

Complex Exponential Signals

Solution to Exercise

Express

$$\boldsymbol{x}(t) = \boldsymbol{3} \cdot \cos(2\pi f t) + \boldsymbol{4} \cdot \cos(2\pi f t + \pi/2)$$

in the form $A \cdot \cos(2\pi ft + \phi)$.

Solution: Use trig identity
 cos(x + y) = cos(x) cos(y) - sin(x) sin(y) on second term.
 This leads to

$$\begin{aligned} x(t) &= 3 \cdot \cos(2\pi ft) + \\ &\quad 4 \cdot \cos(2\pi ft) \cos(\pi/2) - 4 \cdot \sin(2\pi ft) \sin(\pi/2) \\ &= 3 \cdot \cos(2\pi ft) - 4 \cdot \sin(2\pi ft). \end{aligned}$$

Compare to what we want:

$$\begin{aligned} \mathbf{x}(t) &= \mathbf{A} \cdot \cos(2\pi f t + \phi) \\ &= \mathbf{A} \cdot \cos(\phi) \cos(2\pi f t) - \mathbf{A} \cdot \sin(\phi) \sin(2\pi f t) \end{aligned}$$

Sinusoidal	Signals
0	
000	
000000	
0000	

Solution cont'd

• We can conclude that A and ϕ must satisfy

$$A \cdot \cos(\phi) = 3$$
 and $A \cdot \sin(\phi) = 4$.

► We can find A from

$$A^2 \cdot \cos^2(\phi) + A^2 \cdot \sin^2(\phi) = A^2$$

9 + 16 = 25

Also,

$$\frac{\sin(\phi)}{\cos{(\phi)}} = \tan(\phi) = \frac{4}{3}$$

Sinusoidal Signals	
000	
000000	
0000	

Complex Exponential Signals

Summary

- Adding sinusoids of the same frequency is a problem that is frequently encountered in Electrical Engineering.
 - We noticed that the frequency of the sum of sinusoids is the same as the frequency of the sinusoids that we added.
- Such problems can be solved using trigonometric identities.
 - but, that is very tedious.
- We will see that sums of sinusoids are much easier to compute using complex algebra.

