	Sum of Sinusoidal Signals	Time-Domain and Frequency-Domain	Periodic Signals	Time-Frequency Spec
00	00 0000 00 0000	000 000 000 000000 00000000	0 0 00000000 ● 000	0 00000 000000

Fourier Series

- We have shown that a sum of sinusoids with harmonic frequencies is a periodic signal.
- One can turn this statement around and arrive at a very important result:

Any periodic signal can be expressed as a sum of sinusoids with harmonic frequencies.

The resulting sum is called the Fourier Series of the signal.
 Put differently, a periodic signal can always be written in the form

$$\begin{array}{lcl} x(t) &=& A_0 + \sum_{i=1}^N A_i \cos(2\pi i f_0 t + \phi_i) \\ &=& X_0 + \sum_{i=1}^N X_i e^{j2\pi i f_0 t} + X_i^* e^{-j2\pi i f_0 t} \end{array}$$

with
$$X_0 = A_0$$
 and $X_i = \frac{A_i}{2} e^{j\phi_i}$

	Sum of Sinusoidal Signals	Time-Domain and Frequency-Domain	Periodic Signals	Time-Frequency Spec
00	00 0000 00 0000	000 000 000 000000 00000000	0 0 00000000 0●00	0 00000 000000

Fourier Series

- For a periodic signal the complex amplitudes X_i can be computed using a (relatively) simple formula.
- Specifically, for a periodic signal x(t) with fundamental period T_0 the complex amplitudes X_i are given by:

$$X_i = \frac{1}{T_0} \int_0^{T_0} x(t) \cdot e^{-j2\pi i t/T_0} dt.$$

Note that the integral above can be evaluated over any interval of length T₀.

	Sum of Sinusoidal Signals	Time-Domain and Frequency-Domain	Periodic Signals	Time-Frequency Spec
00	00	000		0
	0000	000	0	00000
	00	000	00000000	000000
	0000	000000	0000	

Example: Square Wave

A square wave signal is periodic and between t - 0 and $t = T_0$ it equals

$$x(t) = \begin{cases} 1 & 0 \le t < \frac{T_0}{2} \\ -1 & \frac{T_0}{2} \le t < T_0 \end{cases}$$

From the Fourier Series expansion it follows that x(t) can be written as

$$x(t) = \sum_{n=0}^{\infty} \frac{4}{(2n-1)\pi} \cos(2\pi(2n-1)ft - \pi/2)$$

	Sum of Sinusoidal Signals	Time-Domain and Frequency-Domain	Periodic Signals	Time-Frequency Spec
00	00	000		0
	00	000	00000000	000000
	0000	000000 000000000	0000	

25-Term Approximation to Square Wave

©2009-2019, B.-P. Paris

	Sum of Sinusoidal Signals	Time-Domain and Frequency-Domain	Periodic Signals	Time-Frequency Spec
00	00	000	0	•
	0000	000	00000000	00000
	0000	000000 000000000	0000	

Limitations of Sum-of-Sinusoid Signals

So far, we have considered only signals that can be written as a sum of sinusoids.

$$x(t) = A_0 + \sum_{i=1}^N A_i \cos(2\pi f_i t + \phi_i).$$

- For such signals, we are able to compute the spectrum.
- Note, that signals of this form
 - ▶ are assumed to last forever, i.e., for $-\infty < t < \infty$,
 - and their spectrum never changes.
- While such signals are important and useful conceptually, they don't describe real-world signals accurately.
- Real-world signals
 - are of finite duration,
 - their spectrum changes over time.

	00	Sum of Sinusoidal Signals	Time-Domain and Frequency-Domain	Periodic Signals o o oooooooooooooooooooooooooooooooo	Time-Frequency Spec ○ ●○○○○ ○○○○○○
--	----	---------------------------	----------------------------------	--	---

Musical Notation

- Musical notation ("sheet music") provides a way to represent real-world signals: a piece of music.
- As you know, sheet music
 - places notes on a scale to reflect the *frequency* of the tone to be played,
 - uses differently shaped note symbols to indicate the duration of each tone,
 - provides the order in which notes are to be played.
- In summary, musical notation captures how the spectrum of the music-signal changes over time.
- We cannot write signals whose spectrum changes with time as a sum of sinusoids.

A static spectrum is insufficient to describe such signals.

Alternative: time-frequency spectrum

	Sum of Sinusoidal Signals	Time-Domain and Frequency-Domain	Periodic Signals	Time-Frequency Spec
00	00	000	0	0
	0000	000		0000
	00	000	0000000	000000
	0000	000000 000000000	0000	

Example: Musical Scale

Note	С	D	E	F	G	Α	В	С
Frequency (Hz)	262	294	330	349	392	440	494	523

Table: Musical Notes and their Frequencies

Sum of Sinusoidal Signals 00 00 0000 00 0000	Time-Domain and Frequency-Domain	Periodic Signals o o ooooooooo oooo	Time-Frequency Spec ○ ○○●○○ ○○○○○○
--	----------------------------------	---	---

Example: Musical Scale

If we play each of the notes for 250 ms, then the resulting signal can be summarized in the time-frequency spectrum below.

