Fourier Series

- We have shown that a sum of sinusoids with harmonic frequencies is a periodic signal.
- One can turn this statement around and arrive at a very important result:

Any periodic signal can be expressed as a sum of sinusoids with harmonic frequencies.

- The resulting sum is called the Fourier Series of the signal.
- Put differently, a periodic signal can always be written in the form

$$
\begin{aligned}
x(t) & =A_{0}+\sum_{i=1}^{N} A_{i} \cos \left(2 \pi i f_{0} t+\phi_{i}\right) \\
& =X_{0}+\sum_{i=1}^{N} X_{i} e^{j 2 \pi i f_{0} t}+X_{i}^{*} e^{-j 2 \pi i_{0} t}
\end{aligned}
$$

with $X_{0}=A_{0}$ and $X_{i}=\frac{A_{i}}{2} e^{j \phi_{i}}$.

Fourier Series

- For a periodic signal the complex amplitudes X_{i} can be computed using a (relatively) simple formula.
- Specifically, for a periodic signal $x(t)$ with fundamental period T_{0} the complex amplitudes X_{i} are given by:

$$
X_{i}=\frac{1}{T_{0}} \int_{0}^{T_{0}} x(t) \cdot e^{-j 2 \pi i t / T_{0}} d t
$$

- Note that the integral above can be evaluated over any interval of length T_{0}.

UNIVERSITY

Example: Square Wave

- A square wave signal is periodic and between $t-0$ and $t=T_{0}$ it equals

$$
x(t)=\left\{\begin{array}{cc}
1 & 0 \leq t<\frac{T_{0}}{2} \\
-1 & \frac{T_{0}}{2} \leq t<T_{0}
\end{array}\right.
$$

- From the Fourier Series expansion it follows that $x(t)$ can be written as

$$
x(t)=\sum_{n=0}^{\infty} \frac{4}{(2 n-1) \pi} \cos (2 \pi(2 n-1) f t-\pi / 2)
$$

25-Term Approximation to Square Wave

$$
x(t)=\sum_{n=0}^{25} \frac{4}{(2 n-1) \pi} \cos (2 \pi(2 n-1) f t-\pi / 2)
$$

Limitations of Sum-of-Sinusoid Signals

- So far, we have considered only signals that can be written as a sum of sinusoids.

$$
x(t)=A_{0}+\sum_{i=1}^{N} A_{i} \cos \left(2 \pi f_{i} t+\phi_{i}\right) .
$$

- For such signals, we are able to compute the spectrum.
- Note, that signals of this form
- are assumed to last forever, i.e., for $-\infty<t<\infty$,
- and their spectrum never changes.
- While such signals are important and useful conceptually, they don't describe real-world signals accurately.
- Real-world signals
- are of finite duration,
their spectrum changes over time.

Musical Notation

- Musical notation ("sheet music") provides a way to represent real-world signals: a piece of music.
- As you know, sheet music
- places notes on a scale to reflect the frequency of the tone to be played,
- uses differently shaped note symbols to indicate the duration of each tone,
- provides the order in which notes are to be played.
- In summary, musical notation captures how the spectrum of the music-signal changes over time.
- We cannot write signals whose spectrum changes with time as a sum of sinusoids.
- A static spectrum is insufficient to describe such signals.
- Alternative: time-frequency spectrum

Example: Musical Scale

Note	C	D	E	F	G	A	B	C
Frequency (Hz)	262	294	330	349	392	440	494	523

Table: Musical Notes and their Frequencies

Example: Musical Scale

- If we play each of the notes for 250 ms , then the resulting signal can be summarized in the time-frequency spectrum below.

MATLAB Spectrogram Function

- MATLAB has a function spect rogram that can be used to compute the time-frequency spectrum for a given signal.
- The resulting plots are similar to the one for the musical scale on the previous slide.
- Typically, you invoke this function as
spectrogram(xx, 256, 128, 256, fs,'yaxis'),
where xx is the signal to be analyzed and fs is the sampling frequency.
- The spectrogram for the musical scale is shown on the next slide.

$\begin{array}{ll}\text { Sum of Sinusoidal Signals } & \text { Time-Domain } \\ 0000 & 000 \\ 0000 & 000 \\ 00 & 000 \\ 0000 & 000000 \\ & 0000000000 \\ \text { ram: Musical seale }\end{array}$

Spectrogram: Musical Scale

- The color indicates the magnitude of the spectrum at a given time and frequency.

Chirp Signals

- Objective: construct a signal such that its frequency increases with time.
- Starting Point: A sinusoidal signal has the form:

$$
x(t)=A \cos \left(2 \pi f_{0} t+\phi\right) .
$$

- We can consider the argument of the cos as a time-varying phase function

$$
\Psi(t)=2 \pi f_{0} t+\phi
$$

- Question: What happens when we allow more general functions for $\Psi(t)$?
- For example, let

$$
\Psi(t)=700 \pi t^{2}+440 \pi t+\phi .
$$

Spectrogram: $\cos (\Psi(t))$

- Question: How is he time-frequency spectrum related to $\Psi(t)$?

MASON
oniversity

Instantaneous Frequency

- For a regular sinusoid, $\Psi(t)=2 \pi f_{0} t+\phi$ and the frequency equals f_{0}.
- This suggests as a possible relationship between $\Psi(t)$ and f_{0}

$$
f_{0}=\frac{1}{2 \pi} \frac{d}{d t} \Psi(t)
$$

- If the above derivative is not a constant, it is called the instantaneous frequency of the signal, $f_{i}(t)$.
- Example: For $\Psi(t)=700 \pi t^{2}+440 \pi t+\phi$ we find

$$
f_{i}(t)=\frac{1}{2 \pi} \frac{d}{d t}\left(700 \pi t^{2}+440 \pi t+\phi\right)=700 t+220
$$

- This describes precisely the red line in the spectrogram on the previous slide. UNIVERSITY

Constructing a Linear Chirp

- Objective: Construct a signal such that its frequency is initially f_{1} and increases linear to f_{2} after T seconds.
- Solution: The above suggests that

$$
f_{i}(t)=\frac{f_{2}-f_{1}}{T} t+f_{1} .
$$

- Consequently, the phase function $\Psi(t)$ must be

$$
\Psi(t)=2 \pi \frac{f_{2}-f_{1}}{2 T} t^{2}+2 \pi f_{1} t+\phi
$$

- Note that ϕ has no influence on the spectrum; it is usually set to 0 . ,

Constructing a Linear Chirp

- Example: Construct a linear chirp such that the frequency decreases from 1000 Hz to 200 Hz in 2 seconds.
- The desired signal must be

$$
x(t)=\cos \left(-2 \pi 200 t^{2}+2 \pi 1000 t\right)
$$

Exercise

- Construct a linear chirp such that the frequency increases from 50 Hz to 200 Hz in 3 seconds.
- Sketch the time-frequency spectrum of the following signal

$$
x(t)=\cos (2 \pi 500 t+100 \cos (2 \pi 2 t))
$$

