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Course Overview

Lecture: Introduction
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Course Overview

Learning Objectives

I Intro to Electrical Engineering via Digital Signal
Processing.

I Develop initial understanding of Signals and Systems.
I Learn MATLAB
I Note: Math is not very hard - just algebra.
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Course Overview

DSP - Digital Signal Processing

Digital: processing via computers and digital hardware
we will use PC’s.

Signal: Principally signals are just functions of time
I Entertainment/music
I Communications
I Medical, . . .

Processing: analysis and transformation of signals
we will use MATLAB
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Course Overview

Outline of Topics

I Sinusoidal Signals
I Time and Frequency representation of

signals
I Sampling
I Filtering
I Spectrum Analysis

I MATLAB
I Lectures
I Labs
I Homework
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Course Overview

Sinusoidal Signals

I Fundamental building blocks for describing arbitrary
signals.
I General signals can be expresssed as sums of sinusoids

(Fourier Theory)
I Bridge to frequency domain.
I Sinusoids are special signals for linear filters

(eigenfunctions).
I Manipulating sinusoids is much easier with the help of

complex numbers.

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis 7



Course Overview

Time and Frequency

I Closely related via sinusoids.
I Provide two different perspectives on signals.
I Many operations are easier to understand in frequency

domain.
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Course Overview

Sampling

I Conversion from continuous time to discrete time.
I Required for Digital Signal Processing.
I Converts a signal to a sequence of numbers (samples).
I Straightforward operation

I with a few strange effects.
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Course Overview

Filtering

I A simple, but powerful, class of operations on signals.
I Filtering transforms an input signal into a more suitable

output signal.
I Often best understood in frequency domain.

System
Input Output
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Course Overview

Spectrum Analysis
I Analyze a given signal to find which frequencies it contains.
I Fourier Transform and fast Fourier Transform
I Spectrogram
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Course Overview

Relationship to other ECE Courses

I Next steps after ECE 201:
I ECE 220: Signals and Systems
I ECE 280: Circuits

I Core courses in controls and communications:
I ECE 421: Controls
I ECE 460: Communications

I Electives:
I ECE 410: DSP
I ECE 450: Robotics
I ECE 463: Digital Comms
I ECE 464: Filter Design
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Sinusoidal Signals Sums of Sinusoids Complex Exponential Signals

Part II

Sinusoids, Complex Numbers, and
Complex Exponentials
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Sinusoidal Signals Sums of Sinusoids Complex Exponential Signals

Lecture: Introduction to Sinusoids
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Sinusoidal Signals Sums of Sinusoids Complex Exponential Signals

The Formula for Sinusoidal Signals

I The general formula for a sinusoidal signal is

x(t) = A · cos(2πft + φ).

I A, f , and φ are parameters that characterize the sinusoidal
signal.
I A - Amplitude: determines the height of the sinusoid.
I f - Frequency: determines the number of cycles per

second.
I φ - Phase: determines the horizontal location of the

sinusoid.
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Sinusoidal Signals Sums of Sinusoids Complex Exponential Signals
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x(t) = A cos(2π f t + φ)

I The formula for this sinusoid is:

x(t) = 3 · cos(2π · 50 · t + π/4).
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Sinusoidal Signals Sums of Sinusoids Complex Exponential Signals

The Significance of Sinusoidal Signals
I Fundamental building blocks for describing arbitrary

signals.
I General signals can be expresssed as sums of sinusoids

(Fourier Theory)
I Provides bridge to frequency domain.

I Sinusoids are special signals for linear filters
(eigenfunctions).

I Sinusoids occur naturally in many situations.
I They are solutions of differential equations of the form

d2x(t)
dt2 + ax(t) = 0.

I Much more on these points as we proceed.
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Sinusoidal Signals Sums of Sinusoids Complex Exponential Signals

Background: The cosine function

I The properties of sinusoidal signals stem from the
properties of the cosine function:
I Periodicity: cos(x + 2π) = cos(x)
I Eveness: cos(−x) = cos(x)
I Ones of cosine: cos(2πk) = 1, for all integers k .
I Minus ones of cosine: cos(π(2k + 1)) = −1, for all

integers k .
I Zeros of cosine: cos(π

2 (2k + 1)) = 0, for all integers k .
I Relationship to sine function: sin(x) = cos(x − π/2) and

cos(x) = sin(x + π/2).
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Sinusoidal Signals Sums of Sinusoids Complex Exponential Signals

Amplitude

I The amplitude A is a scaling factor.
I It determines how large the signal is.
I Specifically, the sinusoid oscillates between +A and −A.
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Sinusoidal Signals Sums of Sinusoids Complex Exponential Signals

Frequency and Period

I Sinusoids are periodic signals.
I The frequency f indicates how many times the sinusoid

repeats per second.
I The duration of each cycle is called the period of the

sinusoid.
It is denoted by T .

I The relationship between frequency and period is

f =
1
T

and T =
1
f
.
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Sinusoidal Signals Sums of Sinusoids Complex Exponential Signals

Phase and Delay
I The phase φ causes a sinusoid to be shifted sideways.
I A sinusoid with phase φ = 0 has a maximum at t = 0.
I A sinusoid that has a maximum at t = τ can be written as

x(t) = A · cos(2πf (t − τ)).

I Expanding the argument of the cosine leads to

x(t) = A · cos(2πft − 2πf τ).

I Comparing to the general formula for a sinusoid reveals

φ = −2πf τ and τ =
−φ

2πf
.
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Sinusoidal Signals Sums of Sinusoids Complex Exponential Signals

T = 1/fτ
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Sinusoidal Signals Sums of Sinusoids Complex Exponential Signals

Exercise
1. Plot the sinusoid

x(t) = 2 cos(2π · 10 · t + π/2)

between t = −0.1 and t = 0.2.
2. Find the equation for the sinusoid in the following plot
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Sinusoidal Signals Sums of Sinusoids Complex Exponential Signals

Vectors and Matrices
I MATLAB is specialized to work with vectors and matrices.
I Most MATLAB commands take vectors or matrices as

arguments and perform looping operations automatically.
I Creating vectors in MATLAB:

directly:
x = [ 1, 2, 3 ];

using the increment (:) operator:
x = 1:2:10;

produces a vector with elements
[1, 3, 5, 7, 9].

using MATLAB commands For example, to read a .wav file
[ x, fs] = wavread(’music.wav’);
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Sinusoidal Signals Sums of Sinusoids Complex Exponential Signals

Plot a Sinusoid

%% parameters
A = 3;
f = 50;

4 phi = pi/4;

fs = 50*f;

%% generate signal
9 % 5 cycles with 50 samples per cycle

tt = 0 : 1/fs : 5/f;
xx = A*cos(2*pi*f*tt + phi);

%% plot
14 plot(tt,xx)

xlabel( ’Time (s)’ ) % labels for x and y axis
ylabel( ’Amplitude’ )
title( ’x(t) = A cos(2\pi f t + \phi)’)
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Sinusoidal Signals Sums of Sinusoids Complex Exponential Signals

Exercise
I The sinusoid below has frequency f = 10 Hz.
I Three of its maxima are at the the following locations

τ1 = −0.075 s, τ2 = 0.025 s, τ3 = 0.125 s
I Use each of these three delays to compute a value for the

phase φ via the relationship φi = −2πf τi .
I What is the relationship between the phase values φi you

obtain?
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Sinusoidal Signals Sums of Sinusoids Complex Exponential Signals

Lecture: Adding Sinusoids of the Same
Frequency
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Sinusoidal Signals Sums of Sinusoids Complex Exponential Signals

Adding Sinusoids

I Adding sinusoids of the same frequency is a problem that
arises regularly in
I circuit analysis
I linear, time-invariant systems, e.g., filters
I and many other domains

I We will see that adding sinusoids is much easier with
complex exponentials
I Today, we will do it the hard way — with trigonometry
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Sinusoidal Signals Sums of Sinusoids Complex Exponential Signals

A Circuits Example

v(t)

i(t)

1 MΩ vR(t)

iR(t)

iC(t)

2 nF vC(t)

I For v(t) = 1 V · cos(2π1 kHz · t), find the current i(t).
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Sinusoidal Signals Sums of Sinusoids Complex Exponential Signals

Setting up the Problem

I Resistor: iR(t) =
vR(t)

R

I Capacitor: iC(t) = C dvC(t)
dt

I Kirchhoff’s current law: i(t) = iR(t) + iC(t)
I Kirchhoff’s voltage law: v(t) = vR(t) = vC(t)
I Therefore,

i(t) =
v(t)
R

+ C · dv(t)
dt

=
1 V

1 MΩ
cos(2π1 kHz · t)− 2π · 1 kHz · 2 nF · sin(2π1 kHz · t)

= 1 µA cos(2π1 kHz · t)− 4π µA sin(2π1 kHz · t)
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Sinusoidal Signals Sums of Sinusoids Complex Exponential Signals

Simplifying i(t)

I Can we write

i(t) = 1 µA cos(2π1 kHz · t)− 4π µA sin(2π1 kHz · t)

as a single sinusoid?
I Specifically, can we express it in the standard form

i(t) = I cos(2πft + φ)

and, if so, what are I, f , and φ?

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis 31



Sinusoidal Signals Sums of Sinusoids Complex Exponential Signals

Solution

I Use the trig identity
I cos(x + y) = cos(x) cos(y)− sin(x) sin(y)

to change i(t) = I cos(2πft + φ) to

i(t) = I · cos(φ) cos(2πft)− I · sin(φ) sin(2πft)

I Compare to

i(t) = 1 µA cos(2π1 kHz · t)− 4π µA sin(2π1 kHz · t)

I Conclude:
I f = 1 kHz - no change in frequency!
I I · cos(φ) = 1 µA and I · sin(φ) = 4π µA.
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Sinusoidal Signals Sums of Sinusoids Complex Exponential Signals

Solution
I We still must find I and φ from

I I · cos(φ) = 1 µA and I · sin(φ) = 4π µA.
I We can find I from

I2 · cos2(φ) + I2 · sin2(φ) = I2

(1 µA)2 + (4π µA)2 ≈ (12.6 µA)2

I Thus, I = 12.6 µA.
I Also,

I · sin(φ)
I · cos (φ) = tan(φ) =

4π

1
.

I Hence, φ ≈ 0.47 · π ≈ 85o.
I And, i(t) ≈ 12.6 µA cos(2π1 kHz · t + 0.47 · π).
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Sinusoidal Signals Sums of Sinusoids Complex Exponential Signals

Exercise

I Express

x(t) = 3 · cos(2πft) + 4 · cos(2πft + π/2)

in the form A · cos(2πft + φ).
I Answer: x(t) ≈ 5 cos(2πft + 53o)
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Sinusoidal Signals Sums of Sinusoids Complex Exponential Signals

Solution to Exercise
I Express

x(t) = 3 · cos(2πft) + 4 · cos(2πft + π/2)

in the form A · cos(2πft + φ).
I Solution: Use trig identity

cos(x + y) = cos(x) cos(y)− sin(x) sin(y) on second term.
I This leads to

x(t) = 3 · cos(2πft)+
4 · cos(2πft) cos(π/2)− 4 · sin(2πft) sin(π/2)

= 3 · cos(2πft)− 4 · sin(2πft).

