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Course Overview
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Learning Objectives

» Intro to Electrical Engineering via Digital Signal
Processing.

» Develop initial understanding of Signals and Systems.
» Learn MATLAB
» Note: Math is not very hard - just algebra.
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Course Overview
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DSP - Digital Signal Processing

Digital: processing via computers and digital hardware
we will use PC’s.
Signal: Principally signals are just functions of time
» Entertainment/music
» Communications
» Medical, ...

Processing: analysis and transformation of signals
we will use MATLAB
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Course Overview
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Outline of Topics

» Sinusoidal Signals > MATLAB

> Time and Frequency representation of : tggtsures
signals » Homework

» Sampling

> Filtering

> Spectrum Analysis
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Course Overview
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Sinusoidal Signals

» Fundamental building blocks for describing arbitrary
signals.
> General signals can be expresssed as sums of sinusoids
(Fourier Theory)
» Bridge to frequency domain.

» Sinusoids are special signals for linear filters
(eigenfunctions).

» Manipulating sinusoids is much easier with the help of
complex numbers.
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Course Overview
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Time and Frequency

» Closely related via sinusoids.
» Provide two different perspectives on signals.

» Many operations are easier to understand in frequency
domain.
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Course Overview
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Sampling

» Conversion from continuous time to discrete time.
» Required for Digital Signal Processing.
» Converts a signal to a sequence of numbers (samples).

» Straightforward operation
> with a few strange effects.
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Course Overview
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Filtering

> A simple, but powerful, class of operations on signals.

» Filtering transforms an input signal into a more suitable
output signal.

» Often best understood in frequency domain.

Input Output
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Course Overview
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Spectrum Analysis
> Analyze a given signal to find which frequencies it contains.
» Fourier Transform and fast Fourier Transform
» Spectrogram
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Course Overview
00000000e

Relationship to other ECE Courses

> Next steps after ECE 201:

> ECE 220: Signals and Systems
» ECE 280: Circuits

» Core courses in controls and communications:
» ECE 421: Controls
» ECE 460: Communications
» Electives:
» ECE 410: DSP
» ECE 450: Robotics
» ECE 463: Digital Comms
> ECE 464: Filter Design
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Part Il

Sinusoids, Complex Numbers, and
Complex Exponentials
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Sinusoidal Signals

Lecture: Introduction to Sinusoids
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Sinusoidal Signals
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The Formula for Sinusoidal Signals

» The general formula for a sinusoidal signal is
x(t) = A-cos(2mtft + ¢).

> A, f, and ¢ are parameters that characterize the sinusoidal
signal.
> A - Amplitude: determines the height of the sinusoid.
> f - Frequency: determines the number of cycles per
second.
> ¢ - Phase: determines the horizontal location of the
sinusoid.
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Sinusoidal Signals
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X(t) = Acos(2mft + )
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» The formula for this sinusoid is: ,
/GEORGE
x(t) =3-cos(2r-50-t+1w/4). MASoR
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Sinusoidal Signals
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The Significance of Sinusoidal Signals

» Fundamental building blocks for describing arbitrary
signals.

» General signals can be expresssed as sums of sinusoids
(Fourier Theory)
> Provides bridge to frequency domain.
» Sinusoids are special signals for linear filters
(eigenfunctions).
» Sinusoids occur naturally in many situations.
> They are solutions of differential equations of the form

d?x(t)
o2 +ax(t) =0.
» Much more on these points as we proceed. Msas
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Sinusoidal Signals
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Background: The cosine function

» The properties of sinusoidal signals stem from the
properties of the cosine function:

Periodicity: cos(x + 27) = cos(x)

Eveness: cos(—x) = cos(x)

Ones of cosine: cos(27tk) = 1, for all integers k.

Minus ones of cosine: cos(7t(2k + 1)) = —1, for all

integers k.

Zeros of cosine: cos(7 (2k +1)) = 0, for all integers k.

Relationship to sine function: sin(x) = cos(x — 7r/2) and

cos(x) = sin(x + 1t/2).

vVVvyyvyy

vy
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Sinusoidal Signals
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Amplitude

» The amplitude A is a scaling factor.
> |t determines how large the signal is.

» Specifically, the sinusoid oscillates between +A and —A.
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Sinusoidal Signals
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Frequency and Period

» Sinusoids are periodic signals.

» The frequency f indicates how many times the sinusoid
repeats per second.

» The duration of each cycle is called the period of the
sinusoid.
It is denoted by T.

» The relationship between frequency and period is

f:lTandT:
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Sinusoidal Signals
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Phase and Delay
» The phase ¢ causes a sinusoid to be shifted sideways.
» A sinusoid with phase ¢ = 0 has a maximum at t = 0.
> A sinusoid that has a maximum at t = T can be written as

x(t) = A-cos(2mtf(t—T)).
» Expanding the argument of the cosine leads to
x(t) = A- cos(2rft — 27fT).
» Comparing to the general formula for a sinusoid reveals
—¢

¢ =—-2nfrand T = pyerd
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Sinusoidal Signals
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Sinusoidal Signals
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Exercise
1. Plot the sinusoid

x(t) =2cos(2r-10-t+ 11/2)

between t = —0.1 and t = 0.2.
2. Find the equation for the sinusoid in the following plot

W,

0 0001 0002 0003 0.004 0005 0006 0007 0008 0009 001

Amplitude
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Sinusoidal Signals
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Vectors and Matrices
» MATLAB is specialized to work with vectors and matrices.

» Most MATLAB commands take vectors or matrices as
arguments and perform looping operations automatically.

» Creating vectors in MATLAB:
directly:

x=11, 2, 31;

using the increment (:) operator:
x = 1:2:10;
produces a vector with elements
[, 3, 5, 7, 91.

using MATLAB commands For example, to read a .wav file

[ x, f£s] = wavread('music.wav’); Pn/ﬁzoncz
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Sinusoidal Signals

Plot a Sinusoid

%% parameters
A = 3;

f = 50;

phi = pi/4;
fs = 50*f;

% generate signal

5 cycles with 50 samples per cycle
tt =0 : 1/fs : 5/f;

xx = Axcos (2xpixfxtt + phi);

o oo

%% plot

plot (tt, xx)

xlabel ( 'Time_(s)’ ) % labels for x and y axis
ylabel ( 'Amplitude’ )

title( ’"x(t)_=_A_cos(2\pi_f_t_+_\phi)’)
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Sinusoidal Signals
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Exercise

» The sinusoid below has frequency f = 10 Hz.

» Three of its maxima are at the the following locations
71 = —0.075s, 1, = 0.025s, 13 = 0.125s

» Use each of these three delays to compute a value for the
phase ¢ via the relationship ¢; = —27f7;.

» What is the relationship between the phase values ¢, you
obtain?
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Sinusoidal Signals
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Lecture: Adding Sinusoids of the Same
Frequency
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Sums of Sinusoids
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Adding Sinusoids

» Adding sinusoids of the same frequency is a problem that
arises regularly in
> circuit analysis
> linear, time-invariant systems, e.g., filters
» and many other domains
» We will see that adding sinusoids is much easier with
complex exponentials
> Today, we will do it the hard way — with trigonometry

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis



Sums of Sinusoids
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A Circuits Example

v(t)l ~) TMQ > va(t) 2nF :‘:> ve(t)
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Sums of Sinusoids
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Setting up the Problem

> Resistor: ig(t) = YA\
» Capacitor: ic(t) = Cd"%t(t)
» Kirchhoff’s current law: i(t) = ig(t) + ic(t)
» Kirchhoff’s voltage law: v(t) = vg(t) = v(t)
» Therefore,

o V(D) dv(t)

i(t) = = +C o

11MVQ cos(2m1kHz - t) —2m-1kHz - 2nF - sin(2t1kHz - ¢)

= 1pAcos(2rt1 kHz - t) — 4t pAsin(27t1 kHz - t)
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Sums of Sinusoids
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Simplifying i(t)

» Can we write
i(t) = 1pAcos(2m1 kHz - t) — 4w pAsin(27r1 kHz - 1)

as a single sinusoid?
» Specifically, can we express it in the standard form

i(t) = lcos(2rtft + ¢)

and, if so, what are /, f, and ¢?
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Sums of Sinusoids
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Solution

» Use the trig identity
> cos(x + y) = cos(x) cos(y) — sin(x) sin(y)
to change i(t) = I cos(27tft + ¢) to

i(t) = I-cos(¢) cos(2rtft) — I -sin(¢)sin(27ft)
» Compare to
i(t) = 1pAcos(2m1 kHz - t) — 4t pAsin(27t1 kHz - 1)

» Conclude:

> f = 1kHz - no change in frequency!
> |-cos(¢) =1pA and /-sin(¢) = 4 pA.
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Sums of Sinusoids
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Solution

> We still must find / and ¢ from
> |-cos(¢) =1pA and /-sin(¢) = 4 pA.
» We can find / from

P.cos?(p) + P-sin?(p) = I?
(1pA)2  +  (4mpA)2 =~ (126pA)?

» Thus, | = 12.6 pA.
» Also,

[-sin(¢p) _4n

I-cos(¢p) tan(¢) = 1
» Hence, ¢ ~ 0.47 - T ~ 85°.
» And, i(t) ~ 12.6 pAcos(2t1 kHz - t + 0.47 - 7). Masos
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Sums of Sinusoids
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Exercise

> Express
x(t) = 3 - cos(2rft) + 4 - cos(2nft + 11/2)

in the form A - cos(27tft + ¢).
> Answer: x(t) ~ 5cos(27ft + 53°)
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Sums of Sinusoids
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Solution to Exercise
» Express

x(t) = 3 - cos(2rtft) + 4 - cos(2rft + 11/2)

in the form A - cos(27tft + ¢).
» Solution: Use trig identity
cos(x + y) = cos(x) cos(y) — sin(x) sin(y) on second term.
» This leads to
x(t) = 3-cos(2mft)+
4 - cos(2rtft) cos(7t/2) — 4 - sin(27tft) sin(7t/2)
= 3-cos(2mft) — 4 -sin(2rft).

» Compare to what we want:

x(t) = A-cos(2rtft+ ¢)
= A-cos(¢) cos(2mtft) — A-sin(¢)sin(27ft) D'ﬁsoN

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis



Sums of Sinusoids
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Solution contd
» We can conclude that A and ¢ must satisfy

A-cos(¢) =3 and A-sin(¢) = 4.
» We can find A from

A2 cos?(¢p) + AP-sin?(9p) = A?
9 + 16 = 25

> Hence, ¢ ~ 53° (357).
» And, x(t) = 5cos(27ft + 53°).
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Sums of Sinusoids
00000000080

Summary

» Adding sinusoids of the same frequency is a problem that
is frequently encountered in Electrical Engineering.
» We noticed that the frequency of the sum of sinusoids is the
same as the frequency of the sinusoids that we added.
» Such problems can be solved using trigonometric
identities.
> but, that is very tedious.

» We will see that sums of sinusoids are much easier to
compute using complex algebra.
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Sums of Sinusoids
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Lecture: Complex Exponentials
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Complex Exponential Signals
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Introduction
» The complex exponential signal is defined as

x(t) = Aexp(j(2rtft + ¢)).

> As with sinusoids, A, f, and ¢ are (real-valued) amplitude,
frequency, and phase.
» By Euler’s relationship, it is closely related to sinusoidal
signals

x(t) = Acos(27tft + ¢) + jAsin(27tft + ¢).

» We will leverage the benefits the complex representation
provides over sinusoids:
> Avoid trigonometry,
> Replace with simple algebra, Z e
> Visualization in the complex plane. 3%
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Complex Exponential Signals
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Plot of Complex Exponential

x(t) = 1-exp(j(2/8t + 11/4))

Since x(t) is
complex-valued, both
real and imaginary parts
0 are functions of time.

0.5

Imag(x(t))

-0.5
0.5

0

10 P [/5 EORGE
Real(x(t) 5

05 0 Tme(s) . uwivessity
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Complex Exponential Signals
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Complex Plane

t=1

1 P T~
0.8 (:2,’// \\\ 0
06,7 S .
g | X(t) 1. e/(27'c/8!+7'[/4)

0.4 /r “

. [ We can think of a

g™ complex expontial as
-2 g signals that rotate along
0af a circle in the complex
N plane.
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Complex Exponential Signals
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Expressing Sinusoids through Complex Exponentials

» There are two ways to write a sinusoidal signal in terms of
complex exponentials.

» Real part:
Acos(27tft + ¢) = Re{Aexp(j(2rft + ¢))}.
> Inverse Euler:
Acos(2nft + ) = 5 (expli(@nft + ) +exp(—(2nft +¢)))

» Both expressions are useful and will be important
throughout the course.
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Complex Exponential Signals
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Phasors
» Phasors are not directed-energy weapons first seen in the
original Star Trek movie.
» That would be phasers!
» Phasors are the complex amplitudes of complex
exponential signals:

x(t) = Aexp(j(27tft + ¢)) = A&/ exp(j2rtt).

» The phasor of this complex exponential is X = Ae/?.
» Thus, phasors capture both amplitude A and phase ¢ —in
polar coordinates.
> The real and imaginary parts of the phasor X = Ae/? are
referred to as the in-phase (1) and quadrature (Q)
components of X, respectively:

X =1+ jQ = Acos(¢) + jAsin(¢p)
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Complex Exponential Signals

[e] lelele}

Phasor Notation for Complex Exponentials
» The complex exponential signal

x(t) = Aexp(j(2rtft + ¢)) = A&? exp(j2rft)

is characterized completely by the combination of
» phasor X = Ae/?
> frequency f

» We will frequently use this observation to denote a complex
exponential by providing the pair of phasor and frequency:

(Ae?, f)

> We will refer to this notation as the spectrum representation
of the complex exponential x(t)

nnnnnnnnnn
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Complex Exponential Signals
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From Sinusoids to Phasors
» A sinusoid can be written as

Acos(27tft+¢) = A (exp(j(27rft+ })) +exp(—j2rft+¢))).

» This can be rewritten to provide

¢ —I9
Ae exp(j2rtft) + exp(—j2mft).

e

2 2

» Thus, a sinusoid is composed of two complex exponentials
> One with frequency f and phasor 4¢%,

> rotates counter-clockwise in the complex plane;

Ae ¢
> one with frequency —f and phasor £5—.

> rotates clockwise in the complex plane;
> Note that the two phasors are conjugate complexes of eachI /D“
other. AR ON

Acos(27tft + ¢) =
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Complex Exponential Signals
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Exercise

> Write
x(t) = 3cos(2r10t — 71/3)
as a sum of two complex exponentials.

» For each of the two complex exponentials, find the
frequency and the phasor.

» Repeat for
y(t) = 2sin(210t + 71/ 4)

» What are the in-phase and quadrature signals of

z(t) = 53 exp(j271101)
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Complex Exponential Signals
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Answers to Exercise
>
x(t) = 8cos(2110t — 71/3)
_ B gin/s gizmiot n 3 /3 g-j2miot
2 2

as a sum of two complex exponentials. '
> Phasor-frequency pairs: (3e7/7/3,10) and (3&7/3, —10)

>
y(t) = 2sin(27710t 4+ 77/4) = 2 cos(2710t — 71/4)
— {g Im/4gl2m10t | q gimt/4 g—j2mr10t
>
. , 5 5V2 .
- /3 — (Y - -
z(t) = 5™  exp(j2rt10t) = (2 +J 5 ) exp(j27t101) Miesse
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Complex Exponential Signals
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Lecture: The Phasor Addition Rule
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Complex Exponential Signals
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Problem Statement
> |t is often required to add two or more sinusoidal signals.
» When all sinusoids have the same frequency then the
problem simplifies.
> This problem comes up very often, e.g., in AC circuit
analysis (ECE 280) and later in the class (chapter 5).
» Starting point: sum of sinusoids

x(t) = Ay cos(27tft + ¢p1) + ... + An cos(27tft + )

> Note that all frequencies f are the same (no subscript).
> Amplitudes A; phases ¢, are different in general.
» Short-hand notation using summation symbol (}°):

N
x(t) =Y _ Ajcos(27tft + ¢;)
=

I
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Complex Exponential Signals
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The Phasor Addition Rule

» The phasor addition rule implies that there exist an
amplitude A and a phase ¢ such that

N
x(t) =) _ Ajcos(2ntft + ¢;) = Acos(27ft + )
i=1
> Interpretation: The sum of sinusoids of the same
frequency but different amplitudes and phases is
> a single sinusoid of the same frequency.
» The phasor addition rule specifies how the amplitude A and
the phase ¢ depends on the original amplitudes A; and ¢;.
» Example: We showed earlier (by means of an unpleasant
computation involving trig identities) that:
— _ o
x(t) = 3-cos(2mft) +4 - cos(27tft + 71/2) = 5cos(27ft +53°).