©2009-2019, B.-P. Paris

Sum of Sinusoidal Signals Time-Domain 00 00 000 0000 000 000 0000 000 000 0000 000 000 0000 0000 0000	and Frequency-Domain Periodic Signals o o oooooooooooooooooooooooooooooooo	o o ooo●o ooooo
---	---	--------------------------

MATLAB Spectrogram Function

- MATLAB has a function spectrogram that can be used to compute the time-frequency spectrum for a given signal.
 - The resulting plots are similar to the one for the musical scale on the previous slide.
- Typically, you invoke this function as

```
spectrogram( xx, 256, 128, 256,
fs,'yaxis'),
```

where xx is the signal to be analyzed and \mathtt{fs} is the sampling frequency.

The spectrogram for the musical scale is shown on the next slide.

Sum of Sinusoidal Sig	nals Time-Domain and Frequency-Doma	ain Periodic Signals	Time-Frequency Spec
	000	0	0 0000●
00 0000	000 000000	00000000 0000	00000
	000000000		

Spectrogram: Musical Scale

The color indicates the magnitude of the spectrum at a given time and frequency.

©2009-2019, B.-P. Paris

00	Sum of Sinusoidal Signals	Time-Domain and Frequency-Domain	Periodic Signals	Time-Frequency Spec
	0000	000000 000000000	0000	

Chirp Signals

- Objective: construct a signal such that its frequency increases with time.
- Starting Point: A sinusoidal signal has the form:

 $x(t) = A\cos(2\pi f_0 t + \phi).$

We can consider the argument of the cos as a time-varying phase function

$$\Psi(t)=2\pi f_0t+\phi.$$

• **Question:** What happens when we allow more general functions for $\Psi(t)$?

For example, let

$$\Psi(t) = 700\pi t^2 + 440\pi t + \phi.$$

	Sum of Sinusoidal Signals	Time-Domain and Frequency-Domain	Periodic Signals	Time-Frequency Spec
00	00 0000		0	0 00000
	00 0000	000 000000	00000000 0000	00000

Spectrogram: $cos(\Psi(t))$

• **Question:** How is he time-frequency spectrum related to $\Psi(t)$?

©2009-2019, B.-P. Paris

Sum of Sinusoidal Signals	Time-Domain and Frequency-Domain	Periodic Signals o o ooooooooo oooo	Time-Frequency Spec ○ ○○○○○ ○○●○○○
---------------------------	----------------------------------	---	---

Instantaneous Frequency

- For a regular sinusoid, $\Psi(t) = 2\pi f_0 t + \phi$ and the frequency equals f_0 .
- This suggests as a possible relationship between $\Psi(t)$ and f_0

$$f_0=\frac{1}{2\pi}\frac{d}{dt}\Psi(t).$$

- ► If the above derivative is not a constant, it is called the instantaneous frequency of the signal, $f_i(t)$.
- **Example:** For $\Psi(t) = 700\pi t^2 + 440\pi t + \phi$ we find

$$f_i(t) = \frac{1}{2\pi} \frac{d}{dt} (700\pi t^2 + 440\pi t + \phi) = 700t + 220.$$

This describes precisely the red line in the spectrogram on the previous slide.

	Sum of Sinusoidal Signals	Time-Domain and Frequency-Domain	Periodic Signals	Time-Frequency Spec
00	00	000		0
	0000	000		00000
	00	000	00000000	000000
	0000	000000 000000000	0000	

Constructing a Linear Chirp

- Objective: Construct a signal such that its frequency is initially f₁ and increases linear to f₂ after T seconds.
- Solution: The above suggests that

$$f_i(t) = \frac{f_2 - f_1}{T}t + f_1.$$

• Consequently, the phase function $\Psi(t)$ must be

$$\Psi(t) = 2\pi \frac{f_2 - f_1}{2T} t^2 + 2\pi f_1 t + \phi$$

Note that φ has no influence on the spectrum; it is usually set to 0.

Sum of Sinusoidal Signals	Time-Domain and Frequency-Domain	Periodic Signals o o ooooooooo oooo	Time-Frequency Spec ○ ○○○○○ ○○○○○ ○○○○○
---------------------------	----------------------------------	---	---

Constructing a Linear Chirp

- Example: Construct a linear chirp such that the frequency decreases from 1000 Hz to 200 Hz in 2 seconds.
- The desired signal must be

$$x(t) = \cos(-2\pi 200t^2 + 2\pi 1000t).$$

Sum of Sinusoidal Signals 00 00 0000 00 0000	Time-Domain and Frequency-Domain 000 000 000 000000 000000	Periodic Signals o o ooooooooo oooo	Time-Frequency Spec ○ ○○○○○ ○○○○○●
--	---	---	---

- Construct a linear chirp such that the frequency increases from 50 Hz to 200 Hz in 3 seconds.
- Sketch the time-frequency spectrum of the following signal

$$x(t) = \cos(2\pi 500t + 100\cos(2\pi 2t))$$