I Compare to what we want:

x(t) = A · cos(2πft + φ)
= A · cos(φ) cos(2πft)− A · sin(φ) sin(2πft)
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Sinusoidal Signals Sums of Sinusoids Complex Exponential Signals

Solution cont’d
I We can conclude that A and φ must satisfy

A · cos(φ) = 3 and A · sin(φ) = 4.

I We can find A from

A2 · cos2(φ) + A2 · sin2(φ) = A2

9 + 16 = 25

I Thus, A = 5.
I Also,

sin(φ)

cos (φ)
= tan(φ) =

4
3
.

I Hence, φ ≈ 53o ( 53
180 π).

I And, x(t) = 5 cos(2πft + 53o).
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Sinusoidal Signals Sums of Sinusoids Complex Exponential Signals

Summary

I Adding sinusoids of the same frequency is a problem that
is frequently encountered in Electrical Engineering.
I We noticed that the frequency of the sum of sinusoids is the

same as the frequency of the sinusoids that we added.
I Such problems can be solved using trigonometric

identities.
I but, that is very tedious.

I We will see that sums of sinusoids are much easier to
compute using complex algebra.
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Sinusoidal Signals Sums of Sinusoids Complex Exponential Signals

Lecture: Complex Exponentials
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Sinusoidal Signals Sums of Sinusoids Complex Exponential Signals

Introduction
I The complex exponential signal is defined as

x(t) = A exp(j(2πft + φ)).

I As with sinusoids, A, f , and φ are (real-valued) amplitude,
frequency, and phase.

I By Euler’s relationship, it is closely related to sinusoidal
signals

x(t) = A cos(2πft + φ) + jA sin(2πft + φ).

I We will leverage the benefits the complex representation
provides over sinusoids:
I Avoid trigonometry,
I Replace with simple algebra,
I Visualization in the complex plane.
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Sinusoidal Signals Sums of Sinusoids Complex Exponential Signals

Plot of Complex Exponential

x(t) = 1 · exp(j(2π/8t + π/4))
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complex-valued, both
real and imaginary parts
are functions of time.
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Sinusoidal Signals Sums of Sinusoids Complex Exponential Signals

Complex Plane
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We can think of a
complex expontial as
signals that rotate along
a circle in the complex
plane.
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Sinusoidal Signals Sums of Sinusoids Complex Exponential Signals

Expressing Sinusoids through Complex Exponentials

I There are two ways to write a sinusoidal signal in terms of
complex exponentials.

I Real part:

A cos(2πft + φ) = Re{A exp(j(2πft + φ))}.

I Inverse Euler:

A cos(2πft +φ) =
A
2
(exp(j(2πft +φ))+ exp(−j(2πft +φ)))

I Both expressions are useful and will be important
throughout the course.
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Sinusoidal Signals Sums of Sinusoids Complex Exponential Signals

Phasors
I Phasors are not directed-energy weapons first seen in the

original Star Trek movie.
I That would be phasers!

I Phasors are the complex amplitudes of complex
exponential signals:

x(t) = A exp(j(2πft + φ)) = Aejφ exp(j2πft).

I The phasor of this complex exponential is X = Aejφ.
I Thus, phasors capture both amplitude A and phase φ – in

polar coordinates.
I The real and imaginary parts of the phasor X = Aejφ are

referred to as the in-phase (I) and quadrature (Q)
components of X , respectively:

X = I + jQ = A cos(φ) + jA sin(φ)
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Sinusoidal Signals Sums of Sinusoids Complex Exponential Signals

Phasor Notation for Complex Exponentials
I The complex exponential signal

x(t) = A exp(j(2πft + φ)) = Aejφ exp(j2πft)

is characterized completely by the combination of
I phasor X = Aejφ

I frequency f
I We will frequently use this observation to denote a complex

exponential by providing the pair of phasor and frequency:

(Aejφ, f )

I We will refer to this notation as the spectrum representation
of the complex exponential x(t)
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Sinusoidal Signals Sums of Sinusoids Complex Exponential Signals

From Sinusoids to Phasors
I A sinusoid can be written as

A cos(2πft +φ) =
A
2
(exp(j(2πft +φ))+ exp(−j(2πft +φ))).

I This can be rewritten to provide

A cos(2πft + φ) =
Aejφ

2
exp(j2πft) +

Ae−jφ

2
exp(−j2πft).

I Thus, a sinusoid is composed of two complex exponentials
I One with frequency f and phasor Aejφ

2 ,
I rotates counter-clockwise in the complex plane;

I one with frequency −f and phasor Ae−jφ

2 .
I rotates clockwise in the complex plane;

I Note that the two phasors are conjugate complexes of each
other.
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Sinusoidal Signals Sums of Sinusoids Complex Exponential Signals

Exercise

I Write
x(t) = 3 cos(2π10t − π/3)

as a sum of two complex exponentials.
I For each of the two complex exponentials, find the

frequency and the phasor.
I Repeat for

y(t) = 2 sin(2π10t + π/4)

I What are the in-phase and quadrature signals of

z(t) = 5ejπ/3 exp(j2π10t)
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Sinusoidal Signals Sums of Sinusoids Complex Exponential Signals

Answers to Exercise
I

x(t) = 3 cos(2π10t − π/3)

=
3
2

e−jπ/3ej2π10t +
3
2

ejπ/3e−j2π10t

as a sum of two complex exponentials.
I Phasor-frequency pairs: (3

2e−jπ/3,10) and (3
2ejπ/3,−10)

I

y(t) = 2 sin(2π10t + π/4) = 2 cos(2π10t − π/4)

= 1e−jπ/4ej2π10t + 1ejπ/4e−j2π10t

I

z(t) = 5ejπ/3 exp(j2π10t) = (
5
2
+ j

5
√

2
2

) exp(j2π10t)

Thus, I = 5
2 and Q = 5

√
2

2 .
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Sinusoidal Signals Sums of Sinusoids Complex Exponential Signals

Lecture: The Phasor Addition Rule
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Sinusoidal Signals Sums of Sinusoids Complex Exponential Signals

Problem Statement
I It is often required to add two or more sinusoidal signals.
I When all sinusoids have the same frequency then the

problem simplifies.
I This problem comes up very often, e.g., in AC circuit

analysis (ECE 280) and later in the class (chapter 5).
I Starting point: sum of sinusoids

x(t) = A1 cos(2πft + φ1) + . . . + AN cos(2πft + φN)

I Note that all frequencies f are the same (no subscript).
I Amplitudes Ai phases φi are different in general.
I Short-hand notation using summation symbol (∑):

x(t) =
N

∑
i=1

Ai cos(2πft + φi )
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Sinusoidal Signals Sums of Sinusoids Complex Exponential Signals

The Phasor Addition Rule
I The phasor addition rule implies that there exist an

amplitude A and a phase φ such that

x(t) =
N

∑
i=1

Ai cos(2πft + φi) = A cos(2πft + φ)

I Interpretation: The sum of sinusoids of the same
frequency but different amplitudes and phases is
I a single sinusoid of the same frequency.
I The phasor addition rule specifies how the amplitude A and

the phase φ depends on the original amplitudes Ai and φi .
I Example: We showed earlier (by means of an unpleasant

computation involving trig identities) that:

x(t) = 3 · cos(2πft)+4 · cos(2πft +π/2) = 5 cos(2πft +53o)
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Sinusoidal Signals Sums of Sinusoids Complex Exponential Signals

Prerequisites
I We will need two simple prerequisites before we can derive

the phasor addition rule.
1. Any sinusoid can be written in terms of complex

exponentials as follows

A cos(2πft + φ) = Re{Aej(2πft+φ)} = Re{Aejφej2πft}.
Recall that Aejφ is called a phasor (complex amplitude).

2. For any complex numbers X1,X2, . . . ,XN , the real part of
the sum equals the sum of the real parts.

Re

{
N

∑
i=1

Xi

}
=

N

∑
i=1

Re{Xi}.

I This should be obvious from the way addition is defined for
complex numbers.

(x1 + jy1) + (x2 + jy2) = (x1 + x2) + j(y1 + y2).
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Sinusoidal Signals Sums of Sinusoids Complex Exponential Signals

Deriving the Phasor Addition Rule

I Objective: We seek to establish that

N

∑
i=1

Ai cos(2πft + φi) = A cos(2πft + φ)

and determine how A and φ are computed from the Ai and
φi .
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Sinusoidal Signals Sums of Sinusoids Complex Exponential Signals

Deriving the Phasor Addition Rule

I Step 1: Using the first pre-requisite, we replace the
sinusoids with complex exponentials

∑N
i=1 Ai cos(2πft + φi) = ∑N

i=1 Re{Aiej(2πft+φi )}
= ∑N

i=1 Re{Aiejφi ej2πft}.
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Sinusoidal Signals Sums of Sinusoids Complex Exponential Signals

Deriving the Phasor Addition Rule

I Step 2: The second prerequisite states that the sum of the
real parts equals the the real part of the sum

N

∑
i=1

Re{Aiejφi ej2πft} = Re

{
N

∑
i=1

Aiejφi ej2πft

}
.
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Sinusoidal Signals Sums of Sinusoids Complex Exponential Signals

Deriving the Phasor Addition Rule
I Step 3: The exponential ej2πft appears in all the terms of

the sum and can be factored out

Re

{
N

∑
i=1

Aiejφi ej2πft

}
= Re

{(
N

∑
i=1

Aiejφi

)
ej2πft

}

I The term ∑N
i=1 Aiejφi is just the sum of complex numbers in

polar form.
I The sum of complex numbers is just a complex number X

which can be expressed in polar form as X = Aejφ.
I Hence, amplitude A and phase φ must satisfy

Aejφ =
N

∑
i=1

Aiejφi
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Deriving the Phasor Addition Rule

I Note
I computing ∑N

i=1 Aiejφi requires converting Aiejφi to
rectangular form,

I the result will be in rectangular form and must be converted
to polar form Aejφ.
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Deriving the Phasor Addition Rule

I Step 4: Using Aejφ = ∑N
i=1 Aiejφi in our expression for the

sum of sinusoids yields:

Re
{(

∑N
i=1 Aiejφi

)
ej2πft

}
= Re

{
Aejφej2πft}

= Re
{

Aej(2πft+φ)
}

= A cos(2πft + φ).

I Note: the above result shows that the sum of sinusoids of
the same frequency is a sinusoid of the same frequency.
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Applying the Phasor Addition Rule
I Applicable only when sinusoids of same frequency need to

be added!
I Problem: Simplify

x(t) = A1 cos(2πft + φ1) + . . . AN cos(2πft + φN)

I Solution: proceeds in 4 steps
1. Extract phasors: Xi = Aiejφi for i = 1, . . . ,N.
2. Convert phasors to rectangular form:

Xi = Ai cos φi + jAi sin φi for i = 1, . . . ,N.
3. Compute the sum: X = ∑N

i=1 Xi by adding real parts and
imaginary parts, respectively.