GEORGE
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Complex Exponential Signals
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Prerequisites
» We will need two simple prerequisites before we can derive
the phasor addition rule.
1. Any sinusoid can be written in terms of complex
exponentials as follows

Acos(27tft + ¢) = Re{Ae/2™1¢)} — Re{Ae/? &7},

Recall that Ae? is called a phasor (complex amplitude).
2. For any complex numbers Xi, Xs, ..., Xy, the real part of
the sum equals the sum of the real parts.

N N
Re {Z x} — Y Re{X}.
i=1 i=

> This should be obvious from the way addition is defined for
complex numbers.

/GEOHGE
(X1 +jy1) + (e +jy2) = (X1 +x2) +j(y1 + yo). MAs

nnnnnnnnnn
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Complex Exponential Signals
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Deriving the Phasor Addition Rule

> Objective: We seek to establish that
N
Y Ajcos(2mft + ¢;) = Acos(27tft + )
i=1

and determine how A and ¢ are computed from the A; and

bi-
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Complex Exponential Signals
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Deriving the Phasor Addition Rule

» Step 1: Using the first pre-requisite, we replace the
sinusoids with complex exponentials

Yy Acos(2ntft+ ;) = LN, Re{Ae/@nt9)}
YN Re{Ae/tigl?m}
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Complex Exponential Signals
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Deriving the Phasor Addition Rule

> Step 2: The second prerequisite states that the sum of the
real parts equals the the real part of the sum

N N
Y Re{A;ee?™} = Re {Z Aielti ef2ﬂf’} .
i=1 i=1
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Complex Exponential Signals
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Deriving the Phasor Addition Rule

» Step 3: The exponential 2™ appears in all the terms of
the sum and can be factored out

N N
Re {ZAie/¢ie/2nft} — Re { (Z A,-e/‘”") e/'27'cft}
=1 i=

> The term YN, A;e/i is just the sum of complex numbers in
polar form.

> The sum of complex numbers is just a complex number X
which can be expressed in polar form as X = Ae/?.
> Hence, amplitude A and phase ¢ must satisfy

. N .
A =Y Al
I:1 m/fizsoncz
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Complex Exponential Signals
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Deriving the Phasor Addition Rule

> Note
» computing YN , A;e/?i requires converting A;e/® to
rectangular form,
> the result will be in rectangular form and must be converted
to polar form Ae/?.
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Complex Exponential Signals
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Deriving the Phasor Addition Rule

> Step 4: Using Ae/? = Y. A;e% in our expression for the
sum of sinusoids yields:
Re { (TN, Ae") et} — Re{Aeltel?r}
= Re {Ag/@rtd)
= Acos(2rtft+ ¢).

» Note: the above result shows that the sum of sinusoids of
the same frequency is a sinusoid of the same frequency.
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Complex Exponential Signals
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Applying the Phasor Addition Rule
» Applicable only when sinusoids of same frequency need to
be added!
> Problem: Simplify

x(t) = Aq cos(2rtft + ¢p1) + ... Ay cos(27tft + Pn)
» Solution: proceeds in 4 steps
1. Extract phasors: X; = A;jeifori=1,..., N.
2. Convert phasors to rectangular form:
Xi = Ajcos ¢+ jAjsing;fori=1,..., N.
3. Compute the sum: X = ZfL X; by adding real parts and
imaginary parts, respectively.
4. Convert result X to polar form: X = Ae/?.
» Conclusion: With amplitude A and phase ¢ determined in
the final step
x(t) = Acos(2rft+¢). ~  MAasoN

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis



Complex Exponential Signals
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Example
» Problem: Simplify
x(t) = 3 - cos(2rtft) + 4 - cos(2rft + 11/2)

> Solution:
1. Extract Phasors: X; = 36° = 3 and X, = 4¢//2.
2. Convert to rectangular form: X; = 3 X, = 4.
3. Sum: X = X; + Xo = 3+4).
4. Convert to polar form: A = 1/32 + 42 = 5 and
¢ = arctan(3) ~ 53° (£ 7).
> Result:
x(t) = 5cos(2rft + 53°).
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The Circuits Example

v(t)T() 1MQ S va(t) 2nF :‘:> ve(t)

» For v(t) =1V -cos(27t1 kHz - t), find the current i(t).
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Problem Formulation with Phasors
» Source:

v(t) =1V -cos(2n1kHz - t) = Re{1V -exp(j2t1 kHz - t)}

= phasor: V = 1Ve

> Kirchhoff’s voltage law: v(t) = vg(t) = ve(t);
= phasors: V = Vg = V;.

> Resistor: ig(t) = A4,

= phasor: Iz = 4

» Capacitor: ig(t) = Cd"g
= phasor: Ic=C- V- /271 1 kHz
> Because w = j2r1 kHz - exp(j27t1 kHz - t)
» Kirchhoff’s current law: i(t) = ig(t) + ic(t); p,
= phasors: I = Ig + Ic. MASoN
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Problem Formulation with Phasors
» Therefore,

/:%+C-V-j27r-1kHz

1V
= v Hi2m 1kHz 2nF 1V
= 1pA + j4rpA
» Convert to polar form:
1A + j4TpA = 12.6 pA - 0477

Using:
> /12 + (4m)2~ 126
> tan~'((47)) = 0.477
» Thus, i(t) ~ 12.6 yAcos(2t1 kHz - t + 0.47 - 71).
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Exercise
» Simplify
T
x(t) = 10 cos(207tt + Z)+
10 cos(207tt + ¥)+
20 cos(207tt — ¥)
» Answer:

x(t) = 10v/2 cos(207t 4 7).
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Part

Spectrum Representation of
Signals
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Lecture: Sums of Sinusoids (of different
frequency)
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Sum of Sinusoidal Signals

[ 1o}

Introduction

» To this point we have focused on sinusoids of identical
frequency f

N
x(t) =Y Ajcos(27tft + ¢;).

i=1

> Note that the frequency f does not have a subscript /!

» Showed (via phasor addition rule) that the above sum can
always be written as a single sinusoid of frequency f.

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis



Sum of Sinusoidal Signals
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Introduction

» We will consider sums of sinusoids of different frequencies:

N
x(t) =) Ajcos(2ntfit + ¢;).
i=1

> Note the subscript on the frequencies f;!
» This apparently minor difference has dramatic
consequences.
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Sum of Two Sinusoids

x(t) = %cos(ant —m/2)+ % cos(2m3ft — 1/2)

15 T T T
——4/mtcos(2mft - 12)

—— 4/(3 1) cos(2m 3ft - 172)
— Sum of Sinusoids

Amplitude

15 i i i i i
0 0.01 0.02 0.03 0.04 0.05 0.06
Time (s)

to Signal Analysis
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Sum of 25 Sinusoids

25
4
x) =Y — " cos(2m(2n—1)ft — 71/2
()= 1. (1) os(2(2n~ )it = /2
: : R R N /G'EORGE
“‘0 0.01 0.02 T&gfi(s) 0.04 0.05 0.06 msns Ty
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Non-sinusoidal Signals as Sums of Sinusoids

» If we allow infinitely many sinusoids in the sum, then the
result is a square wave signal.
» The example demonstrates that general, non-sinusoidal
signals can be represented as a sum of sinusoids.
» The sinusods in the summation depend on the general
signal to be represented.
> For the square wave signal we need sinusoids
» of frequencies (2n—1) - f, and
> amplitudes ﬁ.
> (This is not obvious — Fourier Series).

ECE 201: Intro to Signal Analysis
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Non-sinusoidal Signals as Sums of Sinusoids

» The ability to express general signals in terms of sinusoids
forms the basis for the frequency domain or spectrum
representation.

» Basic idea: list the “ingredients” of a signal by specifying

> amplitudes and phases, as well as
> frequencies of the sinusoids in the sum.

©2009-2019, B.-P. Paris
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Sum of Sinusoidal Signals

The Spectrum of a Sum of Sinusoids
» Begin with the sum of sinusoids introduced earlier

N
X(t) = Ao+ ) _ Ajcos(27fit + ;).
i=1

where we have broken out a possible constant term.
> The term Ag can be thought of as corresponding to a
sinusoid of frequency zero.

» Using the inverse Euler formula, we can replace the
sinusoids by complex exponentials

ZN X X; ,
X(t) = Xo + 5 exp(127'[f,~t) + ? eXP(—_IZTCf,‘t) ]
i=1

. /GEORG
where Xy = Ap and X; = A;e/¥i. Mason
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The Spectrum of a Sum of Sinusoids (cont'd)

> Starting with
Nogxioo X ,
x(t) = Xo+ Z > exp(jerfit) + > exp(—j2rmtfit) b .
i=1

where Xy = Ap and X; = A;e/?i.

» The spectrum representation simply lists the complex
amplitudes and frequencies in the summation:

X() = {(%.0), 1), g ~#). - O 1), O )

©2009-2019, B.-P. Paris
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Example
» Consider the signal
x(t) =3+ 5cos(207tt — 7w/2) + 7 cos(507tt 4 71/4).
» Using the inverse Euler relationship

x(1) =38 + 3e " 2exp(j2m10t) + 362 exp(—j2710t)
+ L& texp(j2n25t) + Le /4 exp(—j2m25t).

» Hence,

X(f) = {(3,0), (372,10, (6172, ~10),
(507/4,25), (JeI/%, ~25))
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Exercise

» Find the spectrum of the signal:

x(t) =6+ 4cos(107tt + 7w/3) + 5cos(207tt — 71/7).
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Time-domain and Frequency-domain
» Signals are naturally observed in the time-domain.

» A signal can be illustrated in the time-domain by plotting it
as a function of time.

» The frequency-domain provides an alternative perspective
of the signal based on sinusoids:

> Starting point: arbitrary signals can be expressed as sums
of sinusoids (or equivalently complex exponentials).

> The frequency-domain representation of a signal indicates
which complex exponentials must be combined to produce
the signal.

» Since complex exponentials are fully described by
amplitude, phase, and frequency it is sufficient to just
specify a list of theses parameters.

> Actually, we list pairs of complex amplitudes (Ae#) and Z o
frequencies f and refer to this list as X(f). MAs

uuuuuuuuuu
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Time-domain and Frequency-domain

> It is possible (but not necessarily easy) to find X (f) from
x(t): this is called Fourier or spectrum analysis.

» Similarly, one can construct x(t) from the spectrum X(f):
this is called Fourier synthesis.

> Notation: x(t) <> X(f).

» Example (from earlier):

> Time-domain: signal

x(t) =3+ 5cos(207tt — 71/2) + 7 cos(507tt + 71/ 4).
> Frequency Domain: spectrum

X(f)={(3.0), (377210,

. (367772 -10)
(fel™/4,25), (5e7)

in/4 _25)} Zconc
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Time and Frequency-Domain
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Plotting a Spectrum
» To illustrate the spectrum of a signal, one typically plots the
magnitude versus frequency.
» Sometimes the phase is plotted versus frequency as well.

3. 0.5

0.4

03

Magnitude
Phase/mt
o

Z
-05
L a—y 0 20 40 a0 -20 0 20 40 Mq“sm‘“

Frequency (Hz) Frequency (Hz) UNIVERSITY
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Why Bother with the Frequency-Domain?
» In many applications, the frequency contents of a signal is
very important.
> For example, in radio communications signals must be
limited to occupy only a set of frequencies allocated by the
FCC.
» Hence, understanding and analyzing the spectrum of a
signal is crucial from a regulatory perspective.

» Often, features of a signal are much easier to understand
in the frequency domain. (Example on next slides).

» We will see later in this class, that the frequency-domain
interpretation of signals is very useful in connection with
linear, time-invariant systems.

> Example: A low-pass filter retains low frequency

components of the spectrum and removes high-frequency =
components. MAS6N

uuuuuuuuuu
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Example: Original signal

T T 0.6 T T T

04t 4

Amplitude
Spectrum
o o
n w

0.1 .

- _01 1 1 1
0 0.5 1 1.5 2 490 495 500 505 510

Z
Time (s) Frequency (Hz) mEs““
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Example: Corrupted signal

Amplitude

Time and Frequency-Domain

ocoe

15 T T T

Spectrum
n
o

N

550 600
Frequency (Hz)
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Time and Frequency-Domain
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Synthesis: From Frequency to Time-Domain
» Synthesis is a straightforward process; it is a lot like
following a recipe.
» Ingredients are given by the spectrum

X(f) = {(X0,0), (X1, fy), (X{', =F), ..., (Xn. fn), (Xn, —fn) }

Each pair indicates one complex exponential component
by listing its frequency and complex amplitude.

» Instructions for combining the ingredients and producing
the (time-domain) signal:

N
n=—N

> Always simplify the expression you obtain!

ECE 201: Intro to Signal Analysis
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Example
» Problem: Find the signal x(t) corresponding to

X(1) = {(3.0), (§e77/2,10), (56772, —10),
(1o77/4,25), (o 17, ~25))

» Solution:

X(t) =13 +§e—jﬂ:/2ej2rc10t + gejrf/2e—j2n10t
+§ejn/4ej27r25t 4 %e—jn/4e—j2n25t

» Which simplifies to:

x(t) =3+ 5cos(207tt — 7w/2) + 7 cos(507t + 71/4).
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Time and Frequency-Domain
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Exercise

» Find the signal with the spectrum:

X(f)={(5.0), (2e7/7/%,10), (2¢/"/4,—10),
(367/4,15), (36 7/7/4, —15)
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Analysis: From Time to Frequency-Domain
» The objective of spectrum or Fourier analysis is to find the
spectrum of a time-domain signal.
> We will restrict ourselves to signals x(t) that are sums of
sinusoids

N
x(t) = Ay + Y Ajcos(2mfit + ¢;).
i=1

» We have already shown that such signals have spectrum:

X(F) = {0X0.0), (551, ), (50, —F). . (32X ). (3G~

where Xy = Ap and X; = A;e/?i.
» We will investigate some interesting signals that can be
written as a sum of sinusoids. GRS
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Beat Notes
» Consider the signal

x(t) = 2 - cos(275t) - cos(271400¢).

» This signal does not have the form of a sum of sinusoids;
hence, we can not determine it's spectrum immediately.

A *
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MATLAB Code for Beat Notes

% Parameters

fs = 8192;

dur = 2;

fl1 = 5;

f2 = 400;

A = 2;

NP = round(2+fs/fl); % number of samples to plot

% time axis and signal
tt=0:1/fs:dur;
xx = Axcos (2xpixflxtt) .*xcos (2«pixf2xtt);

plot (tt (1:NP),xx(1:NP),tt (1:NP),Axcos (2xpixflxtt (1:NP)),’'r")
xlabel (' Time (s) ')
ylabel (' Amplitude’)

grid /G'EORGE
MaS
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Beat Notes as a Sum of Sinusoids

» Using the inverse Euler relationships, we can write

x(t) = 2- cos(2ﬁ5t) -cos(.27r400t) ‘ '
= 2.1 (275t 4 g 2mSt) . 1. (gi2n400t | g-j2r400t)

» Multiplying out yields:
1, ; 1, :
X(t) — §(e/27r4051‘ + e—12n405t) 4 E(e/2n395t 4 e—12n3951‘).
> Applying Euler’s relationship, lets us write:

x(t) = cos(271405t) + cos(27r395t).

