000 000000 0000 Sums of Sinusoids

Lecture: Introduction to Sinusoids

©2009-2019, B.-P. Paris

ECE 201: Intro to Signal Analysis

Sinusoidal Signals
000
000000
0000

Complex Exponential Signals

The Formula for Sinusoidal Signals

The general formula for a sinusoidal signal is

$$x(t) = \mathbf{A} \cdot \cos(2\pi f t + \phi).$$

- A, f, and ϕ are parameters that characterize the sinusoidal sinal.
 - A Amplitude: determines the height of the sinusoid.
 - f Frequency: determines the number of cycles per second.
 - $\blacktriangleright \phi$ Phase: determines the location of the sinusoid.

00 000000 0000

Sums of Sinusoids

The formula for this sinusoid is:

$$x(t) = 3 \cdot \cos(2\pi \cdot 50 \cdot t + \pi/4).$$

Sinusoidal Signals
000
000000
0000

Complex Exponential Signals

The Significance of Sinusoidal Signals

- Fundamental building blocks for describing arbitrary signals.
 - General signals can be expressed as sums of sinusoids (Fourier Theory)
 - Provides bridge to frequency domain.
- Sinusoids are *special signals* for linear filters (eigenfunctions).
- Sinusoids occur naturally in many situations.
 - They are solutions of differential equations of the form

$$\frac{d^2x(t)}{dt^2} + ax(t) = 0.$$

Much more on these points as we proceed.

Sinusoidal Signals	
000	
●00000	
0000	

Complex Exponential Signals

Background: The cosine function

- The properties of sinusoidal signals stem from the properties of the cosine function:
 - **Periodicity:** $cos(x + 2\pi) = cos(x)$
 - **Eveness:** cos(-x) = cos(x)
 - Ones of cosine: $cos(2\pi k) = 1$, for all integers k.
 - Minus ones of cosine: $cos(\pi(2k+1)) = -1$, for all integers k.
 - **Zeros** of cosine: $cos(\frac{\pi}{2}(2k+1)) = 0$, for all integers k.
 - Relationship to sine function: $sin(x) = cos(x \pi/2)$ and $cos(x) = sin(x + \pi/2)$.

00000

Sums of Sinusoids

- The amplitude A is a scaling factor.
- It determines how large the signal is.
- Specifically, the sinusoid oscillates between +A and -A.

Sinusoidal Signals
000
000000
0000

Complex Exponential Signals

Frequency and Period

- Sinusoids are periodic signals.
- The frequency f indicates how many times the sinusoid repeats per second.
- The duration of each cycle is called the period of the sinusoid.

It is denoted by T.

The relationship between frequency and period is

$$f=rac{1}{T}$$
 and $T=rac{1}{f}$.

Sinusoidal Signals	Sums of Sinusoids	Complex Exponential Signals
0 000 000000 0000	000000000	0000 00000 000000000000000

Phase and Delay

- The phase ϕ causes a sinusoid to be shifted sideways.
- A sinusoid with phase $\phi = 0$ has a maximum at t = 0.
- A sinusoid that has a maximum at $t = t_1$ can be written as

$$\mathbf{x}(t) = \mathbf{A} \cdot \cos(2\pi f(t-t_1)).$$

Expanding the argument of the cosine leads to

$$\mathbf{x}(t) = \mathbf{A} \cdot \cos(2\pi f t - 2\pi f t_1).$$

Comparing to the general formula for a sinusoid reveals

$$\phi = -2\pi f t_1$$
 and $t_1 = \frac{-\phi}{2\pi f}$.

000 0000000 000000

Sums of Sinusoids

Sinusoidal S	ignals
000	
00000	
0000	

Exercise

1. Plot the sinusoid

$$x(t) = 2\cos(2\pi \cdot 10 \cdot t + \pi/2)$$

between t = -0.1 and t = 0.2.

2. Find the equation for the sinusoid in the following plot

©2009-2019, B.-P. Paris

ECE 201: Intro to Signal Analysis

Sinusoidal Signals	Sums of Sinusoids	Complex Exponential Signals
0 000 000000 ●000	000000000	

Vectors and Matrices

- MATLAB is specialized to work with vectors and matrices.
- Most MATLAB commands take vectors or matrices as arguments and perform looping operations automatically.
- Creating vectors in MATLAB:

directly:

x = [1, 2, 3];

using the increment (:) operator:

x = 1:2:10;

produces a vector with elements

[1, 3, 5, 7, 9].

using MATLAB commands For example, to read a .wav file

[x, fs] = wavread('music.wav');

Sinusoidal Signals
000
000000
0000

Complex Exponential Signals

Plot a Sinusoid

```
%% parameters
   A = 3;
   f = 50;
4 phi = pi/4;
   fs = 50 * f;
   %% generate signal
  % 5 cycles with 50 samples per cycle
9
   tt = 0 : 1/fs : 5/f;
   xx = A*cos(2*pi*f*tt + phi);
   88 plot
14 plot (tt, xx)
   xlabel( 'Time_(s)' ) % labels for x and y axis
   ylabel( 'Amplitude' )
   title( 'x(t)_=_A_cos(2\pi_f_t_+_\phi)')
```