4. Convert result X to polar form: X = Aejφ.
I Conclusion: With amplitude A and phase φ determined in

the final step
x(t) = A cos(2πft + φ).
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Example

I Problem: Simplify

x(t) = 3 · cos(2πft) + 4 · cos(2πft + π/2)

I Solution:
1. Extract Phasors: X1 = 3ej0 = 3 and X2 = 4ejπ/2.
2. Convert to rectangular form: X1 = 3 X2 = 4j .
3. Sum: X = X1 + X2 = 3 + 4j .
4. Convert to polar form: A =

√
32 + 42 = 5 and

φ = arctan( 4
3 ) ≈ 53o ( 53

180 π).
I Result:

x(t) = 5 cos(2πft + 53o).
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The Circuits Example

v(t)

i(t)

1 MΩ vR(t)

iR(t)

iC(t)

2 nF vC(t)

I For v(t) = 1 V · cos(2π1 kHz · t), find the current i(t).
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Problem Formulation with Phasors
I Source:

v(t) = 1 V · cos(2π1 kHz · t) = Re{1 V · exp(j2π1 kHz · t)}

⇒ phasor: V = 1 Vej0

I Kirchhoff’s voltage law: v(t) = vR(t) = vC(t);
⇒ phasors: V = VR = VC .

I Resistor: iR(t) =
vR(t)

R ;
⇒ phasor: IR = VR

R

I Capacitor: iC(t) = C dvC(t)
dt ;

⇒ phasor: IC = C · V · j2π · 1 kHz
I Because d exp(j2π1 kHz·t)

dt = j2π1 kHz · exp(j2π1 kHz · t)
I Kirchhoff’s current law: i(t) = iR(t) + iC(t);
⇒ phasors: I = IR + IC .
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Problem Formulation with Phasors
I Therefore,

I =
V
R

+ C · V · j2π · 1 kHz

=
1 V

1 MΩ
+ j2π · 1 kHz · 2 nF · 1 V

= 1 µA + j4π µA

I Convert to polar form:

1 µA + j4π µA = 12.6 µA · ej0.47π

Using:
I
√

12 + (4π)2 ≈ 12.6
I tan−1((4π)) ≈ 0.47π

I Thus, i(t) ≈ 12.6 µA cos(2π1 kHz · t + 0.47 · π).
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Exercise

I Simplify

x(t) = 10 cos(20πt +
π

4
)+

10 cos(20πt +
3π

4
)+

20 cos(20πt − 3π

4
).

I Answer:
x(t) = 10

√
2 cos(20πt + π).
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Part III

Spectrum Representation of
Signals
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Lecture: Sums of Sinusoids (of different
frequency)
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Introduction

I To this point we have focused on sinusoids of identical
frequency f

x(t) =
N

∑
i=1

Ai cos(2πft + φi).

I Note that the frequency f does not have a subscript i !
I Showed (via phasor addition rule) that the above sum can

always be written as a single sinusoid of frequency f .
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Introduction

I We will consider sums of sinusoids of different frequencies:

x(t) =
N

∑
i=1

Ai cos(2πfi t + φi).

I Note the subscript on the frequencies fi !
I This apparently minor difference has dramatic

consequences.
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Sum of Two Sinusoids

x(t) =
4
π
cos(2πft − π/2) +

4
3π

cos(2π3ft − π/2)
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Sum of 25 Sinusoids

x(t) =
25

∑
n=0

4
(2n− 1)π

cos(2π(2n− 1)ft − π/2)
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Non-sinusoidal Signals as Sums of Sinusoids

I If we allow infinitely many sinusoids in the sum, then the
result is a square wave signal.

I The example demonstrates that general, non-sinusoidal
signals can be represented as a sum of sinusoids.
I The sinusods in the summation depend on the general

signal to be represented.
I For the square wave signal we need sinusoids

I of frequencies (2n− 1) · f , and
I amplitudes 4

(2n−1)π .
I (This is not obvious→ Fourier Series).
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Non-sinusoidal Signals as Sums of Sinusoids

I The ability to express general signals in terms of sinusoids
forms the basis for the frequency domain or spectrum
representation.

I Basic idea: list the “ingredients” of a signal by specifying
I amplitudes and phases, as well as
I frequencies of the sinusoids in the sum.
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The Spectrum of a Sum of Sinusoids
I Begin with the sum of sinusoids introduced earlier

x(t) = A0 +
N

∑
i=1

Ai cos(2πfi t + φi).

where we have broken out a possible constant term.
I The term A0 can be thought of as corresponding to a

sinusoid of frequency zero.
I Using the inverse Euler formula, we can replace the

sinusoids by complex exponentials

x(t) = X0 +
N

∑
i=1

{
Xi

2
exp(j2πfi t) +

X ∗i
2

exp(−j2πfi t)
}
.

where X0 = A0 and Xi = Aiejφi .
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The Spectrum of a Sum of Sinusoids (cont’d)

I Starting with

x(t) = X0 +
N

∑
i=1

{
Xi

2
exp(j2πfi t) +

X ∗i
2

exp(−j2πfi t)
}
.

where X0 = A0 and Xi = Aiejφi .
I The spectrum representation simply lists the complex

amplitudes and frequencies in the summation:

X (f ) = {(X0,0), (
X1

2
, f1), (

X ∗1
2

,−f1), . . . , (
XN

2
, fN), (

X ∗N
2

,−fN)}
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Example
I Consider the signal

x(t) = 3 + 5 cos(20πt − π/2) + 7 cos(50πt + π/4).

I Using the inverse Euler relationship

x(t) = 3 + 5
2e−jπ/2 exp(j2π10t) + 5

2ejπ/2 exp(−j2π10t)
+ 7

2ejπ/4 exp(j2π25t) + 7
2e−jπ/4 exp(−j2π25t).

I Hence,

X (f ) = {(3,0), (5
2e−jπ/2,10), (5

2ejπ/2,−10),
(7

2ejπ/4,25), (7
2e−jπ/4,−25)}
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Exercise

I Find the spectrum of the signal:

x(t) = 6 + 4 cos(10πt + π/3) + 5 cos(20πt − π/7).
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Time-domain and Frequency-domain
I Signals are naturally observed in the time-domain.
I A signal can be illustrated in the time-domain by plotting it

as a function of time.
I The frequency-domain provides an alternative perspective

of the signal based on sinusoids:
I Starting point: arbitrary signals can be expressed as sums

of sinusoids (or equivalently complex exponentials).
I The frequency-domain representation of a signal indicates

which complex exponentials must be combined to produce
the signal.

I Since complex exponentials are fully described by
amplitude, phase, and frequency it is sufficient to just
specify a list of theses parameters.
I Actually, we list pairs of complex amplitudes (Aejφ) and

frequencies f and refer to this list as X (f ).
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Time-domain and Frequency-domain
I It is possible (but not necessarily easy) to find X (f ) from

x(t): this is called Fourier or spectrum analysis.
I Similarly, one can construct x(t) from the spectrum X (f ):

this is called Fourier synthesis.
I Notation: x(t)↔ X (f ).
I Example (from earlier):

I Time-domain: signal

x(t) = 3 + 5 cos(20πt − π/2) + 7 cos(50πt + π/4).

I Frequency Domain: spectrum

X (f ) = {(3,0), ( 5
2e−jπ/2,10), ( 5

2ejπ/2,−10),
( 7

2ejπ/4,25), ( 7
2e−jπ/4,−25)}
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Plotting a Spectrum
I To illustrate the spectrum of a signal, one typically plots the

magnitude versus frequency.
I Sometimes the phase is plotted versus frequency as well.
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Why Bother with the Frequency-Domain?
I In many applications, the frequency contents of a signal is

very important.
I For example, in radio communications signals must be

limited to occupy only a set of frequencies allocated by the
FCC.

I Hence, understanding and analyzing the spectrum of a
signal is crucial from a regulatory perspective.

I Often, features of a signal are much easier to understand
in the frequency domain. (Example on next slides).

I We will see later in this class, that the frequency-domain
interpretation of signals is very useful in connection with
linear, time-invariant systems.
I Example: A low-pass filter retains low frequency

components of the spectrum and removes high-frequency
components.
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Example: Original signal

0 0.5 1 1.5 2
Time (s)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
A

m
p

lit
u

d
e

490 495 500 505 510
Frequency (Hz)

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

S
p

e
c
tr

u
m

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis 80



Sum of Sinusoidal Signals Time and Frequency-Domain Periodic Signals Time-Frequency Spectrum Operations on Spectrum

Example: Corrupted signal
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Synthesis: From Frequency to Time-Domain
I Synthesis is a straightforward process; it is a lot like

following a recipe.
I Ingredients are given by the spectrum

X (f ) = {(X0,0), (X1, f1), (X ∗1 ,−f1), . . . , (XN , fN), (X ∗N ,−fN)}

Each pair indicates one complex exponential component
by listing its frequency and complex amplitude.

I Instructions for combining the ingredients and producing
the (time-domain) signal:

x(t) =
N

∑
n=−N

Xn exp(j2πfnt).

I Always simplify the expression you obtain!
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Example
I Problem: Find the signal x(t) corresponding to

X (f ) = {(3,0), (5
2e−jπ/2,10), (5

2ejπ/2,−10),
(7

2ejπ/4,25), (7
2e−jπ/4,−25)}

I Solution:

x(t) = 3 +5
2e−jπ/2ej2π10t + 5

2ejπ/2e−j2π10t

+7
2ejπ/4ej2π25t + 7

2e−jπ/4e−j2π25t

I Which simplifies to:

x(t) = 3 + 5 cos(20πt − π/2) + 7 cos(50πt + π/4).
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Exercise

I Find the signal with the spectrum:

X (f ) = {(5,0), (2e−jπ/4,10), (2ejπ/4,−10),
(5

2ejπ/4,15), (5
2e−jπ/4,−15)
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Analysis: From Time to Frequency-Domain
I The objective of spectrum or Fourier analysis is to find the

spectrum of a time-domain signal.
I We will restrict ourselves to signals x(t) that are sums of

sinusoids

x(t) = A0 +
N

∑
i=1

Ai cos(2πfi t + φi).

I We have already shown that such signals have spectrum:

X (f ) = {(X0,0), (
1
2

X1, f1), (
1
2

X ∗1 ,−f1), . . . , (
1
2

XN , fN), (
1
2

X ∗N ,−fN)}

where X0 = A0 and Xi = Aiejφi .
I We will investigate some interesting signals that can be

written as a sum of sinusoids.
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Beat Notes
I Consider the signal

x(t) = 2 · cos(2π5t) · cos(2π400t).