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis
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Spectrum of Beat Notes

» We were able to rewrite the beat notes as a sum of
sinusoids

x(t) = cos(2r405t) + cos(271395t).

» Note that the frequencies in the sum, 395 Hz and 405 Hz,
are the sum and difference of the frequencies in the
original product, 5 Hz and 400 Hz.

> It is now straightforward to determine the spectrum of the
beat notes signal:

X(f) = {(%,405), (%, _405), (%,395), (%, —395))

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis
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Spectrum of Beat Notes
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Amplitude Modulation

» Amplitude Modulation is used in communication systems.

» The objective of amplitude modulation is to move the
spectrum of a signal m(t) from low frequencies to high
frequencies.

> The message signal m(t) may be a piece of music; its
spectrum occupies frequencies below 20 KHz.

> For transmission by an AM radio station this spectrum must
be moved to approximately 1 MHz.

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis
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Amplitude Modulation

» Conventional amplitude modulation proceeds in two steps:
1. A constant A is added to m(t) such that A+ m(t) > 0 for all
t.
2. The sum signal A+ m(t) is multiplied by a sinusoid
cos(2rtfet), where f; is the radio frequency assigned to the
station.

» Consequently, the transmitted signal has the form:

x(t) = (A+ m(t)) - cos(2rtfst).
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Amplitude Modulation

v

We are interested in the spectrum of the AM signal.
» However, we cannot compute X(f) for arbitrary message
signals m(t).
> For the special case m(t) = cos(27tfut) we can find the
spectrum.
» To mimic the radio case, f;, would be a frequency in the
audible range.
> As before, we will first need to express the AM signal x(t)
as a sum of sinusoids.
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Amplitude Modulated Signal
» For m(t) = cos(27tfmt), the AM signal equals
x(t) = (A+ cos(27tfmt)) - cos(2mfet).

» This simplifies to

x(t) = A cos(2mtfst) + cos(27tfmt) - cos(27fet).
» Note that the second term of the sum is a beat notes signal

with frequencies f,, and f..

» We know that beat notes can be written as a sum of

sinusoids with frequencies equal to the sum and difference
of f,, and f;:

x(t) = A- cos(2rtfot) + 5 cos(2a(fe + fm)t) +  cos(2t(fe — F)1).
2 2 Mo

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis
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Spectrum of Amplitude Modulated Signal

» The AM signal is given by

1
x(t) = A-cos(27st) + % cos(271(fo + f)1) + g cos(@(fe — fm)1).

» Thus, its spectrum is

X(H)={ (§.%).(§ 1)
(3. fe+ fm), (G —fo = fmn), (5. o — Tm), (5, —Tc + fm) }

Bl=oI>

ECE 201: Intro to Signal Analysis
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Spectrum of Amplitude Modulated Signal
For A= 2, fm = 50, and fc = 400, the spectrum of the AM
signal is plotted below.
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Spectrum of Amplitude Modulated Signal
> ltis interesting to compare the spectrum of the signal

before modulation and after multiplication with cos(27tft).

» The signal s(t) = A+ m(t) has spectrum

S() = {(A.0). (3.50). (3. ~50)}.

» The modulated signal x(t) has spectrum

X(f) = { (4,400), (5, —400),
(3.450), (3, —450), (},350), (3, —350)}

» Both are plotted on the next page.

ECE 201: Intro to Signal Analysis
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Spectrum before and after AM
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Spectrum before and after AM

» Comparison of the two spectra shows that amplitude
modulation indeed moves a spectrum from low frequencies
to high frequencies.

» Note that the shape of the spectrum is precisely preserved.

» Amplitude modulation can be described concisely by
stating:

> Half of the original spectrum is shifted by f; to the right, and
the other half is shifted by f; to the left.

» Question: How can you get the original signal back so that
you can listen to it.

» This is called demodulation.
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Lecture: Periodic Signals
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Periodic Signals

What are Periodic Signals?

> A signal x(t) is called periodic if there is a constant Ty
such that
x(t) = x(t+ Tp) for all t.

» In other words, a periodic signal repeats itself every Ty

seconds.
» The interval Ty is called the fundamental period of the

signal.
» The inverse of Ty is the fundamental frequency of the

signal.
» Example:

» A sinusoidal signal of frequency f is periodic with period
To=1/f. Magss
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Harmonic Frequencies

» Consider a sum of sinusoids:

N
x(t) = Ay + Y Ajcos(2mfit + ¢;).

i=1

> A special case arises when we constrain all frequencies f;
to be integer multiples of some frequency fy:

fi=i-fy.
» The frequencies f; are then called harmonic frequencies of
fo.

» We will show that sums of sinusoids with frequencies that
are harmonics are periodic. MASON

nnnnnnnnnn
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Harmonic Signals are Periodic

» To establish periodicity, we must show that there is Ty such
x(t) =x(t+ To).
» Begin with

x(t+Ty) = Ao+ YN, A cos(2rfi(t+ To) + i)
= Ao+ YN, Aicos(2mfit + 27fi Ty + ;)

» Now, let fy = 1/ Ty and use the fact that frequencies are
harmonics: f; =i - f,.
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Harmonic Signals are Periodic
» Then, f;- To =i-fy- Ty = i and hence

x(t+To) = Ao+ XN, A cos(2rfit+ 27fi Ty + ¢;)
= Ao+ YN, A cos(2rfit 4+ 27i + ;)

» We can drop the 27t/ terms and conclude that
x(t+ To) = x(t).
» Conclusion: A signal of the form

N
x(t) = Ag+ Y _ Ajcos(27i - ot + ;)

i=1

is periodic with period Ty = 1/1f.
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Finding the Fundamental Frequency
» Often one is given a set of frequencies fi, f, ..., fy and is
required to find the fundamental frequency f;.
» Specifically, this means one must find a frequency f, and
integers ny, no, ..., ny such that all of the following
equations are met:

f1 = n1'fo
b = nm-f

In = ny-fo

» Note that there isn’t always a solution to the above
problem.
> However, if all frequencies are integers a solution exists. =
> Even if all frequencies are rational a solution exists. MASN
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Example
» Find the fundamental frequency for the set of frequencies
fi =12, f = 27, f; = 51.
» Set up the equations:

12 = ny- fo
27 = no- fo
519 = n3- fo

» Try the solution ny = 1; this would imply fy = 12. This
cannot satisfy the other two equations.
» Try the solution ny = 2; this would imply fy = 6. This
cannot satisfy the other two equations.
> Try the solution ny = 3; this would imply fy = 4. This
cannot satisfy the other two equations.
» Try the solution ny = 4; this would imply f, = 3. This can pfzss

ne other two equations with - =9 and n: =
ECE 201: Intro to Signal Analysis



Example
» Note that the three sinusoids complete a cycle at the same
time at To = 1/f0 =1/3s.




Periodic Signals
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A Few Things to Note

» Note that the fundamental frequency f, that we determined
is the greatest common divisor (gcd) of the original
frequencies.

> fy=3isthegcdof fiy =12, £, = 27, and f3 = 51.

» The integers n; are the number of full periods (cycles) the
sinusoid of fregency f; completes in the fundamental period
To=1/h.

> Forexample,ny =f;-To=1f-1/fy = 4.
» The sinusoid of frequency f; completes ny = 4 cycles
during the period Ty.
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Exercise

» Find the fundamental frequency for the set of frequencies
fi=21f(=385f=>5.
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Fourier Series
» We have shown that a sum of sinusoids with harmonic
frequencies is a periodic signal.
» One can turn this statement around and arrive at a very
important result:
Any periodic signal can be expressed as a sum of
sinusoids with harmonic frequencies.

» The resulting sum is called the Fourier Series of the signal.
» Put differently, a periodic signal can always be written in

the form
x(t) = Ao+ XN, A cos(2mifyt + ¢;)
= Xo+ XN, XelPriht 4 Xxei2miht

with Xo = Ag and X; = 2 e/, Masss

nnnnnnnnnn
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Fourier Series

» For a periodic signal the complex amplitudes X; can be
computed using a (relatively) simple formula.

» Specifically, for a periodic signal x(t) with fundamental
period Ty the complex amplitudes X; are given by:

1

Xi=3

To -
/ x(t) - e /2mit/ Togt,
(0]

> Note that the integral above can be evaluated over any
interval of length Ty.
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Example: Square Wave

» A square wave signal is periodic and between t = 0 and
t = Ty it equals

1 0<t<D
x(t) = - 2
() {—1 h<t<Ty

» From the Fourier Series expansion it follows that x(t) can
be written as

x(t)= Y ﬁ cos(2rt(2n— 1)1t — 71/2)

n=0
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25-Term Approximation to Square Wave

25
4
= —_— 2rr(2n—1)ft — /2
x(t) r;) (2n_1)ncos( 7 ( Vit —1t/2)
15 i i i i i Dﬁgoncz

Time (s)
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Limitations of Sum-of-Sinusoid Signals
» So far, we have considered only signals that can be written
as a sum of sinusoids.

N
X(t) = Ay + Z A; COS(27‘L’f,'t + (P,)
i=1
» For such signals, we are able to compute the spectrum.
» Note, that signals of this form
» are assumed to last forever, i.e., for —co < t < o0,
> and their spectrum never changes.
» While such signals are important and useful conceptually,
they don’t describe real-world signals accurately.
» Real-world signals

> are of finite duration, Z o
> their spectrum changes over time. MESGR
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Musical Notation

» Musical notation (“sheet music”) provides a way to
represent real-world signals: a piece of music.
> As you know, sheet music
> places notes on a scale to reflect the frequency of the tone
to be played,
> uses differently shaped note symbols to indicate the
duration of each tone,
> provides the order in which notes are to be played.
» In summary, musical notation captures how the spectrum
of the music-signal changes over time.
» We cannot write signals whose spectrum changes with
time as a sum of sinusoids.
> A static spectrum is insufficient to describe such signals.

. . /GEORGE
» Alternative: time-frequency spectrum MAs6N
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Example: Musical Scale

Note C D E F G A B C
Frequency (Hz) || 262 | 294 | 330 | 349 | 392 | 440 | 494 | 523

Table: Musical Notes and their Frequencies
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Example: Musical Scale
> If we play each of the notes for 250 ms, then the resulting
signal can be summarized in the time-frequency spectrum
below.

550

500

Frequency
» IS
s &
3 3

@
a
S

300

250 i H H H H H H H H Z
0 02 04 06 08 1 12 14 16 18 2 mismwz

Time(s)
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MATLAB Spectrogram Function

» MATLAB has a function spect rogram that can be used to
compute the time-frequency spectrum for a given signal.

> The resulting plots are similar to the one for the musical
scale on the previous slide.
» Typically, you invoke this function as
spectrogram( xx, 256, 128, 256,
fs, yaxis’),
where xx is the signal to be analyzed and £s is the
sampling frequency.
» The spectrogram for the musical scale is shown on the
next slide.
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Spectrogram: Musical Scale

» The color indicates the magnitude of the spectrum at a
given time and frequency.
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Chirp Signals
» Obijective: construct a signal such that its frequency
increases with time.
> Starting Point: A sinusoidal signal has the form:

x(t) = Acos(2rtfyt + ¢).

» We can consider the argument of the cos as a time-varying
phase function
‘P(t) = 27'[f0t+ 47
» Question: What happens when we allow more general
functions for ¥ (t)?
» For example, let

Y (t) = 700712 4 4407t + ¢. Masss:
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Spectrogram: cos(‘¥(t))
» Question: How is he time-frequency spectrum related to
F(t)?
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Instantaneous Frequency

» For a regular sinusoid, ¥ (t) = 2ntfyt + ¢ and the frequency
equals fy.

» This suggests as a possible relationship between ¥ (t) and
o 1 d

fo = EE‘F(:‘).

> |f the above derivative is not a constant, it is called the
instantaneous frequency of the signal, f;(t).

» Example: For ¥(t) = 7007t? + 4407t + ¢ we find

fi(t) = —dg(?oom‘2 + 4407t + ¢) = 700t 4 220.

> This describes precisely the red line in the spectrogramon _ =
the previous slide. S0 N
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Constructing a Linear Chirp

> Obijective: Construct a signal such that its frequency is
initially f; and increases linear to £, after T seconds.

» Solution: The above suggests that

fi(t) =

fb—fi
T t+fi.
> Consequently, the phase function ¥ (t) must be

¥(t) = 271%t2 +2nfit+ ¢

> Note that ¢ has no influence on the spectrum; it is usually
setto 0. Masss
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Constructing a Linear Chirp

» Example: Construct a linear chirp such that the frequency
decreases from 1000 Hz to 200 Hz in 2 seconds.

» The desired signal must be

x(t) = cos(—27200t? + 271000t).
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Exercise

» Construct a linear chirp such that the frequency increases
from 50 Hz to 200 Hz in 3 seconds.

» Sketch the time-frequency spectrum of the following signal

x(t) = cos(27t500t 4 100 cos(2712t))
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Signal Operations in the Frequency Domain

> Signal processing implies that we apply operations to
signals; Examples include:
> Adding two signals
» Delaying a signal
> Multiplying a signal with a complex exponential signal
» Question: What does each of these operation do the
spectrum of the signal?
> We will answer that question for some common signal
processing operations.
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Scaling a Signal
> Let x(t) be a signal with spectrum X(f) = {(Xp, fa) } n.
> Question: If c is a scalar constant, what is the spectrum of
the signal y(t) = c- x(t)?
» Since
x(t) =Y X, it
n

y(t)=c-x(t) =Y c- X, &t

» Therefore,
Y(f) = {(C - Xn, fn)}n-

> We use the short-hand Y (f) = c¢- X(f) to denote p
{(c- Xn, fn)}n. MESN
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Adding Two Signals
> Let x(t) and y(t) be signals with spectra X(f) and Y (f).
» Question: What is the spectrum of the signal
z(t) = x(t) +y(1)?
» Since

2(t) = x() + Y(1) = ¥ Xo- 2701 4 T ¥, 270
Z(f) ={(Xn+ Yn. fa) }n.

> We use the short-hand Z(f) = X(f) + Y(f) to denote
{(Xn+ Yn. )}
» Example: What is the spectrum Z(f) when signals with
spectra X(f) = {(3,0),(1,1),(1,-1),(2,2),(2,-2)} and
Y(f) = {(i1), (=, —1).(1,3),(1,-3)} are added? ~ MASoK
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Delaying a Signal
> Let x(t) be a signal and X(f) = {(Xp, f,) } » denotes its
spectrum.
» Question: What is the spectrum of the signal

y(t)=x(t—1)?
» Since

y(t) — X(t _ T) — an . e/'27rfn(t—1') — ane—jZanT i e/'27'(fnt
n n

it follows that
Y(f) = {(Xne 27 f1) }n.

> Notice that delaying a signal induces phase shifts in the

spectrum
» The phase shifts are proportional to the delay T and the DﬁSN
frequencies fj,.
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Delaying a Signal — Example

» Example: What is the spectrum Y(f) when the signal with
spectrum X(f) = {(3,0),(1,1),(1,—1),(2,2),(2,-2)} is
shifted by T = }?

> Answer:

Y(f) ={3,0). (=, 1).(.—1).(=2.2), (-2, -2)}
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Multiplying by a Complex Exponential
> Let x(t) be a signal and X(f) = {(c- Xp, f») } » denotes its
spectrum.
» Question: What is the spectrum of the signal
y(t) = x(t) - o272
» Since

y(t) = x(t) - &2t = an.e/Qm‘,,t . g2t — Y X, g2 (fn+fo)t
n n

it follows that
Y(f) — {Xn, fn + fc}

> Notice that the entire spectrum is shifted by £, i.e.,
Y(f) = X(f+fc).

> Notice the “symmetry” with the time delay operation —this_~_
is called duality. MESGN
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Exercise: Spectrum of AM Signal

» We discussed that amplitude modulation processess a
message signal to produce the transmitted signal s(t):

s(t) = (A+ m(t)) - cos(2rtfet).

> Assume that the spectrum of m(t) is M(f).

» Question: Use the Spectrum Operations we discussed to
express the spectrum S(f) in terms of M(f).

» Answer:
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Sampling of Signals
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Sampling and Discrete-Time Signals

» MATLAB, and other digital processing systems, can not
process continuous-time signals.

> Instead, MATLAB requires the continuous-time signal to be
converted into a discrete-time signal.

» The conversion process is called sampling.

» To sample a continuous-time signal, we evaluate it at a
discrete set of times t, = nTg, where
> nis ainteger,
> Tsis called the sampling period (time between samples),
> fs = 1/Tsis the sampling rate (samples per second).
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Sampling and Discrete-Time Signals

» Sampling results in a sequence of samples
x(nTs) = A-cos(2rfnTs + ¢).

» Note that the independent variable is now n, not t.
» To emphasize that this is a discrete-time signal, we write

x[n] = A-cos(2rtfnTs + ¢).

» Sampling is a straightforward operation.

» We will see that the sampling rate fs must be chosen with
care!
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Sampled Signals in MATLAB

> Note that we have worked with sampled signals whenever
we have used MATLAB.

» For example, we use the following MATLAB fragment to
generate a sinusoidal signal:

100;
0:1/fs:3;
5xcos (2+xpix2xtt + pi/4);

fs
tt
XX

» The resulting signal xx is a discrete-time signal:
» The vector xx contains the samples, and
> the vector tt specifies the sampling instances:
0,1/f,2/fs, ..., 3.
» We will now turn our attention to the impact of the sampling
rate fs. Masss
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Example: Three Sinuoids

» Obijective: In MATLAB, compute sampled versions of
three sinusoids:
1. x(t) = cos(2mt + 7t /4)
2. x(t) = cos(2m9t — 7t/ 4)
3. x(t) = cos(2mt11t+ 7t/4)

» The sampling rate for all three signals is s = 10.
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MATLAB code

plot_SamplingDemo - Sample three sinusoidal signals to
demonstrate the impact of sampling

de oo

%% set parameters
fs = 10;
dur = 10;

%% generate signals

tt = 0:1/fs:dur;

xx1l = cos (2xpixtt+pi/4);
xx2 = €Oos (2xpix9xtt-pi/4);
xX3 = cos (2xpix1llxtt+pi/4);

%% plot

plot (tt,xx1,’:0’,tt,xx2," :x",tt,xx3,":+");

xlabel (' Time_ (s)’)

grid

legend ('’ £=1',’£=9’,’ £=11',’Location’,’EastOutside’) Diﬁ?"“
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Resulting Plot
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What happened?

» The samples for all three signals are identical: how is that
possible?
> |s there a “bug” in the MATLAB code?
> No, the code is correct.
» Suspicion: The problem is related to our choice of
sampling rate.

> To test this suspicion, repeat the experiment with a different
sampling rate.

> We also reduce the duration to keep the number of samples
constant - that keeps the plots reasonable.
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MATLAB code

plot_SamplingDemoHigh - Sample three sinusoidal signals to
demonstrate the impact of sampling

de oo

%% set parameters
fs = 100;
dur = 1;

%% generate signals

tt = 0:1/fs:dur;

cos (2+pixtt+pi/4);
XX2 cos (2+pix9+tt-pi/4);
xx3 = cos (2xpixllxtt+pi/4);

xx1

%% plots
plot (tt,xx1,’—*’,tt,xx2,’ -x",tt,xx3, ' -+", ...
tt(l:10:end), xx1(1:10:end),’ok’);
grid
xlabel (' Time_(s)’) y
legend (' f=1’,’£=9’,’£=11",’f_s=10',’Location’,’EastOutside’) b{X?"“

©2009-2019, i to Signal Analysis



Introduction to Sampling
O0000e

Resulting Plot
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The Influence of the Sampling Rate

» Now the three sinusoids are clearly distinguishable and
lead to different samples.

» Since the only parameter we changed is the sampling rate
fs, it must be responsible for the ambiguity in the first plot.
> Notice also that every 10-th sample (marked with a black
circle) is identical for all three sinusoids.
> Since the sampling rate was 10 times higher for the second
plot, this explains the first plot.
> |t is useful to investigate the effect of sampling
mathematically, to understand better what impact it has.
» To do so, we focus on sampling sinusoidal signals.
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Sampling a Sinusoidal Signal

» A continuous-time sinusoid is given by
x(t) = Acos(2rtft + ¢).

» When this signal is sampled at rate fs, we obtain the
discrete-time signal

x[n] = Acos(27tfn/fs + ¢).

> Itis useful to define the normalized frequency #; = f—'; S0
that A
x[n] = Acos(27tfyn+ ¢).
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Three Cases

» We will distinguish between three cases:
1. 0 < f; < 1/2 (Oversampling, this is what we want!)
2. 1/2 < f; < 1 (Undersampling, folding)
3. 1 < f; < 3/2 (Undersampling, aliasing)
» This captures the three situations addressed by the first
example:
1. f=1,f=10=F=1/10
2. f=9,f=10=f;=9/10
3. f=11,fs=10=1y =11/10

» We will see that all three cases lead to identical samples.
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Oversampling

» When the sampling rate is such that 0 < f; < 1/2, then
the samples of the sinusoidal signal are given by

x[n] = Acos(2ttyn + ).

» This cannot be simplified further.
> It provides our base-line.
» Oversampling is the desired behaviour!
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Undersampling, Aliasing

» When the sampling rate is such that 1 < f; < 3/2, then we
define the apparent frequency f; = fy — 1.

> Noticethat0 < f, < 1/2and fy = 5+ 1.
» Forf=11,fs=10=f; =11/10 = f, = 1/10.
» The samples of the sinusoidal signal are given by

X[n] = ACOS(27T?dn + 4)) = ACOS(27T(1 + ,fa)n + (P)
» Expanding the terms inside the cosine,
x[n] = Acos(27tfan +27tn + ¢) = Acos(27fan + )

> Interpretation: The samples are identical to those from a
sinusoid with frequency f = f, - fs and phase ¢.

nnnnnnnnnn
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Undersampling, Folding
» When the sampling rate is such that 1/2 < f; < 1, then we
introduce the apparent frequency f.=1—f;; again
O<fa<1/2alsofd_1—fa R
> Forf=09, fs_10:fd_9/10:fa:1/10.
» The samples of the sinusoidal signal are given by
x[n] = Acos(2rtfyn+ ¢) = Acos(2t(1 — f)n + ¢).
» Expanding the terms inside the cosine,
x[n] = Acos(—2mtan + 27tn + ¢) = Acos(—27fan + ¢)
» Because of the symmetry of the cosine, this equals
x[n] = Acos(27tfan — ¢).
> Interpretation: The samples are identical to those from a
smusmd with frequency f = 7, - f; and phase —¢ (phase ~MASON

uuuuuuuuuu
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Sampling Higher-Frequency Sinusoids
» For sinusoids of even higher frequencies f, either folding or
aliasing occurs.
> As before, let f; be the normalized frequency f/fs.
» Decompose 7, into an integer part N and fractional part fo.
» Example: If 7, is 5.7 then N equals 5 and fpis 0.7.
> Notice that 0 < f, < 1, always.
» Phase Reversal occurs when the phase of the sampled
sinusoid is the negative of the phase of the
continuous-time sinusoid.
» We distinguish between
> Folding occurs when f, > 1/2. Then the apparent
frequency f, equals 1 — fo and phase reversal occurs.
> Aliasing occurs when f, < 1/2. Then the apparent p,
frequency is f, = fp; no phase reversal occurs. M\SN
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Examples

» For the three sinusoids considered earlier:
1. f=1,¢=n/41f=10=F =1/10
2. f=9,¢=—m/4,f;=10=F; =9/10
3. f=11,p=m/4,fs=10=f; =11/10
> The first case, represents oversampling: The apparent
frequency f; = fy and no phase reversal occurs.
> The second case, represents folding: The apparent f,
equals 1 — fy and phase reversal occurs.
> In the final example, the fractional part of f; = 1/10.

Hence, this case represents alising; no phase reversal
occurs.
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Exercise
The discrete-time sinusoidal signal

x[n] = 5cos(2710.2n — %).

was obtained by sampling a continuous-time sinusoid of the
form
x(t) = Acos(2rtft + ¢)
at the sampling rate f; = 8000 Hz.
1. Provide three different sets of paramters A, f, and ¢ for the
continuous-time sinusoid that all yield the discrete-time
sinusoid above when sampled at the indicated rate. The
parameter f must satisfy 0 < f < 12000 Hz in all three
cases.
2. For each case indicate if the signal is undersampled or Misas

oversampled and if aliasing or folding occurred. v
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Experiments

» Two experiments to illustrate the effects that sampling
introduces:
1. Sampling a chirp signal.
2. Sampling a rotating phasor.

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis



Introduction to Sampling

000000000 0e00000000

Experiment: Sampling a Chirp Signal

> Obijective: Directly observe folding and aliasing by means
of a chirp signal.
» Experiment Set-up:
» Set sampling rate. Baseline: f; = 44.1KHz (oversampled),
Comparison: fs = 8.192KHz (undersampled)
» Generate a (sampled) chirp signal with instantaneous
frequency increasing from 0 to 20KHz in 10 seconds.
» Evaluate resulting signal by
> playing it through the speaker,
> plotting the periodogram.

» Expected Outcome?
» Expected Outcome:

> Directly observe folding and aliasing in second part of p
experiment. Masss

uuuuuuuuuu
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Periodogram of undersampled Chirp
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%% Parameters
fs = 8192; % 44.1KHz for oversampling, 8192 for undersampling

% chitp: 0 to 20KHz in 10 seconds

fstart = 0;
fend = 20e3;
dur = 10;

%% generate signal

tt = 0:1/fs:dur;
psi = 2xpix (fend-fstart)/ (2xdur)*tt.”2; % phase function
XX = cos (psi);

%% spectrogram
spectrogram( xx, 256, 128, 256, fs,’yaxis’);

%% play sound
soundsc ( xx, fs);
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Apparent and Normalized Frequency
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Experiment: Sampling a Rotating Phasor

» Objective: Investigate sampling effects when we can
distinguish between positive and negative frequencies.
» Experiment Set-up:
> Animation: rotating phasor in the complex plane.
» Sampling rate describes the number of “snap-shots” per
second (strobes).

» Frequency the number of times the phasor rotates per
second.

> positive frequency: counter-clockwise rotation.
> negative frequency: clockwise rotation.
» Expected Outcome?
» Expected Outcome:
» Folding: leads to reversal of direction.
> Aliasing: same direction but apparent frequency is lower =
than true frequency. Mas

uuuuuuuuuu
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True and Apparent Frequency

fs - 20
True Frequency -05(0|05]19.5| 20 | 20.5
Apparent Frequency | -05 |0 [ 05| -05 | 0 | 0.5

> Note, that instead of folding we observe negative
frequencies.
» occurs when true frequency equals 9.5 in above example.
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%% parameters

fs = 10; % sampling rate in frames per second
dur = 10; % signal duration in seconds

ff = 9.5; & frequency of rotating phasor

phi = 0; % initial phase of phasor

A =1; % amplitude

29

%% Prepare for plot
TitleString = sprintf ('Rotating _Phasor: f_d = _%5.2f',
figure (1)

% unit circle (plotted for reference)
cc = exp(1jx2xpix(0:0.01:1));

ccx Axreal (cc);

cci = Aximag(cc);

ff/fs);
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%% Animation
for tt = 0:1/fs:dur
tic; % establish time-reference
plot (ccx, cci, "', ...
[0 Axcos (2xpixffxtt+phi)], [0 Axsin(2xpixffxtt+phi)], ’-ob’);
axis (' square’)
axis([-A A -A A]);
title(TitleString)
xlabel ('Real’)
ylabel (' Imag’)
grid on;

o

drawnow % force plots to be redrawn
te = toc;

% pause until the next sampling instant, if possible
if ( te < 1/fs)

pause (1/fs-te)
end
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Lecture: The Sampling Theorem
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The Sampling Theorem
» We have analyzed the relationship between the frequency
f of a sinusoid and the sampling rate f.
» We saw that the ratio f/fs must be lessthan 1/2, i.e.,
fs > 2 - f. Otherwise aliasing or folding occurs.
» This insight provides the first half of the famous sampling
theorem

A continuous-time signal x(t) with frequencies no higher
than fnax can be reconstructed exactly from its samples
x[n] = x(nTs), if the the samples are taken at a rate

fs = 1/ T that is greater than 2 - fax.

V.

> This very import result is attributed to Claude Shannonand _

GEORGE

Harry Nyquist. ~— [JIASON
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Reconstructing a Signal from Samples

» The sampling theorem suggests that the original
continuous-time signal x(t) can be recreated from its
samples x[n].

> Assuming that samples were taken at a high enough rate.
> This process is referred to as reconstruction or D-to-C
conversion (discrete-time to continuous-time conversion).

» In principle, the continous-time signal is reconstructed by
placing a suitable pulse at each sample location and
adding all pulses.

» The amplitude of each pulse is given by the sample value.
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Suitable Pulses

» Suitable pulses include
» Rectangular pulse (zero-order hold):

1 for—Ts/2<t< Ts/2
p(t) = { 0 else.

> Triangular pulse (linear interpolation)

1—t/Tg for0<t<T;g
0 else.

1+t/Tg for—Ts<t<0
p(t) =
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Reconstruction

» The reconstructed signal X(t) is computed from the
samples and the pulse p(t):

[ee]

x(t)y=Y_ x[n]-p(t—nTs).
n=-—oo
» The reconstruction formula says:

> place a pulse at each sampling instant (p(t — nTs)),
> scale each pulse to amplitude x[n],
> add all pulses to obtain the reconstructed signal.
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Ideal Reconstruction
» Reconstruction with the above pulses will be pretty good.
> Particularly, when the sampling rate is much greater than
twice the signal frequency (significant oversampling).
» However, reconstruction is not perfect as suggested by the
sampling theorem.
» To obtain perfect reconstruction the following pulse must

be used:
_sin(mt/ Ts)

» This pulse is called the sinc pulse.
» Note, that it is of infinite duration and, therefore, is not

practical.
> In practice a truncated version may be used for excellent _ =
reconstruction. MASoR
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The sinc pulse
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Analysis



Part V

Introduction to Lineatr,
Time-Invariant Systems
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Lecture: Introduction to Systems and FIR filters

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis



Systems
[ ]

Systems
> A system is used to process an input signal x[n] and
produce the ouput signal y[n.
> We focus on discrete-time signals and systems;
> a correspoding theory exists for continuous-time signals
and systems.

» Many different systems:
> Filters: remove undesired signal components,
» Modulators and demodulators,
> Detectors.

XN ——  system —— yIn]
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Representative Examples

» The following are examples of systems:
> Squarer: y[n] = (x[n])?;
> Modulator: y[n] = x[n] cos(27rfdn);
> Averager: y[n| = Mzk 0 ! x[n— k];
> FIR Filter: y[n] = Y, bxx[n — k|
» In MATLAB, systems are generally modeled as functions
with x[n] as the first input argument and y[n] as the output
argument.

» Example: first two lines of function implementing a squarer.

function yy = squarer (xx)
% squarer - output signal is the square of the input signal
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Squarer

» System relationship between input and output signals:

» Example: Input signal: x[n] = {1,2,3,4,3,2,1}
> Notation: x[n] = {1,2,3,4,3,2,1} means
x[0]=1,x[1]=2,..., x[6] = 1;
all other x[n] = 0.