I This signal does not have the form of a sum of sinusoids;
hence, we can not determine it’s spectrum immediately.
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MATLAB Code for Beat Notes
% Parameters
fs = 8192;
dur = 2;

f1 = 5;
f2 = 400;
A = 2;

NP = round(2*fs/f1); % number of samples to plot

% time axis and signal
tt=0:1/fs:dur;
xx = A*cos(2*pi*f1*tt).*cos(2*pi*f2*tt);

plot(tt(1:NP),xx(1:NP),tt(1:NP),A*cos(2*pi*f1*tt(1:NP)),’r’)
xlabel(’Time(s)’)
ylabel(’Amplitude’)
grid
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Beat Notes as a Sum of Sinusoids
I Using the inverse Euler relationships, we can write

x(t) = 2 · cos(2π5t) · cos(2π400t)
= 2 · 1

2 · (ej2π5t + e−j2π5t ) · 1
2 · (ej2π400t + e−j2π400t ).

I Multiplying out yields:

x(t) =
1
2
(ej2π405t + e−j2π405t ) +

1
2
(ej2π395t + e−j2π395t ).

I Applying Euler’s relationship, lets us write:

x(t) = cos(2π405t) + cos(2π395t).
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Spectrum of Beat Notes
I We were able to rewrite the beat notes as a sum of

sinusoids

x(t) = cos(2π405t) + cos(2π395t).

I Note that the frequencies in the sum, 395 Hz and 405 Hz,
are the sum and difference of the frequencies in the
original product, 5 Hz and 400 Hz.

I It is now straightforward to determine the spectrum of the
beat notes signal:

X (f ) = {(1
2
,405), (

1
2
,−405), (

1
2
,395), (

1
2
,−395)}
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Spectrum of Beat Notes
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Amplitude Modulation

I Amplitude Modulation is used in communication systems.
I The objective of amplitude modulation is to move the

spectrum of a signal m(t) from low frequencies to high
frequencies.
I The message signal m(t) may be a piece of music; its

spectrum occupies frequencies below 20 KHz.
I For transmission by an AM radio station this spectrum must

be moved to approximately 1 MHz.
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Amplitude Modulation

I Conventional amplitude modulation proceeds in two steps:
1. A constant A is added to m(t) such that A + m(t) > 0 for all

t .
2. The sum signal A + m(t) is multiplied by a sinusoid

cos(2πfc t), where fc is the radio frequency assigned to the
station.

I Consequently, the transmitted signal has the form:

x(t) = (A + m(t)) · cos(2πfc t).
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Amplitude Modulation

I We are interested in the spectrum of the AM signal.
I However, we cannot compute X (f ) for arbitrary message

signals m(t).
I For the special case m(t) = cos(2πfmt) we can find the

spectrum.
I To mimic the radio case, fm would be a frequency in the

audible range.
I As before, we will first need to express the AM signal x(t)

as a sum of sinusoids.
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Amplitude Modulated Signal
I For m(t) = cos(2πfmt), the AM signal equals

x(t) = (A + cos(2πfmt)) · cos(2πfc t).

I This simplifies to

x(t) = A · cos(2πfc t) + cos(2πfmt) · cos(2πfc t).

I Note that the second term of the sum is a beat notes signal
with frequencies fm and fc .

I We know that beat notes can be written as a sum of
sinusoids with frequencies equal to the sum and difference
of fm and fc :

x(t) = A · cos(2πfc t)+
1
2
cos(2π(fc + fm)t)+

1
2
cos(2π(fc− fm)t).
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Plot of Amplitude Modulated Signal
For A = 2, fm = 50, and fc = 400, the AM signal is plotted
below.
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Spectrum of Amplitude Modulated Signal

I The AM signal is given by

x(t) = A · cos(2πfc t)+
1
2
cos(2π(fc + fm)t)+

1
2
cos(2π(fc− fm)t).

I Thus, its spectrum is

X (f ) = { (A
2 , fc), (

A
2 ,−fc),

(1
4 , fc + fm), (1

4 ,−fc − fm), (1
4 , fc − fm), (1

4 ,−fc + fm)}
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Spectrum of Amplitude Modulated Signal
For A = 2, fm = 50, and fc = 400, the spectrum of the AM
signal is plotted below.
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Spectrum of Amplitude Modulated Signal

I It is interesting to compare the spectrum of the signal
before modulation and after multiplication with cos(2πfc t).

I The signal s(t) = A + m(t) has spectrum

S(f ) = {(A,0), (1
2
,50), (

1
2
,−50)}.

I The modulated signal x(t) has spectrum

X (f ) = { (A
2 ,400), (A

2 ,−400),
(1

4 ,450), (1
4 ,−450), (1

4 ,350), (1
4 ,−350)}

I Both are plotted on the next page.
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Spectrum before and after AM
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Spectrum before and after AM

I Comparison of the two spectra shows that amplitude
modulation indeed moves a spectrum from low frequencies
to high frequencies.

I Note that the shape of the spectrum is precisely preserved.
I Amplitude modulation can be described concisely by

stating:
I Half of the original spectrum is shifted by fc to the right, and

the other half is shifted by fc to the left.
I Question: How can you get the original signal back so that

you can listen to it.
I This is called demodulation.
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Lecture: Periodic Signals
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What are Periodic Signals?
I A signal x(t) is called periodic if there is a constant T0

such that
x(t) = x(t + T0) for all t .

I In other words, a periodic signal repeats itself every T0
seconds.

I The interval T0 is called the fundamental period of the
signal.

I The inverse of T0 is the fundamental frequency of the
signal.

I Example:
I A sinusoidal signal of frequency f is periodic with period

T0 = 1/f .
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Harmonic Frequencies
I Consider a sum of sinusoids:

x(t) = A0 +
N

∑
i=1

Ai cos(2πfi t + φi).

I A special case arises when we constrain all frequencies fi
to be integer multiples of some frequency f0:

fi = i · f0.

I The frequencies fi are then called harmonic frequencies of
f0.

I We will show that sums of sinusoids with frequencies that
are harmonics are periodic.
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Harmonic Signals are Periodic

I To establish periodicity, we must show that there is T0 such
x(t) = x(t + T0).

I Begin with

x(t + T0) = A0 + ∑N
i=1 Ai cos(2πfi(t + T0) + φi)

= A0 + ∑N
i=1 Ai cos(2πfi t + 2πfiT0 + φi)

I Now, let f0 = 1/T0 and use the fact that frequencies are
harmonics: fi = i · f0.
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Harmonic Signals are Periodic
I Then, fi · T0 = i · f0 · T0 = i and hence

x(t + T0) = A0 + ∑N
i=1 Ai cos(2πfi t + 2πfiT0 + φi)

= A0 + ∑N
i=1 Ai cos(2πfi t + 2πi + φi)

I We can drop the 2πi terms and conclude that
x(t + T0) = x(t).

I Conclusion: A signal of the form

x(t) = A0 +
N

∑
i=1

Ai cos(2πi · f0t + φi)

is periodic with period T0 = 1/f0.
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Finding the Fundamental Frequency
I Often one is given a set of frequencies f1, f2, . . . , fN and is

required to find the fundamental frequency f0.
I Specifically, this means one must find a frequency f0 and

integers n1,n2, . . . ,nN such that all of the following
equations are met:

f1 = n1 · f0
f2 = n2 · f0

...
fN = nN · f0

I Note that there isn’t always a solution to the above
problem.
I However, if all frequencies are integers a solution exists.
I Even if all frequencies are rational a solution exists.
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Example
I Find the fundamental frequency for the set of frequencies

f1 = 12, f2 = 27, f3 = 51.
I Set up the equations:

12 = n1 · f0
27 = n2 · f0
51 = n3 · f0

I Try the solution n1 = 1; this would imply f0 = 12. This
cannot satisfy the other two equations.

I Try the solution n1 = 2; this would imply f0 = 6. This
cannot satisfy the other two equations.

I Try the solution n1 = 3; this would imply f0 = 4. This
cannot satisfy the other two equations.

I Try the solution n1 = 4; this would imply f0 = 3. This can
satisfy the other two equations with n2 = 9 and n3 = 17.
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Example
I Note that the three sinusoids complete a cycle at the same

time at T0 = 1/f0 = 1/3s.
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A Few Things to Note

I Note that the fundamental frequency f0 that we determined
is the greatest common divisor (gcd) of the original
frequencies.
I f0 = 3 is the gcd of f1 = 12, f2 = 27, and f3 = 51.

I The integers ni are the number of full periods (cycles) the
sinusoid of freqency fi completes in the fundamental period
T0 = 1/f0.
I For example, n1 = f1 · T0 = f1 · 1/f0 = 4.
I The sinusoid of frequency f1 completes n1 = 4 cycles

during the period T0.
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Exercise

I Find the fundamental frequency for the set of frequencies
f1 = 2, f2 = 3.5, f3 = 5.
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Fourier Series
I We have shown that a sum of sinusoids with harmonic

frequencies is a periodic signal.
I One can turn this statement around and arrive at a very

important result:
Any periodic signal can be expressed as a sum of

sinusoids with harmonic frequencies.

I The resulting sum is called the Fourier Series of the signal.
I Put differently, a periodic signal can always be written in

the form

x(t) = A0 + ∑N
i=1 Ai cos(2πif0t + φi)

= X0 + ∑N
i=1 Xiej2πif0t + X ∗i e−j2πif0t

with X0 = A0 and Xi =
Ai
2 ejφi .
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Fourier Series

I For a periodic signal the complex amplitudes Xi can be
computed using a (relatively) simple formula.

I Specifically, for a periodic signal x(t) with fundamental
period T0 the complex amplitudes Xi are given by:

Xi =
1
T0

∫ T0

0
x(t) · e−j2πit/T0dt .

I Note that the integral above can be evaluated over any
interval of length T0.
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Example: Square Wave

I A square wave signal is periodic and between t = 0 and
t = T0 it equals

x(t) =

{
1 0 ≤ t < T0

2
−1 T0

2 ≤ t < T0

I From the Fourier Series expansion it follows that x(t) can
be written as

x(t) =
∞

∑
n=0

4
(2n− 1)π

cos(2π(2n− 1)ft − π/2)
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25-Term Approximation to Square Wave

x(t) =
25

∑
n=0

4
(2n− 1)π

cos(2π(2n− 1)ft − π/2)
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Limitations of Sum-of-Sinusoid Signals
I So far, we have considered only signals that can be written

as a sum of sinusoids.

x(t) = A0 +
N

∑
i=1

Ai cos(2πfi t + φi).

I For such signals, we are able to compute the spectrum.
I Note, that signals of this form

I are assumed to last forever, i.e., for −∞ < t < ∞,
I and their spectrum never changes.

I While such signals are important and useful conceptually,
they don’t describe real-world signals accurately.

I Real-world signals
I are of finite duration,
I their spectrum changes over time.
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Musical Notation
I Musical notation (“sheet music”) provides a way to

represent real-world signals: a piece of music.
I As you know, sheet music

I places notes on a scale to reflect the frequency of the tone
to be played,

I uses differently shaped note symbols to indicate the
duration of each tone,

I provides the order in which notes are to be played.
I In summary, musical notation captures how the spectrum

of the music-signal changes over time.
I We cannot write signals whose spectrum changes with

time as a sum of sinusoids.
I A static spectrum is insufficient to describe such signals.