» Output signal: y[n] = {1,4,9,16,9,4,1}.
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Modulator

» System relationship between input and output signals:
yln] = (x[n]) - cos(2fyn);

where the modulator frequency fy is a parameter of the
system.
» Example:
> Input signal: x[n] = {1,2,3,4,3,2,1}
> assume fy = 0.5, i.e., cos(2rtfyn) = {..., 1,—-1,1,—-1,...}.

» Output signal: y[n] = {1,-2,3,-4,3,-2,1}.
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Averager

» System relationship between input and output signals:

yln = MZk ox[n_k]
= M ~(x[n)+x[n—=1]+...+x[n— (M —1)])
= Lilo m-xln—kl

» This system computes the sliding average over the M most
recent samples.
» Example: Input signal: x[n] = {1,2,3,4,3,2,1}
» For computing the output signal, a table is very useful.
» synthetic multiplication table.
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General FIR Filter

» The M-point averager is a special case of the general FIR
filter.

» FIR stands for Finite Impulse Response; we will see what
this means later.
> The system relationship between the input x[n] and the
output y[n] is given by

M-

yln] = 21 by - x[n— K.
k=0

> M is the number of filter coefficients.
» M — 1 is called the order of the filter.
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General FIR Filter

» System relationship:

M-1

y[n =) bx-x[n—k].
k=0

» The filter coefficients by determine the characteristics of
the filter.

» Much more on the relationship between the filter
coefficients by and the characteristics of the filter later.
> Clearly, with b, = 4; for k =0,1,..., M — 1 we obtain the
M-point averager.
» Again, computation of the output signal can be done via a
synthetic multiplication table. P
> Example: x[n] = {1,2,3,4,3,2,1} and b, = {1, —2,1}. MAS6N

nnnnnnnnnn
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FIR Filter (bx = {1, —2,1})

n 1 0 1 2 3 4 5 6 7 8
x[n] 01 2 3 4 3 2 1 00
1-x[n] 0 1 2 3 4 3 2 1 0 0

—2.x[n-1]0 0 2 -4 6 -8 6 -4 2 0

+1-x[n—-2]|0 0 0 1 2 3 4 3 2 1
y[n] O 1 0 0 0 2 0 0 0 {1

» y[n]={1,0,0,0,—-2,0,0,0,1}
» Note that the output signal y[n] is longer than the input

signal x[n].
» Note, synthetic multiplication works only for short,
finite-duration signal. Masss
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Exercise

1. Find the output signal y[n] for an FIR filter

M-1

yinl = Y be-x[n— k|
k=0

with filter coefficients by = {1, —1, 2} when the input signal
isx[n] ={1,2,4,2,4,2,1}.
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Unit Step Sequence and Unit Step Response
» The signal with samples

uln] = 1 forn>0,
10 forn<O

is called the unit-step sequence or unit-step signal.

» The output of an FIR filter when the input is the unit-step
signal (x[n] = u[n]) is called the unit-step response r[n].

uml ———  FIRFiter —— "]
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Unit-Step Response of the 3-Point Averager

» Input signal: x[n] = u[n].
> Output signal: r[n] = £ Y%_, u[n— k|.

10 1 2 3

[n] 0o 1 1 1 1

fulal [0 4T
~|—3u[ —1]/0 0 3 % =
+suln—2]/0 0 0 3 2
rlnf] o % 5 1 1
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Unit-Impulse Sequence and Unit-Impulse Response
» The signal with samples

5] = 1 forn=0,
1 0 forn#0

is called the unit-impulse sequence or unit-impulse signal.
» The output of an FIR filter when the input is the
unit-impulse signal (x[n] = é[n]) is called the unit-impulse
response, denoted h|n.
> Typically, we will simply call the above signals simply
impulse signal and impulse response.
» We will see that the impulse-response captures all
characteristics of a FIR filter.
> This implies that impulse response is a very important
concept!  JASON
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Unit-Impulse Response of a FIR Filter

» Input signal: x[n] = é[n].
» Output signal: h[n] = YV bkd[n — K].

n|-1 1 2 3 M

snf|o 1 0 0 0 0

bo-o[n] |0 by O 0 O 0
+by-5[n—1]0 0 b 0 O 0
+b-6[n—2]|0 0 0 b, O 0
+by-6np-M |0 O O O 0 . bum
h[n 0 bo b1 b2 b3 . bM
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Important Insights

» For an FIR filter, the impulse response equals the
sequence of filter coefficients:

[ by forn=0,1,..., M —1
h[n]_{ 0 else.

» Because of this relationship, the system relationship for an
FIR filter can also be written as

ylnl = T bexln— K
ko hlkIx[n— K]

= Y™ hik]x[n— k].

» The operation y[n] = h[n] x x[n] = Y=, h[k]x[n— k] is
called convolution; it is a very, very important operation. MAS6N
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Exercise

1. Find the impulse response h[n] for the FIR filter with
difference equation

y[n] =2-x[n] + x[n—1] =3 x[n—3].
2. Compute the output signal, when the input signal is
x[n] = u[n].

3. Compute the output signal, when the input signal is
x[n] = exp(—an) - u[n].
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Lecture: Linear, Time-Invariant Systems
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Linear, Time-invariant Systems

Introduction

» We have introduced systems as devices that process an
input signal x[n] to produce an output signal y[n].
» Example Systems:
> Squarer: y[n] = (x[n])?
> Modulator: y[n] = x[n] - cos(27tfyn), with 0 < fy < J.
> FIR Filter:

M-1
yln] =Y hlk]-x[n— K].
k=0

Recall that h[k] is the impulse response of the filter and that
the above operation is called convolution of h[n] and x|n].
» Objective: Define important characteristics of systems
and determine which systems possess these
characteristics. MASON
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Causal Systems

» Definition: A system is called causal when it uses only the
present and past samples of the input signal to compute
the present value of the output signal.

» Causality is usually easy to determine from the system
equation:

> The output y[n] must depend only on input samples
x[n],x[n—1],x[n—2],....
» Input samples x[n+ 1], x[n+ 2], ... must not be used to
find y[n].
» Examples:
> All three systems on the previous slide are causal.
» The following system is non-causal:

1
vl =5 X xln K =

(x[n+ 1]+ x[n] + x[n —1]).

w| =
Z,
2
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Linear Systems

» The following test procedure defines linearity and shows
how one can determine if a system is linear:
1. Reference Signals: For i = 1,2, pass input signal x;[n]
through the system to obtain output y;[n].
2. Linear Combination: Form a new signal x[n] from the
linear combination of x1[n] and xx[n]:

X[ = xy[n] + X[,

Then, Pass signal x[n] through the system and obtain y|n].
3. Check: The system is linear if

y[n] = y1[n] + yz[n]

» The above must hold for all inputs x;[n] and xz[n]. P
» For a linear system, the superposition principle holds. MaSoR
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[llustration
x1[N] Svet y1[n]
ystem —l
D y(n]
Xo[ 1] yo[n] }
System These two outputs
must be identical

x1[n] ]

x[n

%5 System s

Xg[n
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Example: Squarer

» Squarer: y[n] = (x[n])?
1. References: y;[n] = (x;[n])? fori=1,2.
2. Linear Combination: x[n] = xy[n] 4+ x2[n] and

(x[n])2 = (x4[n] + x2[n])?
(x1[n))2 + (%2[n])? 4 2x¢ [n] x2[n].

y[n]

3. Check:

yIn] # yi[n] + ya[n] = (x1[n])? + (xa[n])?.

» Conclusion: not linear.
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Example: Modulator

» Modulator: y[n] = x[n] - cos(27tfyn)
1. References: y;[n] = x;[n] - cos(27tfyn) for i =1,2.
2. Linear Combination: x[n] = xq[n] + x2[n] and

x[n] - cos(27tfyn)
(x1[n] + x2[n]) - cos(27tfyn).

y[n]

3. Check:

y[n] = y1[n] + yo[n] = x1[n] - cos(27tfyn) + Xa[n] - cos(27tfyn).

» Conclusion: linear.

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis



Linear, Time-invariant Systems

[e]o]e]e] }

Example: FIR Filter

> FIR Filter: y[n] = YV hk] - x[n — k]

1. References: y,-[ ] ZM o h[k] - x;[n— k] for i = 1,2.
2. Linear Combination: x[ ] = Xq[n] + x2[n] and

Y ik xin— ] = zh (a1 [n— K] 4+ xo[n— K)).
k=0

3. Check:
M—1 M—1
y[nl = yi[n]+ya[n] = Y hk]-xq[n—k]+ )_ hlK]-xo[n—k].
k=0 k=0
» Conclusion: linear. £
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Time-invariance
» The following test procedure defines time-invariance and
shows how one can determine if a system is time-invariant:

1. Reference: Pass input signal x[n] through the system to
obtain output y[n].

2. Delayed Input: Form the delayed signal x4[n] = x[n — ng].
Then, Pass signal x4[n] through the system and obtain
Yalnl.

3. Check: The system is time-invariant if

y[n—no] = yq[n]

> The above must hold for all inputs x[n] and all delays n.
> Interpretation: A time-invariant system does not change,
over time, the way it processes the input signal. ~~ [/1ASON
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y[n — no]

N\

These two outputs
must be identical

lllustration
X System au Delay ng
X1n] Delay ng x[n = o) System

i

Yl
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Example: Squarer

> Squarer: y[n] = (x[n])?

. Reference: y[n] = (x[n]).
2 Delayed Input: x4[n] = x[n — ng] and

yaln] = (xq[n])? = (x[n— no])2.

3. Check:
yln—ng] = (x[n— ng))? = ya[n].

» Conclusion: time-invariant.
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Example: Modulator

» Modulator: y[n] = x[n] - cos(27tfyn).
1. Reference: y[n] = x[n] - cos(27tfyn).
2. Delayed Input: x4[n] = x[n— ng] and

yaln] = xq[n] - cos(2mtfyn) = x[n— ng] - cos(27tfyn).
3. Check:

y[n—no] = x[n— m] - cos(27tfy(n— o)) # yalnl.

» Conclusion: not time-invariant.
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Example: Modulator

>

>
| 2

v

Alternatively, to show that the modulator is not
time-invariant, we construct a counter-example.

Let x[n] = {0,1,2,8,...},i.e, x[n] = n, forn > 0.
Also, let fy = %, so that

1 for neven
cos(27tfyn) = { —1 for n odd

Then, y[n] = x[n] - cos(27tfyn) = {0, —1,2,-3,...}.

With ng =1, x4[n] = x[n—1] = {0,0,1,2,3,...}, we get

yaln) ={0,0,1,-2,3,...}.

Clearly, yg[n] # y[n—1].

not time-invariant Masss

nnnnnnnnnn
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Example: FIR Filter

> Reference: y[n] =YV hlk] - x[n— K].
» Delayed Input: x4[n] = x[n— no|, and

vl Mth] Xg[n — k] = Zh x[n— ng — K.
» Check:
M—1
yln—nol = kz hlk] - x[n— ng — k] = yq4[n]
—0

» time-invariant
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Exercise

» Let u[n] be the unit-step sequence (i.e., u[n] =1 forn>0
and u[n] = 0, otherwise).

» The system is a 3-point averager:

1

ylnl = 5(x[n] + x[n — 1] + x[n - 2]).

Wl

Find the output y; [n] when the input x; [n] = u[n].

Find the output y»[n] when the input xo[n] = u[n —2].

Find the output y[n] when the input x[n] = u[n] — u[n—2].
How are linearity and time-invariance evident in your
results?

oD~

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis



Linear, Time-invariant Systems

0O000000e

Lecture: Convolution and Linear, Time-Invariant
Systems
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Overview

» Today: a really important, somewhat challenging, class.
> Key result: for every linear, time-invariant system (LTI
system) the output is obtained from input via convolution.
» Convolution is a very important operation!
> Prerequisites from previous classes:

> Impulse signal and impulse response,
» convolution,

> linearity, and

> time-invariance.
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Reminders: Convolution and Impulse Response

> We learned so far:
> For FIR filters, input-output relationship

M
yln] =} bix[n —k].
k=0
» If x[n] = d[n], then y[n] = h[n] is called the impulse
response of the system.
> For FIR filters:
[ by for0<n<M
hln] = { 0 celse.
> Convolution: input-output relationship

()

yln = x(nl«hin = Y hikl-xln—k|= Y. x[k]-hin—K].
koo koo MESo
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Reminders: Linearity and Time-Invariance

> Linearity:
> For arbitrary input signals x; [n] and x2[n], let the ouputs be
denoted y;[n] and y»[n].
» Further, for the input signal x[n] = xq[n] + x2[n], let the
output signal be y[n].
> The system is linear if y[n] = y4[n] + yz[n].
» Time-Invariance:
> For an arbitrary input signal x[n], let the output be y[n].
> For the delayed input x4[n] = x[n — ng], let the output be
yaln).
> The system is time-invariant if yy[n] = y[n — no].
» Today: For any linear, time-invariant system: input-output
relationship is y[n] = x[n] * h[n]. -
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Preliminaries

» We need a few more facts and relationships for the impulse
signal é[n].
» To start, recall:
> If input to a system is the impulse signal é[n],
> then, the output is called the impulse response,
> and is denoted by h[n].
» We will derive a method for expressing arbitrary signals
x[n] in terms of impulses.
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Sifting with Impulses

> Question: What happens if we multiply a signal x[n] with
an impulse signal 6[n]?

» Because
5[] = 1 forn=0
] 0 else,
» it follows that

x[0] forn=0

x[n]-8[n] = x[0] - §[n] = { 0 else
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lllustration
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Sifting with Impulses

> Related Question: What happens if we multiply a signal
x[n] with a delayed impulse signal §[n — k]?

» Recall that 6[n — k] is an impulse located at the k-th
sampling instance:

1 forn=k
oln—K :{ 0 else

» |t follows that

x[n]-6[n— k] = x[k] - 8[n— k] = {
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lllustration
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Decomposing a Signal with Impulses

» Question: What happens if we combine (add) signals of
the form x[n| - 6[n — k|?
» Specifically, what is

o]

Y x[k]-8[n—k]?

k=—o0

> Notice that the above sum represents the convolution of
x[n] and é[n], 8[n] * x[n].

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis



Convolution and Linear, Time-invariant Systems
000000800

Decomposing a Signal with Impulses

ni...[ -1 0 1 2
x[n] || ... | x[-1] | x[0] | x[1] | x[2]
Snj || ...] O 1 0 0
x[—1]-é[n+1] || ... | x[-1]| O 0 0
x[0]-é[n] || ...| O |x[0]| O 0
x[1]-6[n—1] 0 0 [x[1]| O
x[2] - 6[n— 2] 0 | 0| 0 |x02]

| Yh_ oo X[kl -6[n—K] || ... | x[-1] | x[0] | x[1] | x[2] | ... |
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Decomposing a Signal with Impulses

» From these considerations we conclude that

(o]

Y x[k]-8[n— k] = x[n].

k=—o00

> Notice that this implies
x[n] = é[n] = x[n.

» We now have a way to write a signal x[n] as a sum of
scaled and delayed impulses.

> Next, we exploit this relationship to derive our main result.
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Applying Linearity and Time-Invariance

» We know already that input 5[n] produces output h[n]
(impulse repsonse). We write:

5[n] — hin].
» For a time-invariant system:
6[n— K] — h[n—K].
» And for a linear system:

x[k] -6[n — k] + x[k] - hjn— K].

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis



Convolution and Linear, Time-invariant Systems
.

Derivation of the Convolution Sum

> Linearity: linear combination of input signals produces
output equal to linear combination of individual outputs.

| Input +~ Output
x[—1]-5[n+1]: b—) :x[—1]-h[n+1]
x[0]-é6[n] +— x[0] - h[n]
x[1]-6[n—1] —  x[1]-h[n—1]
x[2]-é6[n—1] — x[2]-h[n—2]
| Yk X[k -0[n— K =x[n] — y[n] =3k X[kl hn—K
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Summary and Conclusions

» We just derived the convolution sum formula:

o]

y[nl = x[n]xh[n] = Y x[K]-h[n—k].

k=—o00

» We only assumed that the system is linear and
time-invariant.

» Therefore, we can conclude that for any linear,
time-invariant system, the output is the convolution of input
and impulse response.

> Needless to say: convolution and impulse response are P
enormously important concepts. MASON
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ldentity System

» From our discussion, we can draw another conclusion.

» Question: How can we characterize a LTI system for
which the output y[n] is the same as the input x[n].

» Such a system is called the identity system.
» Specifically, we want the impulse response h[n| of such a
system.
> As always, one finds the impulse response h[n] as the
output of the LTI system when the impulse 4[n] is the input.
» Since the ouput is the same as the input for an identity
system, we find the impulse response of the identity

system
h[n] = é[n].
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Ideal Delay Systems
> Closely Related Question: How can one characterize a
LTI system for which the output y[n] is a delayed version of
the input x[n]:
yln] = x[n— no)
where ng is the delay introduced by the system
» Such a system is called an ideal delay system.
» Again, we want the impulse response h[n] of such a
system.
> As before, one finds the impulse response h[n] as the
output of the LTI system when the impulse 4[n] is the input.
» Since the ouput is merely a delayed version of the input,
we find
h[n] = é[n — ng].
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Exercise

» Show that convolution is a commutative operation, i.e., that
x[n] = h[n] equals h[n] * x[n].
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Lecture: Convolution and Linear, Time-Invariant
Systems
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Building Blocks

» Recall that the input-output relationship for an FIR filter is
given by
M
y[n] =)_ bkx[n—K].
k=0
» Digital systems implementing this relationships are easily
constructed from simple building blocks:

y[n] x[n]
x[n] z[n] b yinl x[n] Unit yln]
] Delay ]
Adder Multiplier Unit-delay

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis

Impleme

@00



Impleme
fo] 1o}

Operation of Building Blocks

yn] x[n]
X[n] zin] b ynl x[n] Unit ynl
il Delay -
Adder Multiplier Unit-delay

» Adder: sum of two signals
z[n] = x[n] + y[n].
> Multiplier: product of signal with a scalar

y[n] = b-x[n]
» Unit-delay: delays input by one sample:
yln) = x[n—1]

©2009-2019, B.-P. Paris
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Block Diagrams
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Frequency Response
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Introduction

» We have discussed:

> Sinusoidal and complex exponential signals,
» Spectrum representation of signals:

> arbitrary signals can be expressed as the sum of sinusoidal
(or complex exponential) signals.

» Linear, time-invariant systems.

> Next: complex exponential signals as input to linear,
time-invariant systems.

Aexp(j2rtfgn+ ¢) — System
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Example: 3-Point Averaging Filter

» Consider the 3-point averager:

1 2
Vil =5 1 xin— k] =

< (x[n] +x[n—1] + x[n—2]).

W[ =

> Question: What is the output y[n] if the input is
x[n] = exp(j27tfyn)?
> Recall that f is the normalized frequency f/fs; we are
assuming the signal is oversampled, |fy| < %
> Initially, assume A = 1 and ¢ = 0; generalization is easy.
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Delayed Complex Exponentials
» The 3-point averager involves delayed versions of the input
signal.
» We begin by assessing the impact the delay has on the
complex exponential input signal.
» For
x[n] = exp(j27tfyn)
a delay by k samples leads to
x[n—k] = exp(j2rfy(n—k))
e/'(27rfdn—27rfdk) — e/'27rfdn X e—j2rtfdk
— g@nfan+x) — gi2mlyn . gk

where ¢ = —27tfyk is the phase shift induced by the k
sample delay.
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Average of Delayed Complex Exponentials

» Now, the output signal y[n] is the average of three delayed
complex exponentials

ylnl = §Ti—ox[n—K|
— %Zizo e[(27‘(fdn727'(fdk)

» This expression involves the sum of complex exponentials
of the same frequency; the phasor addition rule applies:

2
yln] = g2ren. 1 Y o 2misk
3 k=0

» Important Observation: The output signal is a complex
exponential of the same frequency as the input signal. p
> The amplitude and phase are different. MASN
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Frequency Response of the 3-Point Averager

» The output signal y[n] can be rewritten as:

y[n] — el:27de'7 . %Zi:o e~ j2nfgk
— gl2nthyn H(e’znfd).

where

H(ej27rfd) Zi*O e—j27rfdk

(1 + e—j27rfd + e—j27r2fd)

A e—j27'(fd(ejZ7rfd +1+ e—j27rfd)
—j2rfy

5— (14 2cos(27tfy)).

D W|—=W|—=w|—
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Interpretation

» From the above, we can conclude:
> If the input signal is of the form x[n] = exp(j27tfyn),
> then the output signal is of the form
y[n] = H(e?™a) . exp(j2rtfyn).
» The function H(e/2™) is called the frequency response of
the system.
> Note: If we know H(e?"'0), we can easily compute the

output signal in response to a complex expontial input
signal.
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[e]e]ele]ele] lelelelele)

Examples
» Recall:

. e_/znfd
H(e?™) = —5— (1 +2cos(27fy))

> Let x[n| be a complex exponential with fy = 0.
> Then, all samples of x[n] equal to one.

» The output signal y[n] also has all samples equal to one.
» For fy = 0, the frequency response H(e2™) = 1.
» And, the output y[n] is given by

y[n] = H(e”™) - exp(j20n),

. /GEORG
i.e., all samples are equal to one. MAS

nnnnnnnnnn
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Examples

> Let x[n] be a complex exponential with fy = 3.
> Then, the samples of x[n] are the periodic repetition of
-3+ 52 -4 -1,
» The 3-point average over three consecutive samples
equals zero; therefore, y[n] = 0.
> For fy = §, the frequency response H(e/?™) = 0.

» Consequently, the output y[n] is given by

yinl = H(3) - exp(f2rgn) = 0.

Thus, all output samples are equal to zero.
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Plot of Frequency Response

1 T T T T T

0 L L L L L L L L L

-05 -04 -03 -02 -0
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Phase of H(fd)
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-05 -04 -03 -02 -01 0 01 02 03 04 05
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General Complex Exponential
> Let x[n] be a complex exponential of the from Ae/(27an+9),
> This signal can be written as

x[n] - X. e/'Zm‘dn’

where X = Aé/? is the phasor of the signal.
» Then, the output y[n] is given by

y[n] = H(&?™) . X - exp(j2rfyn).

> Interpretation: The output is a complex exponential of the
same frequency fy

» The phasor for the output signal is the product
H(e’er:fd) * X. m/fiEsonG:
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Exercise

Assume that the signal x[n] = exp(j27tfyn) is input to a 4-point
averager.
1. Give a general expression for the output signal and identify
the frequenchy response of the system.

2. Compute the output signals for the specific frequencies
deO, fd: 1/4, and fd= 1/2.

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis



Introduction to Frequency Response

0000000000 0e

Lecture: The Frequency Response of LTI
Systems
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Introduction

» We have demonstrated that for linear, time-invariant
systems

> the output signal y[n]
> is the convolution of the input signal x[n] and the impulse
response h[n].

yln] = x[n] = h[n]
= Y4, hik] - x[n — K]

» Question: Find the output signal y[n] when the input
signal is x[n] = Aexp(j(2rtfgn+ ¢)).
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Response to a Complex Exponential
> Problem: Find the output signal y[n] when the input signal
is x[n] = Aexp(j(27rtfgn+ ¢)).
» Output y[n] is convolution of input and impulse response
yln] = x[n] * hn]

= Yo hlk] - x[n— K]
= Yoo hlk] - Aexp(j(27tfy(n — k) + ¢))
= Aexp(j(2rtfgn+ ¢)) - M h[k] - exp(—j2rfyk)
= Aexp(j(2rtfyn+ ¢)) - H(e/?™)

» The term
H(e?7) = 2 h(k] - exp(—j27tfyk)

EEEEE

Z
is called the Frequency Response of the system. MESGN
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Interpreting the Frequency Response

The Frequency Response of an LTI system with impulse
response h|n] is

H(e?™a) = f} h[K] - exp(—j2mtfyk)
k=0

> Observations:
» The response of a LTl system to a complex exponential
signal is a complex exponential signal of the same
frequency.
» Complex exponentials are eigenfunctions of LTI systems.
» When x[n] = Aexp(j(2rtfyn+ ¢)), then
y[nl = x[n] - H(e*™). Zoconce
> This is true only for complex exponential input signals! MAS6N

uuuuuuuuuu
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Interpreting the Frequency Response
> Observations:
> H(e/?™4) is best interpreted in polar coordinates:

H(e/27rfd) — |H(ej27rfd)| . e/ZH(e"zmd)'

> Then, for x[n] = Aexp(j(2rtfgn+ ¢))
ylnl = x[n] - H(e/#™)
= Aexp(j(27tfyn+ ¢)) - |H(e27a)| . glH(e*)
= (A-|H(e”™)|) - exp(j(2ntfgn + ¢ + LH(e27)))
» The amplitude of the resulting complex exponential is the
product A - |H(e?™a)|.
> Therefore, |H(e/27%)| is called the gain of the system.
> The phase of the resulting complex exponential is the sum
¢+ LH(ePa). -
> /H(e/?™) is called the phase of the system. MESN
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Example

> Let h[n] = {1,—-2,1}.
» Then,
H(e?™) = Y2_ hlk]-exp(—j2mfyk)
=1-2. exp(—j27‘(fd) +1- eXP(_j27de2)

= exp(—j27ntfy) - (exp(j27tfy) — 2 + exp(—j27mtfy))
= exp(—j2rntfy) - (2cos(27fy) — 2).

> Gain: |H(e”2)| = |2 cos(27tty) — 2|
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Example
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Example

> The filter with impulse response h[n] = {1,-2,1} isa

high-pass filter.
> It rejects sinusoids with frequencies near fy = 0,
> and passes sinusoids with frequencies near fy = %

» Note how the function of this system is much easier to
describe in terms of the frequency response H(&27) than
in terms of the impulse response h|n].

» Question: Find the output signal when input equals
x[n] = 2exp(j27t1/4n— 71/2).

» Solution:
H(%) = eXp(—jZH%) (2 cos(27r%) —2) = —2e7i"/2 = 2g/7/2,
Thus,

y[n] = 262 . x[n] = 4exp(j2tn/4). £
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Exercise

1. Find the Frequency Response H(&/?™) for the LTI system
with impulse response h[n] = {1, —-1,—1,1}.

2. Find the output for the input signal
x[n] = 2exp(j(2tn/3 — 1 /4)).
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Computing Frequency Response in MATLAB

function HH = FregResp( hh, ff )
FregResp - compute frequency response of LTI system

inputs:
hh - vector of impulse repsonse coefficients
ff - vector of frequencies at which to evaluate frequency respon

output:
HH - frequency response at frequencies in ff.

Syntax:
HH = FregResp( hh, ff )

do oo oo oo oo do oo oo oo oo oo

HH = zeros( size (ff) );
for kk = 1l:1length (hh)

HH = HH + hh(kk) xexp (- J*2xpix (kk-1) x££f) ;
end
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Lecture: Comprehensive Example
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Introduction
» Objective: Apply many of the things we covered to the
solution of a “real-world” problem.
» Problem: Design and implement a decoder for
“touch-tone” dialing.

» When dialing a digit on a telphone touch-pad a two-tone
signal is emitted. These are called dual tone
multifrequency (DTMF) signals.

| Frequencies (Hz) || 1209 | 1336 | 1477 |

697 1 2 3
770 4 5 6
852 7 8 9
941 * 0 #
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Generating DTMF Signals

» Generating DTMF signals for a given digit is
straightforward.

> Determine the frequencies that the signal contains,
> Generate two sinusoids of these frequencies,
> Add sinusoids.

Repeat for each digit to be dialed.

» The following MATLAB code extracts digits to be dialed
from a string and forms the signal.

» Function signature:

v

function tones = dtmfdial( string, fs, tonedur, pausedur)
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Parsing the Dial-String

%% lookup table to translate digits string into numbers
Digits = double (’123456789x0#");

InverseDigits = zeros(l,length(Digits) );

for kk=1:12

InverseDigits ( Digits (kk) ) = kk;
end
RawNumbers = double( string );
numpbers = InverseDigits( RawNumbers );

% ensure numbers are integers between 1 and 12

numpbers = round( numbers ); ¢ silently discard fractional part
if ( min( numbers ) < 1 || max( numbers ) > 12 )

error ( ’'input_numbers_must_be_ integers_between_1_and_ 12’ );
end
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Generating the DTMF Signal

%% construct signal

% convert durations to number of samples
Ntone = round( fsxtonedur );

Npause = round( fsxpausedur);

¢ figure out how long the output signal will be
Nnumbers = length( numbers );
Nsamples = Nnumbers=* (Ntone + Npause);

tones = zeros(l, Nsamples );
pause = zeros(l, Npause);
% associate numbers with DIMF pairs, record normalized frequencies!
dtmfpairs = ...
[ 697 697 697 770 770 770 852 852 852 941 941 941;
1209 1336 1477 1209 1336 1477 1209 1336 1477 1209 1336 1477 ]/fs

PI/GEORGE

UNIVERSITY
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Generating the DTMF Signal

o

% loop over all numbers

for kk = 1l:length (numbers)

Start = (kk-1)« (Ntone + Npause) + 1;
End = kk«* (Ntone + Npause);

fregqs = dtmfpairs( :, numbers (kk) );
currtone = 0.5+« cos( 2+pixfregs(l)*(0:Ntone-1) ) +
0.5%cos ( 2xpixfregs(2)* (0:Ntone-1) );
tones (Start:End) = [ currtone pause ];
end
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Spectrogram of Signal
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Plan for Recovering the Dial String

» Use bandpass-filters for each of the possible frequencies
> Intent: Isolate the different tones.

» Detect the strongest two tones in each dialing period.
» Map tones to digits (decoding)
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A simple bandpass filter

» We discussed the M-point averager and showed that it has
low-pass filter characteristics.
> Note that the averager’s impulse response consists of M
samples of a constant signal.

» Analogously, a simple bandpass filter centered at
frequency fy has impulse response equal to
> M samples of 2/ M cos(27tfyn).
» The following MATLAB function implements this design
strategy.
> Alternatively, we could use MATLAB's filter design tools.
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MATLAB function makeBPF.m

function hh = makeBPF( fd, N )
makeBPF - design simple bandpass filter

usage:
hh = makeBPF( fd, N )

inputs:
fd - center frequency of pass band (normalized by fs)
N - number of filter coefficients

output:
hh - vector of filter coefficients

do do o oo oo do do oo o oo oo

o

sample locations
nn = —(N-1)/2:1:(N-1)/2;

% impulse response
hh = 2/N*cos (2+«pi*fd+nn) ; ,?ﬁn“
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Frequency Response of Bandpass Filters
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Detecting Tones

» The presence or absence is fairly easy to see in the output
of the bandpass filters.

» However a single metric is needed to determine the
presence or absence of each tone.

» Good strategy: for each filter output k = 1,...,7 and each
dialing-period m = 1,...,10, compute the following score s
s(k,m) = Y. (v[n))?,

nin m-th dialing period

where yj denotes the output of the k-th bandpass filter.
> Note that this operation assumes that we know exactly
where each digit starts.