I Alternative: time-frequency spectrum
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Example: Musical Scale

Note C D E F G A B C
Frequency (Hz) 262 294 330 349 392 440 494 523

Table: Musical Notes and their Frequencies
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Example: Musical Scale
I If we play each of the notes for 250 ms, then the resulting

signal can be summarized in the time-frequency spectrum
below.
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MATLAB Spectrogram Function

I MATLAB has a function spectrogram that can be used to
compute the time-frequency spectrum for a given signal.
I The resulting plots are similar to the one for the musical

scale on the previous slide.
I Typically, you invoke this function as

spectrogram( xx, 256, 128, 256,
fs,’yaxis’),
where xx is the signal to be analyzed and fs is the
sampling frequency.

I The spectrogram for the musical scale is shown on the
next slide.

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis 119



Sum of Sinusoidal Signals Time and Frequency-Domain Periodic Signals Time-Frequency Spectrum Operations on Spectrum

Spectrogram: Musical Scale
I The color indicates the magnitude of the spectrum at a

given time and frequency.
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Chirp Signals
I Objective: construct a signal such that its frequency

increases with time.
I Starting Point: A sinusoidal signal has the form:

x(t) = A cos(2πf0t + φ).

I We can consider the argument of the cos as a time-varying
phase function

Ψ(t) = 2πf0t + φ.

I Question: What happens when we allow more general
functions for Ψ(t)?
I For example, let

Ψ(t) = 700πt2 + 440πt + φ.
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Spectrogram: cos(Ψ(t))
I Question: How is he time-frequency spectrum related to

Ψ(t)?
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Instantaneous Frequency
I For a regular sinusoid, Ψ(t) = 2πf0t + φ and the frequency

equals f0.
I This suggests as a possible relationship between Ψ(t) and

f0
f0 =

1
2π

d
dt

Ψ(t).

I If the above derivative is not a constant, it is called the
instantaneous frequency of the signal, fi(t).

I Example: For Ψ(t) = 700πt2 + 440πt + φ we find

fi(t) =
1

2π

d
dt

(700πt2 + 440πt + φ) = 700t + 220.

I This describes precisely the red line in the spectrogram on
the previous slide.
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Constructing a Linear Chirp
I Objective: Construct a signal such that its frequency is

initially f1 and increases linear to f2 after T seconds.
I Solution: The above suggests that

fi(t) =
f2 − f1

T
t + f1.

I Consequently, the phase function Ψ(t) must be

Ψ(t) = 2π
f2 − f1

2T
t2 + 2πf1t + φ

I Note that φ has no influence on the spectrum; it is usually
set to 0.
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Constructing a Linear Chirp

I Example: Construct a linear chirp such that the frequency
decreases from 1000 Hz to 200 Hz in 2 seconds.

I The desired signal must be

x(t) = cos(−2π200t2 + 2π1000t).
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Exercise

I Construct a linear chirp such that the frequency increases
from 50 Hz to 200 Hz in 3 seconds.

I Sketch the time-frequency spectrum of the following signal

x(t) = cos(2π500t + 100 cos(2π2t))
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Signal Operations in the Frequency Domain

I Signal processing implies that we apply operations to
signals; Examples include:
I Adding two signals
I Delaying a signal
I Multiplying a signal with a complex exponential signal

I Question: What does each of these operation do the
spectrum of the signal?
I We will answer that question for some common signal

processing operations.
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Scaling a Signal
I Let x(t) be a signal with spectrum X (f ) = {(Xn, fn)}n.
I Question: If c is a scalar constant, what is the spectrum of

the signal y(t) = c · x(t)?
I Since

x(t) = ∑
n

Xn · ej2πfnt

y(t) = c · x(t) = ∑
n

c · Xn · ej2πfnt .

I Therefore,
Y (f ) = {(c · Xn, fn)}n.

I We use the short-hand Y (f ) = c · X (f ) to denote
{(c · Xn, fn)}n.
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Adding Two Signals
I Let x(t) and y(t) be signals with spectra X (f ) and Y (f ).
I Question: What is the spectrum of the signal

z(t) = x(t) + y(t)?
I Since

z(t) = x(t) + y(t) = ∑
n

Xn · ej2πfnt + ∑
n

Yn · ej2πfnt

Z (f ) = {(Xn + Yn, fn)}n.

I We use the short-hand Z (f ) = X (f ) + Y (f ) to denote
{(Xn + Yn, fn)}.

I Example: What is the spectrum Z (f ) when signals with
spectra X (f ) = {(3,0), (1,1), (1,−1), (2,2), (2,−2)} and
Y (f ) = {(j ,1), (−j ,−1), (1,3), (1,−3)} are added?
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Delaying a Signal
I Let x(t) be a signal and X (f ) = {(Xn, fn)}n denotes its

spectrum.
I Question: What is the spectrum of the signal

y(t) = x(t − τ)?
I Since

y(t) = x(t − τ) = ∑
n

Xn · ej2πfn(t−τ) = ∑
n

Xne−j2πfnτ · ej2πfnt

it follows that

Y (f ) = {(Xne−j2πfnτ, fn)}n.

I Notice that delaying a signal induces phase shifts in the
spectrum

I The phase shifts are proportional to the delay τ and the
frequencies fn.
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Delaying a Signal – Example

I Example: What is the spectrum Y (f ) when the signal with
spectrum X (f ) = {(3,0), (1,1), (1,−1), (2,2), (2,−2)} is
shifted by τ = 1

4?
I Answer:

Y (f ) = {(3,0), (−j ,1), (j ,−1), (−2,2), (−2,−2)}
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Multiplying by a Complex Exponential
I Let x(t) be a signal and X (f ) = {(c · Xn, fn)}n denotes its

spectrum.
I Question: What is the spectrum of the signal

y(t) = x(t) · ej2πfc t?
I Since

y(t) = x(t) ·ej2πfc t = ∑
n

Xn ·ej2πfnt ·ej2πfc t = ∑
n

Xn ·ej2π(fn+fc)t

it follows that
Y (f ) = {Xn, fn + fc}

I Notice that the entire spectrum is shifted by fc , i.e.,
Y (f ) = X (f + fc).

I Notice the “symmetry” with the time delay operation — this
is called duality.
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Exercise: Spectrum of AM Signal
I We discussed that amplitude modulation processess a

message signal to produce the transmitted signal s(t):

s(t) = (A + m(t)) · cos(2πfc t).

I Assume that the spectrum of m(t) is M(f ).
I Question: Use the Spectrum Operations we discussed to

express the spectrum S(f ) in terms of M(f ).
I Answer:

S(f ) =
1
2

M(f + fc) +
1
2

M(f − fc) + {(
A
2
, fc) + {(

A
2
,−fc)}
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Part IV

Sampling of Signals
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Lecture: Introduction to Sampling

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis 135



Introduction to Sampling

Sampling and Discrete-Time Signals

I MATLAB, and other digital processing systems, can not
process continuous-time signals.

I Instead, MATLAB requires the continuous-time signal to be
converted into a discrete-time signal.

I The conversion process is called sampling.
I To sample a continuous-time signal, we evaluate it at a

discrete set of times tn = nTs, where
I n is a integer,
I Ts is called the sampling period (time between samples),
I fs = 1/Ts is the sampling rate (samples per second).
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Sampling and Discrete-Time Signals

I Sampling results in a sequence of samples

x(nTs) = A · cos(2πfnTs + φ).

I Note that the independent variable is now n, not t .
I To emphasize that this is a discrete-time signal, we write

x [n] = A · cos(2πfnTs + φ).

I Sampling is a straightforward operation.
I We will see that the sampling rate fs must be chosen with

care!
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Sampled Signals in MATLAB
I Note that we have worked with sampled signals whenever

we have used MATLAB.
I For example, we use the following MATLAB fragment to

generate a sinusoidal signal:
fs = 100;
tt = 0:1/fs:3;
xx = 5*cos(2*pi*2*tt + pi/4);

I The resulting signal xx is a discrete-time signal:
I The vector xx contains the samples, and
I the vector tt specifies the sampling instances:

0,1/fs,2/fs, . . . ,3.
I We will now turn our attention to the impact of the sampling

rate fs.
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Example: Three Sinuoids

I Objective: In MATLAB, compute sampled versions of
three sinusoids:

1. x(t) = cos(2πt + π/4)
2. x(t) = cos(2π9t − π/4)
3. x(t) = cos(2π11t + π/4)

I The sampling rate for all three signals is fs = 10.
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MATLAB code
% plot_SamplingDemo - Sample three sinusoidal signals to
% demonstrate the impact of sampling

%% set parameters
fs = 10;
dur = 10;

%% generate signals
tt = 0:1/fs:dur;
xx1 = cos(2*pi*tt+pi/4);
xx2 = cos(2*pi*9*tt-pi/4);
xx3 = cos(2*pi*11*tt+pi/4);

%% plot
plot(tt,xx1,’:o’,tt,xx2,’:x’,tt,xx3,’:+’);
xlabel(’Time (s)’)
grid
legend(’f=1’,’f=9’,’f=11’,’Location’,’EastOutside’)
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Resulting Plot
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What happened?

I The samples for all three signals are identical: how is that
possible?

I Is there a “bug” in the MATLAB code?
I No, the code is correct.

I Suspicion: The problem is related to our choice of
sampling rate.
I To test this suspicion, repeat the experiment with a different

sampling rate.
I We also reduce the duration to keep the number of samples

constant - that keeps the plots reasonable.
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MATLAB code
% plot_SamplingDemoHigh - Sample three sinusoidal signals to
% demonstrate the impact of sampling

%% set parameters
fs = 100;
dur = 1;

%% generate signals
tt = 0:1/fs:dur;
xx1 = cos(2*pi*tt+pi/4);
xx2 = cos(2*pi*9*tt-pi/4);
xx3 = cos(2*pi*11*tt+pi/4);

%% plots
plot(tt,xx1,’-*’,tt,xx2,’-x’,tt,xx3,’-+’,...

tt(1:10:end), xx1(1:10:end),’ok’);
grid
xlabel(’Time (s)’)
legend(’f=1’,’f=9’,’f=11’,’f_s=10’,’Location’,’EastOutside’)
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Resulting Plot
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The Influence of the Sampling Rate

I Now the three sinusoids are clearly distinguishable and
lead to different samples.

I Since the only parameter we changed is the sampling rate
fs, it must be responsible for the ambiguity in the first plot.

I Notice also that every 10-th sample (marked with a black
circle) is identical for all three sinusoids.
I Since the sampling rate was 10 times higher for the second

plot, this explains the first plot.
I It is useful to investigate the effect of sampling

mathematically, to understand better what impact it has.
I To do so, we focus on sampling sinusoidal signals.
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Sampling a Sinusoidal Signal

I A continuous-time sinusoid is given by

x(t) = A cos(2πft + φ).

I When this signal is sampled at rate fs, we obtain the
discrete-time signal

x [n] = A cos(2πfn/fs + φ).

I It is useful to define the normalized frequency f̂d = f
fs

, so
that

x [n] = A cos(2πf̂dn + φ).
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Three Cases

I We will distinguish between three cases:
1. 0 ≤ f̂d ≤ 1/2 (Oversampling, this is what we want!)
2. 1/2 < f̂d ≤ 1 (Undersampling, folding)
3. 1 < f̂d ≤ 3/2 (Undersampling, aliasing)

I This captures the three situations addressed by the first
example:

1. f = 1, fs = 10⇒ f̂d = 1/10
2. f = 9, fs = 10⇒ f̂d = 9/10
3. f = 11, fs = 10⇒ f̂d = 11/10

I We will see that all three cases lead to identical samples.
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Oversampling

I When the sampling rate is such that 0 ≤ f̂d ≤ 1/2, then
the samples of the sinusoidal signal are given by

x [n] = A cos(2πf̂dn + φ).

I This cannot be simplified further.
I It provides our base-line.
I Oversampling is the desired behaviour!
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Undersampling, Aliasing
I When the sampling rate is such that 1 < f̂d ≤ 3/2, then we

define the apparent frequency f̂a = f̂d − 1.
I Notice that 0 < f̂a ≤ 1/2 and f̂d = f̂a + 1.

I For f = 11, fs = 10⇒ f̂d = 11/10⇒ f̂a = 1/10.
I The samples of the sinusoidal signal are given by

x [n] = A cos(2πf̂dn + φ) = A cos(2π(1 + f̂a)n + φ).

I Expanding the terms inside the cosine,

x [n] = A cos(2πf̂an + 2πn + φ) = A cos(2πf̂an + φ)

I Interpretation: The samples are identical to those from a
sinusoid with frequency f = f̂a · fs and phase φ.
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Undersampling, Folding
I When the sampling rate is such that 1/2 < f̂d ≤ 1, then we

introduce the apparent frequency f̂a = 1− f̂d ; again
0 < f̂a ≤ 1/2; also f̂d = 1− f̂a.
I For f = 9, fs = 10⇒ f̂d = 9/10⇒ f̂a = 1/10.

I The samples of the sinusoidal signal are given by

x [n] = A cos(2πf̂dn + φ) = A cos(2π(1− f̂a)n + φ).

I Expanding the terms inside the cosine,

x [n] = A cos(−2πf̂an + 2πn + φ) = A cos(−2πf̂an + φ)

I Because of the symmetry of the cosine, this equals

x [n] = A cos(2πf̂an− φ).

I Interpretation: The samples are identical to those from a
sinusoid with frequency f = f̂a · fs and phase −φ (phase
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Sampling Higher-Frequency Sinusoids
I For sinusoids of even higher frequencies f , either folding or

aliasing occurs.
I As before, let f̂d be the normalized frequency f /fs.
I Decompose f̂d into an integer part N and fractional part fp.

I Example: If f̂d is 5.7 then N equals 5 and fp is 0.7.
I Notice that 0 ≤ fp < 1, always.

I Phase Reversal occurs when the phase of the sampled
sinusoid is the negative of the phase of the
continuous-time sinusoid.

I We distinguish between
I Folding occurs when fp > 1/2. Then the apparent

frequency f̂a equals 1− fp and phase reversal occurs.
I Aliasing occurs when fp ≤ 1/2. Then the apparent

frequency is f̂a = fp; no phase reversal occurs.
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Examples

I For the three sinusoids considered earlier:
1. f = 1, φ = π/4, fs = 10⇒ f̂d = 1/10
2. f = 9, φ = −π/4, fs = 10⇒ f̂d = 9/10
3. f = 11, φ = π/4, fs = 10⇒ f̂d = 11/10

I The first case, represents oversampling: The apparent
frequency f̂a = f̂d and no phase reversal occurs.

I The second case, represents folding: The apparent f̂a
equals 1− f̂d and phase reversal occurs.

I In the final example, the fractional part of f̂d = 1/10.
Hence, this case represents alising; no phase reversal
occurs.
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Exercise
The discrete-time sinusoidal signal

x [n] = 5 cos(2π0.2n− π

4
).

was obtained by sampling a continuous-time sinusoid of the
form

x(t) = A cos(2πft + φ)

at the sampling rate fs = 8000 Hz.
1. Provide three different sets of paramters A, f , and φ for the

continuous-time sinusoid that all yield the discrete-time
sinusoid above when sampled at the indicated rate. The
parameter f must satisfy 0 < f < 12000 Hz in all three
cases.

2. For each case indicate if the signal is undersampled or
oversampled and if aliasing or folding occurred.
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Experiments

I Two experiments to illustrate the effects that sampling
introduces:

1. Sampling a chirp signal.
2. Sampling a rotating phasor.
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Experiment: Sampling a Chirp Signal
I Objective: Directly observe folding and aliasing by means

of a chirp signal.
I Experiment Set-up:

I Set sampling rate. Baseline: fs = 44.1KHz (oversampled),
Comparison: fs = 8.192KHz (undersampled)

I Generate a (sampled) chirp signal with instantaneous
frequency increasing from 0 to 20KHz in 10 seconds.

I Evaluate resulting signal by
I playing it through the speaker,
I plotting the periodogram.

I Expected Outcome?
I Expected Outcome:

I Directly observe folding and aliasing in second part of
experiment.
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Periodogram of undersampled Chirp
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%% Parameters
fs = 8192; % 44.1KHz for oversampling, 8192 for undersampling

% chitp: 0 to 20KHz in 10 seconds
fstart = 0;
fend = 20e3;
dur = 10;

%% generate signal
tt = 0:1/fs:dur;
psi = 2*pi*(fend-fstart)/(2*dur)*tt.^2; % phase function
xx = cos(psi);

%% spectrogram
spectrogram( xx, 256, 128, 256, fs,’yaxis’);

%% play sound
soundsc( xx, fs);

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis 157



Introduction to Sampling

Apparent and Normalized Frequency
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Experiment: Sampling a Rotating Phasor
I Objective: Investigate sampling effects when we can

distinguish between positive and negative frequencies.
I Experiment Set-up:

I Animation: rotating phasor in the complex plane.
I Sampling rate describes the number of “snap-shots” per

second (strobes).
I Frequency the number of times the phasor rotates per

second.
I positive frequency: counter-clockwise rotation.
I negative frequency: clockwise rotation.

I Expected Outcome?
I Expected Outcome:

I Folding: leads to reversal of direction.
I Aliasing: same direction but apparent frequency is lower

than true frequency.
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True and Apparent Frequency

fs = 20
True Frequency -0.5 0 0.5 19.5 20 20.5
Apparent Frequency -0.5 0 0.5 -0.5 0 0.5

I Note, that instead of folding we observe negative
frequencies.
I occurs when true frequency equals 9.5 in above example.
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%% parameters
fs = 10; % sampling rate in frames per second
dur = 10; % signal duration in seconds

ff = 9.5; % frequency of rotating phasor
phi = 0; % initial phase of phasor
A = 1; % amplitude

%% Prepare for plot
TitleString = sprintf(’Rotating Phasor: f_d = %5.2f’, ff/fs);
figure(1)

% unit circle (plotted for reference)
cc = exp(1j*2*pi*(0:0.01:1));
ccx = A*real(cc);
cci = A*imag(cc);
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%% Animation
for tt = 0:1/fs:dur

tic; % establish time-reference
plot(ccx, cci, ’:’, ...

[0 A*cos(2*pi*ff*tt+phi)], [0 A*sin(2*pi*ff*tt+phi)], ’-ob’);
axis(’square’)
axis([-A A -A A]);
title(TitleString)
xlabel(’Real’)
ylabel(’Imag’)
grid on;

drawnow % force plots to be redrawn

te = toc;

% pause until the next sampling instant, if possible
if ( te < 1/fs)

pause(1/fs-te)
end

end
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Lecture: The Sampling Theorem
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The Sampling Theorem
I We have analyzed the relationship between the frequency

f of a sinusoid and the sampling rate fs.
I We saw that the ratio f /fs must be less than 1/2, i.e.,

fs > 2 · f . Otherwise aliasing or folding occurs.
I This insight provides the first half of the famous sampling

theorem

A continuous-time signal x(t) with frequencies no higher
than fmax can be reconstructed exactly from its samples
x [n] = x(nTs), if the the samples are taken at a rate
fs = 1/Ts that is greater than 2 · fmax .

I This very import result is attributed to Claude Shannon and
Harry Nyquist.
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Reconstructing a Signal from Samples

I The sampling theorem suggests that the original
continuous-time signal x(t) can be recreated from its
samples x [n].
I Assuming that samples were taken at a high enough rate.
I This process is referred to as reconstruction or D-to-C

conversion (discrete-time to continuous-time conversion).
I In principle, the continous-time signal is reconstructed by

placing a suitable pulse at each sample location and
adding all pulses.
I The amplitude of each pulse is given by the sample value.
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Suitable Pulses

I Suitable pulses include
I Rectangular pulse (zero-order hold):

p(t) =
{

1 for −Ts/2 ≤ t < Ts/2
0 else.

I Triangular pulse (linear interpolation)

p(t) =

 1 + t/Ts for −Ts ≤ t ≤ 0
1− t/Ts for 0 ≤ t ≤ Ts

0 else.
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Reconstruction

I The reconstructed signal x̂(t) is computed from the
samples and the pulse p(t):

x̂(t) =
∞

∑
n=−∞

x [n] · p(t − nTs).

I The reconstruction formula says:
I place a pulse at each sampling instant (p(t − nTs)),
I scale each pulse to amplitude x [n],
I add all pulses to obtain the reconstructed signal.
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Ideal Reconstruction
I Reconstruction with the above pulses will be pretty good.

I Particularly, when the sampling rate is much greater than
twice the signal frequency (significant oversampling).

I However, reconstruction is not perfect as suggested by the
sampling theorem.

I To obtain perfect reconstruction the following pulse must
be used:

p(t) =
sin(πt/Ts)

πt/Ts
.

I This pulse is called the sinc pulse.
I Note, that it is of infinite duration and, therefore, is not

practical.
I In practice a truncated version may be used for excellent

reconstruction.
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The sinc pulse
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Part V

Introduction to Linear,
Time-Invariant Systems
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Lecture: Introduction to Systems and FIR filters
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Systems
I A system is used to process an input signal x [n] and

produce the ouput signal y [n].
I We focus on discrete-time signals and systems;
I a correspoding theory exists for continuous-time signals

and systems.
I Many different systems:

I Filters: remove undesired signal components,
I Modulators and demodulators,
I Detectors.

- -Systemx[n] y[n]
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Representative Examples

I The following are examples of systems:
I Squarer: y [n] = (x [n])2;
I Modulator: y [n] = x [n] · cos(2πfd n);
I Averager: y [n] = 1

M ∑M−1
k=0 x [n− k ];

I FIR Filter: y [n] = ∑M
k=0 bk x [n− k ]

I In MATLAB, systems are generally modeled as functions
with x [n] as the first input argument and y [n] as the output
argument.
I Example: first two lines of function implementing a squarer.

function yy = squarer(xx)
% squarer - output signal is the square of the input signal
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Squarer

I System relationship between input and output signals:

y [n] = (x [n])2.