» MATLAB code for computing scores follows. MESSR

uuuuuuuuuu
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MATLAB code for Computing Scores

pause

% decision logic

% decompose samples into periods for each number
Nnumbers = floor( length (xx)/ (fs* (tonedur+pausedur)) );
NTonePlusPause = round(fsx (tonedur+pausedur)) ;

NPause = round (fsxpausedur) ;

% score for each tone period: sum of squares in period
score = zeros (Nnumbers, length(DTMFFreqgs));
for nn=1:Nnumbers
Startnn = (nn-1)xNTonePlusPause + 1 + f£loor (LBPF/2);
Endnn = nn*NTonePlusPause - NPause - floor (LBPF/2);

for kk = 1l:length(DTMFFreqgs)
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Scores

Analysis
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Decoding

» It remains to find the two highest scores in each dialing
period.

» More specifically, the highest score among the lower four
frequencies and the highest score among the higher three
frequencies.

» The combination of frequencies yielding the highest score
indicates which digit was dialed in that dialing period.

» MATLAB code follows
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MATLAB code for Decoding Scores

pause

oo

Decisions

do de oo

in each row of the score matrix find the biggest entry among the fir
four and final three columns
for nn=1:Nnumbers
[ smax, imax_low(nn)] = max( score(nn, 1:4) );
[ smax, imax_high(nn)] = max( score(nn, 5:7) );
end

decode
lookup table to translate numbers string into numbers
Digits = double (’123456789x0#"); % table of ASCII codes for dial-

3
°

o
°
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Frequency Domain Transforms
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Lecture: Discrete-Time Fourier Transform
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Introduction

» We will take a closer look at transforming signals into the
frequency domain.
> Discrete-Time Fourier Transform (DTFT): applies to
arbitrarily long signals; continuous in discrete frequency fy.
» z-Transform: Generalization of DTFT; basis is a complex
variable z instead of e/27.
> Discrete-Fourier Transform: applies to finite-length
signals; computed for discrete set of frequencies; fast
algorithms.
» Transforms are useful because:
> They provide perspectives on signals and systems that aid
in signal analysis (e.g., bandwidth)
> They simplify many problems that are difficult in the
time-domain, especially convolution. Misas
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Recall: Frequency Response

> Passing a complex exponential signal x[n] = exp(j27tfyn)
through a linear, time-invariant system with impulse
ersponse h|[n] yields the output signal

y[n) = H(€2™) - exp(j27tfyn).

» The frequency response H(e/?™) is given by:

M—1
H(e”™@) = Y hlk] - exp(—j2mfyk)
k=0
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Discrete-Time Fourier Transform
> Analogously, we can define for a signal x|[n]

X (&™) = i x[K] - exp(—j2rtgk)

k=—c0

> X(e?™4) is the Discrete-Time Fourier Transform (DTFT) of
the signal x[n]; we write

x[n] &5 X (e27).

> Note that the limits of the sum range from —oo to co.
» To ensure that this infinite sum has a finite value, we must
require that

Y IxlK] < . MESHN

..........
k=—o0
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Two Quick Observations

» Linearity: The DTFT is a linear operation.

> Assume that _
xq[n] &% X (2719)

and that ‘
xo[n] &5 Xp(e/2a).

» Then,
x40 + xp[n] 55 X (&27a) + Xy (27
» Periodicity: The DTFT is periodic in the variable fy:

X(e?a) = x (&2t for any integer n.
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Continuous-Time Fourier Transform

» In ECE 220, you will learn that the (continuous-time)
Fourier transform for a signal x(t) is defined as

X(f) = / °:o X(1) - exp(—j2reft)dt

» Notice the strong similarity between the contrinuous and
discrete-time transforms.
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DTFT of Delayed Impulse

> Let x[n| be a delayed impulse, x[n] = é[n — ng].
> Note that x[n] has a single non-zero sample at n = ng.
» Therefore,

X (&2 = i x[K] - exp(—j2rfyk)

k=—o0
= exp(—j27fgno)

» In summary,

5[n— ng] &5 exp(—j2mfyny).
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DTFT of a Finite-Duration Signal

» Combining Linearity and the DTFT for a delayed impulse,
we can easily find the DTFT of a signalk with finitely many

samples.
M= DTFT M=
Z x[k]-6[n— k] «— Z X[K] - exp(—j2mtfgk).
k=0 k=0

» Example: The DTFT of the signal x[n] = {1,2,3,4} is
1 +2e/27[fd +3e/4nfd +4e/'67[fd.

> le.,

DTFT

{1,2,3,4} &5 1 4 2270 4 36470 4 4/57a
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DTFT of a Rectangular Pulse
> Let x[n| be a rectangular pulse of L samples, i.e.,
x[n] = u[n] — u[n—L].
» Then, the DTFT of x[n] is given by

X(e/27rfd) _ Li 1. ej27rfdk'

» Using the geometric sum formula
1—at

S= Z:a_1—a

X (62 — 1—e 2l sin(ntfyl) e imla(L1)
1 —e 2l sin(rtfy) '

» Thus, .z
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DTFT of a Right-sided Exponential
> Let x[n] = a" - u[n] with |a| < 1.
» Then, the DTFT of x[n] is given by

e/27'[fd — Z a U[k —]27‘[fdk Z a e—j27‘(fdk
k=—o00 k=0

» With the geometric sum formula, we find

X(eh) = 1 _ a;—j27rfd
» Thus, if |a| < 1
a" - u[n] &5 17.
1 — ag /2l Rﬁ%ﬁ
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Inverse DTFT

> The inverse DTFT is used to find the signal x[n] that
corresponds to a given transform X (e/27).

» The inverse DTFT is given by

x[n] = / * X(eP2) Py,

Nl

> Note: The DTFT is unique, i.e., for each signal x[n] there is
exactly one transform X (e/27'¢) and vice versa.

> Explicitly using the inverse transform can often be avoided;
instead known DTFT pairs and properties of the DTFT are
used; some examples follow.
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Inverse DTFT of e /27"
» We showed that the following is a DTFT pair
8[n — ng] &5 exp(—j2mfyn,).
» Thus, the inverse DTFT of exp(—j27tfyn,) must be
d[n— no]. Check:
» For n= ngy:

1
x[n] = / ® exp(—j2rtyno) €2l — / * Adfy = 1.

2 -2

> For n # ng:
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Bandlimited Signals

» The inverse DTFT is useful to find signals that are strictly
bandlimited.

> A signal is strictly bandlimited to bandwidth f, < % when its
DTFT is given by

_ 1 for|fy| < fy
X(e) = 1
0 forfy, < |fd|§§
» The strictly bandlimited signal is then

1
x[n] = /21 X(eIZHfd)e/andndfd _

2

sin(27tfon) _ 2f, - sinc(27tfyn).
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Table of DTFT Pairs

o[n] &5 1
8[n— ng] &= exp(—j2mtyn,)

u[n] —u[n L] DTFT sm(nde) e—jnfd(L—1)

sin(7tfy)
1
n. DTFT,
1 for |fd| < fb
2f, - sinc(27tf,n) <= 1
( ) 0 fOI’fb<|fd’§§
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Exercise

» Find the DTFT of the signals
1.
xy[n] =6[n] —d[n—1]+[n—2] —5[n—3].

> Answer: X(&/2™a) =1 — g~ 27la | g=JATla _ g=J67la

xoln] = SET/A) (1) uln)

T
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Lecture: Properties of the DTFT
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Properties of the DTFT

» Direct evaluation of the DTFT or the inverse DTFT is often
tedious.
> In many cases, transforms can be determined through a
combination of
» Known, tabulated transform pairs
> Properties of the DTFT
» Properties of the DTFT describe what happens to the
transform when common operations are applied in the time
domain (e.g., delay, multiplication with a complex
exponential, etc.)

» Very important, a property exists for convolution.
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Linearity

» Linearity: The DTFT is a linear operation.

> Assume that ,
xi[n] &5 X1 (e727%)

and that ‘
xo[n] &5 Xp (e/2a).

» Then,

X1 [n] + Xg[n] (E> Xi (e/2nfd) + X2<e/'27rfd)
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Example

» The DTFT of
X[n] — (1) . u[n] + M

2 n

is the sum of the transforms of the two individual signals:

1

1 for|fy] < -
. 1 al <
X = e A
~2€ 0 for‘—l<|fd|§§
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Time Delay
> Let '
x[n] &5 X (e27a).
» Find the DTFT of y[n] = x[n— nq|:
e[27'(fd) E y[n —/27rfdn — i x[n . nd] . e—j27rfdn
n=-—o0 n=—oo

» Substituting m = n — ng and, therefore, n = m+ ny yields

Y(e/2nfd) _ i x[m] . e—j27'[fd(m+nd) — e—j27'[fdnn ~X(eiz”fd)
m=—co

» Hence, the Time Delay property is:

x[n — ng) &5 @ 27am . X (gf2ma) Zconce
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Example

» Find the DTFT of a shifted rectangular pulse from 1 to
L+1
x[n=u[n—1] —uln—(L+1)].

» Combining the DTFT of a rectangular pulse

uln] —ufn— L] &5 % e /la(L=1)

with the time delay property leads to

uln=1] = ufn— (L+ 1)) &% T grinit )
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Frequency Shift Property
> Let _
x[n] &5 X (e27a),
» Find the DTFT of y[n] = x[n] - &/2":

Y(e/'27rfd) — i y[n] 'efj27rfdn — i x[n] . efj2nf0n . efj2rcfdn

n=—oo n=—oo
» Combining the exponentials yields
e[271fd _ Z y[n —/271 fa—fo)n (ei27T(fd—fo))
n=—o0

» Frequency shift property
X[n] . ei27Tf0n (E> X(el2n(fd_f0)) m/fszsoncz
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Example
» The impulse response of an ideal bandpass filter with
bandwidth B and center frequency f. is obtained by
> frequency shifting by f¢
> an ideal lowpass with cutoff frequency B/2
» Using the transform for the ideal lowpass

— 1 for |fd| < fb
2fy - sinc(27tfpn) <——
b- sine(2rfon) 0 forfb<|fd|§%

the inverse DTFT of the ideal band pass is given by

x[n]=8B-: sinc(2n§n) . gi2rtten

> This technique is very useful to convert lowpass filters into Masss
bandpass or highpass filters. 4350 N

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis



DTFT

0000000 e00000

Convolution Property
» The convolution property follows from linearity and the time

delay property.
> Recall that the convolution of signals x[n] and h[n] is
defined as
ylnl = x[n] Z hik] - x[n — K].

k=—c0
» With the time-delay property and linearity, the right hand
side transforms to

e/27tfd) Z h e—j27'cfde(e/'27rfd )

k=—o00

» Since Y5 h[K] - e /27lak = H(el?70),
x[n] * h[n] &5 X (&2 . H(e?7a)
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Example

» Convolution of two right sided exponentials (|a|, |b| < 1
and a # b)

yln] = (&"- u[n])  (b"- u[n])

has DTFT

1 1
1—ae2tfa 1 — pe—/2s

Y(e/27rfd) —

» Question: What is the inverse transform of Y (&27)? l.e.,
is there a closed form expression for y[n]?
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Example continued
» The expression

1 1
1—ae2rls 1 — pe/2rs

Y(e/'27rfd) —

can be rewritten as

a 1 b 1

oty
y(e7) = a—b 1—ae2ti  a—b 1— beJ2rly

» The inverse transform of Y(e/2™) is

y[n] = afb-a”-u[n]—%)-b”-u[n].
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Parseval’s Theorem

» The Energy of a discrete-time signal x[n] is defined as

0]

E= Y |x[n]P

k=—c0

» Parseval’'s theorem states that the energy can also be
computed using the DTFT

= Y Il / IX(e27%) [y

k=—c0

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis



DTFT

000000000000

Example

» Find the energy of the sinc pulse
x[n] = 2fy - sinc(27tfyn).

» This is impossible in the time domain and trivial in the
frequency domain

= % Ixlnll” / IX(e27M) ety = 2

k=—o0
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Lecture: The z-Transform
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Introduction
» Question: What is the output of an LTI system when the
input is an exponential signal x[n] = z"?
> Zzis complex-valued.

x[n] = z"——> LTI System y[n] =?

» Answer:

ylnl=H(z)-z" with H(z)= i hln]-z="

n=—oo

> H(z) is the z-Transform of the LTI system with impulse Z
response hin]. MAs

nnnnnnnnnn
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Definitions and Observations

> Analogously, we can define the z-Transform of a signal x[n|

X(z) = i x[n]-z7"
> Notation:
x[n] <= X(2).

> Note: we can think of the ztransform as a generalization of
the DTFT.
» The DTFT arises when z = /27,

» The z-Transform is a linear operation.
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Examples

» The z-Transforms of the following signals generalize easily
from the DTFTs computed earlier.

5[] < 1
5[n—ng) <&z
, 1—ztL
uln —uln—L] < T
]
n- z —_—
a’-uln| < rpp—
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z-Transform of a Finite Duration Signal

» The z-Transform of a signal with finitely many samples is
easily computed

M—1 M—1
Y x[k]-o[n—k] <& Y x[k]-z7K.
k=0 k=0

» Example: The DTFT of the signal x[n] = {1,2,3,4} is
{1,2,34} S 14227" 4327244273

» The z transform of a finite-duration signal is a polynomial in

z 1.
» The coefficients of the polynomial are the samples of the
signal.
» The inverse z-transform is trivial to determine when it is Z o
given as a polynomial. MaSoR
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Properties of the z-Transform

Linearity
x1[n] + x2[n] <= Xz(2) + Xa(2)
Delay
x[n—my] <& z7™ . X(2)
Convolution

x[n] * h[n] <& X(z) - H(2)
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Unit Delay System

» The unit delay system is an LTI system

yln = x[n—1]

> [ts impulse response and z-Transform are is
hln] =d6[n—1] H(z)==z""
» In terms of the z-transform:

Y(z)=z" X(2)

> In the z-domain, a unit delay corresponds to multiplication
by z_1 ) /GE RG
> In block diagrams, delays are often labeled z 7. MASN
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Equivalence of Convolution and Polynomial
Multiplcation

» The convolution property states
x[n] x h[n] <> X(z2) - H(2).

» We saw that the z-Transforms of finite duration signals are
polynomials. Hence, convolution is equivalent to
polynomial multiplaction.

» Example: x[n] = {1,2,1} and h[n] = {1,1}; by
convolution

x[n]x h[n] ={1,3,3,,1}.
» In terms of z-Transforms:
X(z)-Hz)=(1+2z"+1z272). 141271

=143z "+3z2+23 MagoR
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Zeros of H(z)
» An important use of the z-Transform is providing insight
into the properties of a filter.
» Of particular interest are the zeros of a filter’'s z-Transform

H(z).
» Example: The L-point averager has the z-Transform
11—zt 1 & .
- . = _ . _ —]27TK/L_ —k
HZ)=[ 75771 k:1(1 e z K.

» The factorization shows that zeros of H(z) occur when
z = e J2nk/L
> Note that
> zeros occur along the unit circle |z| = 1
> at angles that correspond to frequencies fy = k/ L for
k=1,..., L—1. Dﬁs
> Zeros are evenly spaced in the stop-band of the filter.
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Roots of H(z) for L-Point Averager

1

»” - o AN
0st,” B
© P \
E 0
R
051 o
o 7
~
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A0} ]
G0t 1
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2 .40} ]
z
-50 ]
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L L L L L L L L L
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Normalized Frequency

Roots of H(z) and magnitude of Frequency Response for
L = 11-point Averager. Dﬁs
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Roots of H(z) for a very good Lowpass Filter

» A very-good lowpass filter with
> normalized cutoff frequency f; = 0.2 (end of pass

passband)
» width of transition band Af = 0.1 (stop band starts at
fo + o).
can be designed in MATLAB with:

%% parameters
L = 30;
fc = 0.2; % cutoff frequency - relative to Nyquist frequency
df = 0.1; % width of transition band

%% generate impulse response
h = firpm(L, [0, fc, fec+df, 0.5]/0.5, [1, 1, 0, 0]);

ECE 201: Intro to Signal Analysis
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Roots of H(z) for a very good Lowpass Filter
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Roots of H(z) and magnitude of Frequency Response for a
very good LPF. Zeros are on the unit-circle in the stop band. In _
the pass band, pairs of roots form a “channel” to keep the MASON

UNIVERSITY
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lIR Filter

» Question: Can we realize a filter with the infinite impulse
response (lIR) h[n] = a" - u[n|?