I Example: Input signal: x [n] = {1,2,3,4,3,2,1}
I Notation: x [n] = {1,2,3,4,3,2,1} means

x [0] = 1, x [1] = 2, . . ., x [6] = 1;
all other x [n] = 0.

I Output signal: y [n] = {1,4,9,16,9,4,1}.
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Modulator

I System relationship between input and output signals:

y [n] = (x [n]) · cos(2πfdn);

where the modulator frequency fd is a parameter of the
system.

I Example:
I Input signal: x [n] = {1,2,3,4,3,2,1}
I assume fd = 0.5, i.e., cos(2πfd n) = {. . . ,1,−1,1,−1, . . .}.

I Output signal: y [n] = {1,−2,3,−4,3,−2,1}.
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Averager

I System relationship between input and output signals:

y [n] = 1
M ∑M−1

k=0 x [n− k ]
= 1

M · (x [n] + x [n− 1] + . . . + x [n− (M − 1)])
= ∑M−1

k=0
1
M · x [n− k ].

I This system computes the sliding average over the M most
recent samples.

I Example: Input signal: x [n] = {1,2,3,4,3,2,1}
I For computing the output signal, a table is very useful.

I synthetic multiplication table.
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3-Point Averager (M = 3)

n -1 0 1 2 3 4 5 6 7 8
x [n] 0 1 2 3 4 3 2 1 0 0

1
M · x [n] 0 1

3
2
3 1 4

3 1 2
3

1
3 0 0

+ 1
M · x [n− 1] 0 0 1

3
2
3 1 4

3 1 2
3

1
3 0

+ 1
M · x [n− 2] 0 0 0 1

3
2
3 1 4

3 1 2
3

1
3

y [n] 0 1
3 1 2 3 10

3 3 2 1 1
3

I y [n] = { 1
3 ,1,2,3,

10
3 ,3,2,1, 1

3}
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General FIR Filter

I The M-point averager is a special case of the general FIR
filter.
I FIR stands for Finite Impulse Response; we will see what

this means later.
I The system relationship between the input x [n] and the

output y [n] is given by

y [n] =
M−1

∑
k=0

bk · x [n− k ].

I M is the number of filter coefficients.
I M − 1 is called the order of the filter.
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General FIR Filter
I System relationship:

y [n] =
M−1

∑
k=0

bk · x [n− k ].

I The filter coefficients bk determine the characteristics of
the filter.
I Much more on the relationship between the filter

coefficients bk and the characteristics of the filter later.
I Clearly, with bk = 1

M for k = 0,1, . . . ,M − 1 we obtain the
M-point averager.

I Again, computation of the output signal can be done via a
synthetic multiplication table.
I Example: x [n] = {1,2,3,4,3,2,1} and bk = {1,−2,1}.
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FIR Filter (bk = {1,−2,1})

n -1 0 1 2 3 4 5 6 7 8
x [n] 0 1 2 3 4 3 2 1 0 0

1 · x [n] 0 1 2 3 4 3 2 1 0 0
−2 · x [n− 1] 0 0 -2 -4 -6 -8 -6 -4 -2 0
+1 · x [n− 2] 0 0 0 1 2 3 4 3 2 1

y [n] 0 1 0 0 0 -2 0 0 0 1

I y [n] = {1,0,0,0,−2,0,0,0,1}
I Note that the output signal y [n] is longer than the input

signal x [n].
I Note, synthetic multiplication works only for short,

finite-duration signal.
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Exercise

1. Find the output signal y [n] for an FIR filter

y [n] =
M−1

∑
k=0

bk · x [n− k ]

with filter coefficients bk = {1,−1,2} when the input signal
is x [n] = {1,2,4,2,4,2,1}.
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Unit Step Sequence and Unit Step Response
I The signal with samples

u[n] =
{

1 for n ≥ 0,
0 for n < 0

is called the unit-step sequence or unit-step signal.
I The output of an FIR filter when the input is the unit-step

signal (x [n] = u[n]) is called the unit-step response r [n].

- -u[n] r[n]FIR Filter
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Unit-Step Response of the 3-Point Averager

I Input signal: x [n] = u[n].
I Output signal: r [n] = 1

3 ∑2
k=0 u[n− k ].

n -1 0 1 2 3 . . .
u[n] 0 1 1 1 1 . . .

1
3u[n] 0 1

3
1
3

1
3

1
3 . . .

+1
3u[n− 1] 0 0 1

3
1
3

1
3 . . .

+1
3u[n− 2] 0 0 0 1

3
1
3 . . .

r [n] 0 1
3

2
3 1 1 . . .
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Unit-Impulse Sequence and Unit-Impulse Response
I The signal with samples

δ[n] =
{

1 for n = 0,
0 for n 6= 0

is called the unit-impulse sequence or unit-impulse signal.
I The output of an FIR filter when the input is the

unit-impulse signal (x [n] = δ[n]) is called the unit-impulse
response, denoted h[n].

I Typically, we will simply call the above signals simply
impulse signal and impulse response.

I We will see that the impulse-response captures all
characteristics of a FIR filter.
I This implies that impulse response is a very important

concept!
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Unit-Impulse Response of a FIR Filter

I Input signal: x [n] = δ[n].
I Output signal: h[n] = ∑M−1

k=0 bk δ[n− k ].

n -1 0 1 2 3 . . . M
δ[n] 0 1 0 0 0 . . . 0

b0 · δ[n] 0 b0 0 0 0 . . . 0
+b1 · δ[n− 1] 0 0 b1 0 0 . . . 0
+b2 · δ[n− 2] 0 0 0 b2 0 . . . 0

...
...

+bM · δ[n−M ] 0 0 0 0 0 . . . bM
h[n] 0 b0 b1 b2 b3 . . . bM
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Important Insights
I For an FIR filter, the impulse response equals the

sequence of filter coefficients:

h[n] =
{

bn for n = 0,1, . . . ,M − 1
0 else.

I Because of this relationship, the system relationship for an
FIR filter can also be written as

y [n] = ∑M−1
k=0 bkx [n− k ]

= ∑M−1
k=0 h[k ]x [n− k ]

= ∑∞
−∞ h[k ]x [n− k ].

I The operation y [n] = h[n] ∗ x [n] = ∑∞
−∞ h[k ]x [n− k ] is

called convolution; it is a very, very important operation.
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Exercise

1. Find the impulse response h[n] for the FIR filter with
difference equation

y [n] = 2 · x [n] + x [n− 1]− 3 · x [n− 3].

2. Compute the output signal, when the input signal is
x [n] = u[n].

3. Compute the output signal, when the input signal is
x [n] = exp(−αn) · u[n].
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Lecture: Linear, Time-Invariant Systems
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Introduction
I We have introduced systems as devices that process an

input signal x [n] to produce an output signal y [n].
I Example Systems:

I Squarer: y [n] = (x [n])2

I Modulator: y [n] = x [n] · cos(2πfd n), with 0 < fd ≤ 1
2 .

I FIR Filter:

y [n] =
M−1

∑
k=0

h[k ] · x [n− k ].

Recall that h[k ] is the impulse response of the filter and that
the above operation is called convolution of h[n] and x [n].

I Objective: Define important characteristics of systems
and determine which systems possess these
characteristics.
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Causal Systems
I Definition: A system is called causal when it uses only the

present and past samples of the input signal to compute
the present value of the output signal.

I Causality is usually easy to determine from the system
equation:
I The output y [n] must depend only on input samples

x [n], x [n− 1], x [n− 2], . . ..
I Input samples x [n + 1], x [n + 2], . . . must not be used to

find y [n].
I Examples:

I All three systems on the previous slide are causal.
I The following system is non-causal:

y [n] =
1
3

1

∑
k=−1

x [n− k ] =
1
3
(x [n + 1] + x [n] + x [n− 1]).
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Linear Systems
I The following test procedure defines linearity and shows

how one can determine if a system is linear:
1. Reference Signals: For i = 1,2, pass input signal xi [n]

through the system to obtain output yi [n].
2. Linear Combination: Form a new signal x [n] from the

linear combination of x1[n] and x2[n]:

x [n] = x1[n] + x2[n].

Then, Pass signal x [n] through the system and obtain y [n].
3. Check: The system is linear if

y [n] = y1[n] + y2[n]

I The above must hold for all inputs x1[n] and x2[n].
I For a linear system, the superposition principle holds.
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Illustration

l
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�
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��	

These two outputs
must be identical

System

System

System
x [n]

x1[n]

x2[n]

y1[n]

y2[n]

x1[n]

x2[n]

y [n]

y [n]
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Example: Squarer

I Squarer: y [n] = (x [n])2

1. References: yi [n] = (xi [n])2 for i = 1,2.
2. Linear Combination: x [n] = x1[n] + x2[n] and

y [n] = (x [n])2 = (x1[n] + x2[n])2

= (x1[n])2 + (x2[n])2 + 2x1[n]x2[n].

3. Check:

y [n] 6= y1[n] + y2[n] = (x1[n])2 + (x2[n])2.

I Conclusion: not linear.
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Example: Modulator

I Modulator: y [n] = x [n] · cos(2πfdn)
1. References: yi [n] = xi [n] · cos(2πfd n) for i = 1,2.
2. Linear Combination: x [n] = x1[n] + x2[n] and

y [n] = x [n] · cos(2πfd n)
= (x1[n] + x2[n]) · cos(2πfd n).

3. Check:

y [n] = y1[n]+ y2[n] = x1[n] · cos(2πfd n)+ x2[n] · cos(2πfd n).

I Conclusion: linear.
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Example: FIR Filter

I FIR Filter: y [n] = ∑M−1
k=0 h[k ] · x [n− k ]

1. References: yi [n] = ∑M−1
k=0 h[k ] · xi [n− k ] for i = 1,2.

2. Linear Combination: x [n] = x1[n] + x2[n] and

y [n] =
M−1

∑
k=0

h[k ] · x [n− k ] =
M−1

∑
k=0

h[k ] · (x1[n− k ]+ x2[n− k ]).

3. Check:

y [n] = y1[n]+ y2[n] =
M−1

∑
k=0

h[k ] · x1[n− k ]+
M−1

∑
k=0

h[k ] · x2[n− k ].

I Conclusion: linear.
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Time-invariance
I The following test procedure defines time-invariance and

shows how one can determine if a system is time-invariant:

1. Reference: Pass input signal x [n] through the system to
obtain output y [n].

2. Delayed Input: Form the delayed signal xd [n] = x [n− n0].
Then, Pass signal xd [n] through the system and obtain
yd [n].