» Recall that
a’-u[n) < 1
1—az1
> Hence,
_ 1 1y _
Y(z) = X(2) T O Y(z)-(1—az™") = X(2).

» In the time domain,

y[n] —ay[n—1] = x[n] or y[n] = x[n]+ay[n—1].
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Lecture: Discrete Fourier Transform (DFT)
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Introduction
» The Discrete Fourier Transform (DFT) is a work horse of
Digital Signal Processing.
» lts primary uses include:

> Measuring the spectrum of a signal from samples
» Fast algorithms for convolution or correlation

» The DFT is computed from a block of N samples
x[0],...,x[N—1].

> |t computes the DTFT at N evenly spaced, discrete
frequencies:

X[k] = X(e2TK/NMy for k =0,...,N —1

» Fast algorithms (Fast Fourier Transform (FFT)) exist to p
compute the DFT. MESGN
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Definitions
» (Forward) Discrete Fourier transform: for a block of N
samples x[n|, the DFT X|k] is given by

N—1
X[kl =Y x[n]-exp(—j2m-k/N-n) fork=0,...,N—1
n=0

» Inverse Discrete Fourier transform: a block of N
samples x[n|, is obtained from the DFT X[k] by

N-
x[n] = I1VZX[k |- exp(j2t-k/N-n) forn=0,...,N—1

v
GEORGE

vvvvvvv
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Observations

» The DFT is discrete in both time and frequency.
» In contrast, the DTFT is discrete in time but continuous in

frequency.
» The signal x[n] is implicitly assumed to repeat periodically
with period N.
x[n+ N = NZ (k] -exp(j2rt - k/N - (n+ N))
k=0
1 N-1
=— Y X[k]-exp(j2rr-k/N-n)-exp(j2rt- k) = x[n]
N &
> This observation has ramifications for the delay and Z

convolution properties of the DFT.

nnnnnnnnnn
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Implicit Periodicity

07

069

05

04

-

x[n]

03

-

0.2

>

-

0.1

F———————— ==

F——————0

°
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1

F———————— ==

sF————=—-o0

]
!
|
|
1

7
K]
_L:T?? {hl??

0

?
e,
0 L1

15
n

The signal with DFT X|[k] is implicitly periodic; the period
equals the block length N. Dﬁs
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Example
» The DFT' of the length N = 4 signal {1,1,0,0}:

X[0] =160 +1e 0+ 0e /0 +0e/°
=14+14+0+0=2

X[1] =1e 0 +1e/21/4 1 0e/4m/4 4 g /67/4
=14 (=) +0+0=+v2e /™4

X[2] = 1610 + 16 /47/4 | 0g187/4 | gg-it2n/4
=14 (-1)40+0=0

X[3] =160 4 1e7/67/4 1 0g/127/4 | gg/187/4
=1+(j)+0+0= 26"

Thus, X[k] = {2.\/2e71"/* 0,/2&/"/4} Mo

1 Exponentlals are e—J2knn/N
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Fast Transform (FFT)

» The main practical benefit of the DFT stems from the fact
that a computationally efficient algorithm exists.
» A naive (brute-force) implementation of the DFT requires
N? complex multioplications and additions.
» N outputs must be computed
> Each requires N multiplications and additions
» The Fast Fourier Transform algorithm (FFT) reduces the
number of complex multiplications and additions to
N -logy(N).
> It recursively splits the DFT of length N into 2 DFTs of
length N/2 (divide-and-conquer)
> Until length-2 DFTs can be computed trivially.
» A naive DFT of length N = 1024 requires approximately
108 multiplications and additions; the FFT requires only £
approximately 104, MAS6N

uuuuuuuuuu
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DFT of a Shifted Impulse

» The finite, length N duration of the signal block and the
associated, implicit assumption that x[n] is periodic with
period N has some unexpected consequences.

» We showed that the DTFT of a shifted impulse is

6[n— ng] &5 g 27lsna

» DFT with shift ny < N: assume N=8and ny =3
X[k] _ e—/‘27rk/Nnd _ e—j371’/4k

» DFT with shift ny > N: assume N =8 and ny = 11
X[k] _ efj27rk/Nnd _ efj1171/4k _ efj37t/4k . e—j27'( _ efj37r/4k

» Delays induce phase shifts proportional to ny mod N:
X[k] = @ J2mk/Nng _ g—j2rk/N(ng mod N) s
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Delay Property

» The same phenomenon affects the delay property.
> When the implicitly periodic signal is delayed, the block of N
samples is filled with periodic samples.
> For example, when the signal x[n] = {1, 2, 3,4} is shifted
by ny = 2 positions it becomes
x[(n—ng) mod N| = {3,4,1,2}.
> This is refered to as circular shifting.

» For the DFT, the delay property is therefore

x[(n— ng) mod N] &5 X[k] - e /27tk/Nig
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Implicit Periodicity
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Shifting the implicitly periodic signal induces a circular shift over
the block of N samples. Dﬁs
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Convolution Property

» Similarly, the convolution property for the DFT is different
from that for the DTFT or z-Transform.
» A modified form of convolution, called circular convolution
has a product-form transform.
> Let x[n] and h[n] be length-N signals with DFT X[k] and
H[k], respectively.
» Then, the (circular) convolution property is
N—1
Y h[m]x[(n— m) mod N] <=5 X[k] - HIK]

m=0
> Note that circular convolution is very different from normal
convolution.

» Question: How can the (circular) convolution property be
used for fast convolution? AN
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Zero-Padding

» Turning circular convolution into regular convolution is
straightforward:

> The signals x[n] and h[n] to be convolved must be
extended by appending zeros such that

»> They have the same length N, and
> if x[n] has length Ny and h[n] has length Np, then
N> Ny + Np—1.

> This is called zero-padding.
» Example: Let x[n] = {1,2,3,4} and h[n] = {3,2, 1}, then
the zero-padded signals are

Xx[n]={1,2,8,4,0,0} X[n={3,2,1,0,0,0}
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Implicit Periodicity
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With zero-padding, the shifting of the implicitly periodic signal
introduces only zero samples in the block of N samples. M
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Convolution with FFTs

» Fast convolution based on FFTs of zero-padded signals
can be implemented as follows:

% signals
x = [1,2,3];
h = [1,1];

% zero-padding to length 4
xp = [x, 0];
hp = [h, 0, 0];

% transforms
Xp = f£ft (xp);
Hp = f£ft (hp);

% multiply and inverse transform
y = ifft (Xp.xHp)
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Review of Complex Algebra
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Lecture: Introduction to Complex Numbers
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Why Complex Numbers?

» Complex numbers are closely related to sinusoids.
» They eliminate the need for trigonometry ...
> ... and replace it with simple algebra.
» Complex algebra is really simple - this is not an oxymoron.
» Complex numbers can be represented as vectors.
» Used to visualize the relationship between sinusoids.
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The Basics

» Complex unity: j = v/—1.
» Complex numbers can be written as

Z=X+j-y.

This is called the rectangular or cartesian form.
> x is called the real part of z: x = Re{z}.
> yis called the imaginary part of z: y = Im{z}.
» z can be thought of a vector in a two-dimensional plane.

> Cordinates are x and y.
> Coordinate system is called the complex plane.
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lllustration - The Complex Plane
Im

T
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Euler’s Formulas

» Euler’'s formula provides the connection between complex
numbers and trigonometric functions.

e/ = cos(p) + j - sin(¢p).

» Euler’s formula allows conversion between trigonometric
functions and exponentials.

» Exponentials have simple algebraic rules!
» Inverse Euler’s formulas:

et + e /P

cos(¢p) = S a—
. et — eIt
sin(¢) = o
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Polar Form

> Recallz=x+j-y

» From the diagram it Im
follows that
z = rcos(¢) + jrsin(¢). I
> Ar|1d .by Ehu.le.r’s y =rsin¢g
relationship: . _ y . Re
o - X = Ircos
z = r-(cos(p)+/sin(¢))
= r- e/‘P
» This is called the polar I Z
form. | MASON
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Converting from Polar to Cartesian Form
» Some problems are best solved in rectangular coordinates,
while others are easier in polar form.
> Need to convert between the two forms.
» A complex number polar form z = r - €¢ is easily
converted to cartesian form.

z = rcos(¢) + jrsin(¢).

» Example:
4.3 = 4.cos(r/3)+j-4-sin(/3)
= 4-1+j-4-
— 2+j.2.\/§ m/fszsoncz
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Converting from Cartesian to Polar Form
» A complex number z = x + jy in cartesian form is
converted to polar form via

r=/x2+y2

tan(¢) = %

and

» The computation of the angle ¢ requires some care.
» One must distinguish between the cases x < 0 and x > 0.

_ [ arctan(¥) if x>0
¢= arctan(£)+ 7 ifx <0

> If x =0, ¢ equals +7t/2 or —7t/2 depending on the sign
of y. MAS6N

nnnnnnnnnn
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Exercise

» Convert to polar form

1. z=14j
2. z=3+j
3. z=—-1—j

» Convert to cartesian form
1. z=3e /37/4

> in MATLAB, plot cos(jx) for —2 < x < 2 then explain the
shape of the resulting graph.
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Lecture: Complex Algebra
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Introduction

v

All normal rules of algebra apply to complex numbers!
» One thing to look for: j - j = —1.
» Some operations are best carried out in rectangular
coordinates.
> Addition and subtraction
> Multiplication and division aren’t very hard, either.
» Others are easier in polar coordinates.
> Multiplication and division.
» Powers and roots
» New operation: conjugate complex.

» A little more subtle: absolute value.
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Conjugate Complex

» The conjugate complex z* of a complex number z has

> the same real part as z: Re{z} = Re{z*}, and
> the opposite imaginary part: Im{z} = —Im{z*}.

» Rectangular form:

If z=x+jythenz* = x — jy.
> Polar form:

lfz=r-&thenz* =r-e /.

» Note, z and z* are mirror images of each other in the
complex plane with respect to the real axis.
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lllustration - Conjugate Complex
Im

T
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Addition and Subtraction

» Addition and subtraction can only be done in rectangular
form.
> If the complex numbers to be added are in polar form
convert to rectangular form, first.

> Letzy = X1 + jy1 and 2o = X2 + jyo.
> Addition:

zi+ 2o = (X1 +Xx2) +j(y1 + y2)

» Subtraction:

21— 2= (X1 —X2) +j(y1 — o)

o /GEORGE
» Complex addition works like vector addition. MESGR
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lllustration - Complex Addition

Im

— 2

Z2

Z1 +

Z2

Re
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Multiplication
» Multiplication of complex numbers is possible in both polar
and rectangular form.
» Polar Form: Let z; = ry - €% and z, = r» - €92, then

z1-Zo=1r-r-exp(j(P1 + ¢2)).

» Rectangular Form: Let z; = x; + jy; and 2o = X + jyo,
then

zi-22 = (x4 +jy_1) (%2 4‘./'}’2) _
= XiX2 + Py1Ye + 1Yo + jXo
= (xixe—y1y2) +i(xi1y2 + xay1).

» Polar form provides more insight: multiplication involves p,
rotation in the complex plane (because of ¢1 + ¢2). MESGN
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Absolute Value
» The absolute value of a complex number z is defined as

z| =VZz-z*, thus, |z|> = z- 2"

> Note, |z| and |z|? are real-valued.
> In MATLAB, abs (z) computes |z|.
> Polar Form: Let z =r - &/,

z2=r-&?.-r- e/ =1r=2

> Hence, |z| = .
» Rectangular Form: Let z = x + jy,

|z|? (X+iy): (x=Jy)
X2 — j2y? — jxy + jxy
— X2+y2 vvvvvvvvvv
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Division
» Closely related to multiplication
z2y  Z1zy; 21z
2 nz |z

» Polar Form: Let z; = ry - €% and z, = r» - €92, then
Z4

2D i1 — 0)).

Z3 ”2

> Rectangular Form: Let z; = x; + jy; and zo = Xo + jyo,

then .
zy . A%
2 |2f?
_ Datiy) (xo—jye)
xX5+y32
_ (axetyiye +l( X1Y2+X2}’1)

/GEOHGE
X2+y2 MiS
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Exercises

» For z; = 3¢/ and z, = 2e/™/2, compute

1. z1+ 2,
2. Zq - 2o, and
3. |Z1 |

Give your results in both polar and rectangular forms.
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Lecture: Complex Algebra - Continued
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Good to know ...

» You should try and remember the following relationships
and properties.

> 2T =1

> g = 1

> e/'ﬂ/2 :j

> e—jn/2 — —j

> |e/?| =1 forall values of ¢
> exp(j(¢ +2m)) = €9
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Powers of Complex Numbers

» A complex number z is easily raised to the n-th power if z
is in polar form.
» Specifically, '
z" = (r-én
= r.gm

> The magnitude r is raised to the n-th power
> The phase ¢ is multiplied by n.
» The above holds for arbitrary values of n, including
n an integer (e.g., z°),
n a fraction (e.g., z'/2 = /)
n a negative number (e.g., z~' =1/2)
n a complex number (e.g., Z/)

vVvyvyy
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Roots of Unity
> Quite often all complex numbers z solving the following
equation must be found
N
=1.

> Here N is an integer.
> There are N different complex numbers solving this
equation.

» The solutions have the form
z=6%2""Niorn=0,1,2,...,N—1.

» Note that zN = /27" = 1|
» The solutions are called the N-th roots of unity.
»> In the complex plane, all solutions lie on the unit circle and Mg
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Roots of a Complex Number

» The more general problem is to find all solutions of the
equation .
N=r.éf

» In this case, the N solutions are given by

¢ +27tn

Z:r1/N'eXp(jT) fOfn:0,1,2,.,N—1
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Example: Roots of a Complex Number

» Example: Find all solutions of 25 = —1.
> Solution:
> Note —1 =¢7,ie,r=1and ¢ = 7.
> There are N = 5 solutions:

> All have magnitude 1.
> The five angles are /5, 37/5, 57t/5, 77t/5, 97t /5.
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Roots of a Complex Number

1

0.8f

0.6F

0.4F

Imaginary
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Two Ways to Express cos(¢)
> First relationship: cos(¢p) = Re{e/?}

» Second relationship (inverse Euler):

gt + e ¢
cos(¢p) = —

» The first form is best suited as the starting point for
problems involving the cosine or sine of a sum.

> cos(a + B)

» The second form is best when products of sines and
cosines are needed

> cos(a) - cos(B)
» Rule of thumb: look to create products of exponentials.
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Example

» Show that cos(x + y) equals cos(x) cos(y) — sin(x) sin(y):

Re{e/*t¥)} = Re{e* - &}

Re{ (cos(x) + jsin(x)) - (cos(y) + jsin(y))}
Re{(cos(x) cos(y) — sin(x) sin(y))+
Jj(cos(x)sin(y) +sin(x) cos(y))}

= cos(X)cos(y) —sin(x)sin(y).

cos(X +Y)
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Example

> Show that cos(x) cos(y) equals § cos(x + y) + 5 cos(x — y):

e*te X eV el
2 2
elx+y) L gl(=x=y) 4 gl(x—y) 4 gi(—x+y)
4
ex+y) L g=i(x+y) + ex—y) L g=ilx—y)

2
= Jcos(x+y)+ 3 cos(x —y).

cos(x) cos(y)
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Exercises

» Simplify
1. (V2-v2))8
2. (V2—v2j)!
» Advanced
1.
2. cos(jf)
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