3. Check: The system is time-invariant if

y [n− n0] = yd [n]

I The above must hold for all inputs x [n] and all delays n0.
I Interpretation: A time-invariant system does not change,

over time, the way it processes the input signal.
©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis 196



Systems Special Signals Linear, Time-invariant Systems Convolution and Linear, Time-invariant Systems Implementation of FIR Systems

Illustration

@
@

@@I
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These two outputs
must be identical

x [n]

System
x [n− n0] yd [n]x [n]

Delay n0

System Delay n0
y [n] y [n− n0]
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Example: Squarer

I Squarer: y [n] = (x [n])2

1. Reference: y [n] = (x [n])2.
2. Delayed Input: xd [n] = x [n− n0] and

yd [n] = (xd [n])2 = (x [n− n0])
2.

3. Check:
y [n− n0] = (x [n− n0])

2 = yd [n].

I Conclusion: time-invariant.
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Example: Modulator

I Modulator: y [n] = x [n] · cos(2πfdn).
1. Reference: y [n] = x [n] · cos(2πfd n).
2. Delayed Input: xd [n] = x [n− n0] and

yd [n] = xd [n] · cos(2πfd n) = x [n− n0] · cos(2πfd n).

3. Check:

y [n− n0] = x [n− n0] · cos(2πfd (n− n0)) 6= yd [n].

I Conclusion: not time-invariant.
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Example: Modulator
I Alternatively, to show that the modulator is not

time-invariant, we construct a counter-example.
I Let x [n] = {0,1,2,3, . . .}, i.e., x [n] = n, for n ≥ 0.
I Also, let fd = 1

2 , so that

cos(2πfdn) =
{

1 for n even
−1 for n odd

I Then, y [n] = x [n] · cos(2πfdn) = {0,−1,2,−3, . . .}.
I With n0 = 1, xd [n] = x [n− 1] = {0,0,1,2,3, . . .}, we get

yd [n] = {0,0,1,−2,3, . . .}.
I Clearly, yd [n] 6= y [n− 1].
I not time-invariant
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Example: FIR Filter

I Reference: y [n] = ∑M−1
k=0 h[k ] · x [n− k ].

I Delayed Input: xd [n] = x [n− n0], and

yd [n] =
M−1

∑
k=0

h[k ] · xd [n− k ] =
M−1

∑
k=0

h[k ] · x [n− n0 − k ].

I Check:

y [n− n0] =
M−1

∑
k=0

h[k ] · x [n− n0 − k ] = yd [n]

I time-invariant
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Exercise

I Let u[n] be the unit-step sequence (i.e., u[n] = 1 for n ≥ 0
and u[n] = 0, otherwise).

I The system is a 3-point averager:

y [n] =
1
3
(x [n] + x [n− 1] + x [n− 2]).

1. Find the output y1[n] when the input x1[n] = u[n].
2. Find the output y2[n] when the input x2[n] = u[n− 2].
3. Find the output y [n] when the input x [n] = u[n]− u[n− 2].
4. How are linearity and time-invariance evident in your

results?
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Lecture: Convolution and Linear, Time-Invariant
Systems
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Overview

I Today: a really important, somewhat challenging, class.
I Key result: for every linear, time-invariant system (LTI

system) the output is obtained from input via convolution.
I Convolution is a very important operation!

I Prerequisites from previous classes:
I Impulse signal and impulse response,
I convolution,
I linearity, and
I time-invariance.
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Reminders: Convolution and Impulse Response
I We learned so far:

I For FIR filters, input-output relationship

y [n] =
M

∑
k=0

bk x [n− k ].

I If x [n] = δ[n], then y [n] = h[n] is called the impulse
response of the system.
I For FIR filters:

h[n] =
{

bn for 0 ≤ n ≤ M
0 else.

I Convolution: input-output relationship

y [n] = x [n] ∗h[n] =
∞

∑
k=−∞

h[k ] · x [n− k ] =
∞

∑
k=−∞

x [k ] ·h[n− k ].
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Reminders: Linearity and Time-Invariance
I Linearity:

I For arbitrary input signals x1[n] and x2[n], let the ouputs be
denoted y1[n] and y2[n].

I Further, for the input signal x [n] = x1[n] + x2[n], let the
output signal be y [n].

I The system is linear if y [n] = y1[n] + y2[n].
I Time-Invariance:

I For an arbitrary input signal x [n], let the output be y [n].
I For the delayed input xd [n] = x [n− n0], let the output be

yd [n].
I The system is time-invariant if yd [n] = y [n− n0].

I Today: For any linear, time-invariant system: input-output
relationship is y [n] = x [n] ∗ h[n].
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Preliminaries

I We need a few more facts and relationships for the impulse
signal δ[n].

I To start, recall:
I If input to a system is the impulse signal δ[n],
I then, the output is called the impulse response,
I and is denoted by h[n].

I We will derive a method for expressing arbitrary signals
x [n] in terms of impulses.
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Sifting with Impulses

I Question: What happens if we multiply a signal x [n] with
an impulse signal δ[n]?

I Because

δ[n] =
{

1 for n = 0
0 else,

I it follows that

x [n] · δ[n] = x [0] · δ[n] =
{

x [0] for n = 0
0 else
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Illustration
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Sifting with Impulses

I Related Question: What happens if we multiply a signal
x [n] with a delayed impulse signal δ[n− k ]?

I Recall that δ[n− k ] is an impulse located at the k -th
sampling instance:

δ[n− k ] =
{

1 for n = k
0 else

I It follows that

x [n] · δ[n− k ] = x [k ] · δ[n− k ] =
{

x [k ] for n = k
0 else
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Illustration
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Decomposing a Signal with Impulses

I Question: What happens if we combine (add) signals of
the form x [n] · δ[n− k ]?

I Specifically, what is

∞

∑
k=−∞

x [k ] · δ[n− k ]?

I Notice that the above sum represents the convolution of
x [n] and δ[n], δ[n] ∗ x [n].
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Decomposing a Signal with Impulses

n . . . -1 0 1 2 . . .
x [n] . . . x[-1] x[0] x[1] x[2] . . .
δ[n] . . . 0 1 0 0 . . .

...
...

...
...

...
...

...
x [−1] · δ[n + 1] . . . x[-1] 0 0 0 . . .

x [0] · δ[n] . . . 0 x[0] 0 0 . . .
x [1] · δ[n− 1] . . . 0 0 x[1] 0 . . .
x [2] · δ[n− 2] . . . 0 0 0 x[2] . . .

...
...

...
...

...
...

...

∑∞
k=−∞ x [k ] · δ[n− k ] . . . x[-1] x[0] x[1] x[2] . . .
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Decomposing a Signal with Impulses

I From these considerations we conclude that

∞

∑
k=−∞

x [k ] · δ[n− k ] = x [n].

I Notice that this implies

x [n] ∗ δ[n] = x [n].

I We now have a way to write a signal x [n] as a sum of
scaled and delayed impulses.

I Next, we exploit this relationship to derive our main result.
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Applying Linearity and Time-Invariance
I We know already that input δ[n] produces output h[n]

(impulse repsonse). We write:

δ[n] 7→ h[n].

I For a time-invariant system:

δ[n− k ] 7→ h[n− k ].

I And for a linear system:

x [k ] · δ[n− k ] 7→ x [k ] · h[n− k ].
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Derivation of the Convolution Sum
I Linearity: linear combination of input signals produces

output equal to linear combination of individual outputs.

Input 7→ Output
...

...
...

x [−1] · δ[n + 1] 7→ x [−1] · h[n + 1]
x [0] · δ[n] 7→ x [0] · h[n]

x [1] · δ[n− 1] 7→ x [1] · h[n− 1]
x [2] · δ[n− 1] 7→ x [2] · h[n− 2]

...
...

...

∑∞
k=−∞ x [k ] · δ[n− k ] = x [n] 7→ y [n] = ∑∞

k=−∞ x [k ] · h[n− k ]
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Summary and Conclusions
I We just derived the convolution sum formula:

y [n] = x [n] ∗ h[n] =
∞

∑
k=−∞

x [k ] · h[n− k ].

I We only assumed that the system is linear and
time-invariant.

I Therefore, we can conclude that for any linear,
time-invariant system, the output is the convolution of input
and impulse response.
I Needless to say: convolution and impulse response are

enormously important concepts.
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Identity System
I From our discussion, we can draw another conclusion.
I Question: How can we characterize a LTI system for

which the output y [n] is the same as the input x [n].
I Such a system is called the identity system.

I Specifically, we want the impulse response h[n] of such a
system.

I As always, one finds the impulse response h[n] as the
output of the LTI system when the impulse δ[n] is the input.

I Since the ouput is the same as the input for an identity
system, we find the impulse response of the identity
system

h[n] = δ[n].

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis 218



Systems Special Signals Linear, Time-invariant Systems Convolution and Linear, Time-invariant Systems Implementation of FIR Systems

Ideal Delay Systems
I Closely Related Question: How can one characterize a

LTI system for which the output y [n] is a delayed version of
the input x [n]:

y [n] = x [n− n0]

where n0 is the delay introduced by the system
I Such a system is called an ideal delay system.

I Again, we want the impulse response h[n] of such a
system.

I As before, one finds the impulse response h[n] as the
output of the LTI system when the impulse δ[n] is the input.

I Since the ouput is merely a delayed version of the input,
we find

h[n] = δ[n− n0].
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Exercise

I Show that convolution is a commutative operation, i.e., that
x [n] ∗ h[n] equals h[n] ∗ x [n].
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Lecture: Convolution and Linear, Time-Invariant
Systems
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Building Blocks
I Recall that the input-output relationship for an FIR filter is

given by

y [n] =
M

∑
k=0

bkx [n− k ].

I Digital systems implementing this relationships are easily
constructed from simple building blocks:

x[n]

y[n]

z[n] b

x[n]

y[n]
Delay
Unitx[n] y[n]

Adder Multiplier Unit−delay
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Operation of Building Blocks

x[n]

y[n]

z[n] b

x[n]

y[n]
Delay
Unitx[n] y[n]

Adder Multiplier Unit−delay

I Adder: sum of two signals

z[n] = x [n] + y [n].

I Multiplier: product of signal with a scalar

y [n] = b · x [n]
I Unit-delay: delays input by one sample:

y [n] = x [n− 1]
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Block Diagrams
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Part VI

Frequency Response
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Lecture: Introduction to Frequency Response
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Introduction
I We have discussed:

I Sinusoidal and complex exponential signals,
I Spectrum representation of signals:

I arbitrary signals can be expressed as the sum of sinusoidal
(or complex exponential) signals.

I Linear, time-invariant systems.
I Next: complex exponential signals as input to linear,

time-invariant systems.

- -SystemA exp(j2πfdn + φ) y [n] =?

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis 227



Introduction to Frequency Response Frequency Response of LTI Systems A comprehensive Example

Example: 3-Point Averaging Filter

I Consider the 3-point averager:

y [n] =
1
3

2

∑
k=0

x [n− k ] =
1
3
· (x [n] + x [n− 1] + x [n− 2]).

I Question: What is the output y [n] if the input is
x [n] = exp(j2πfdn)?
I Recall that fd is the normalized frequency f /fs; we are

assuming the signal is oversampled, |fd | < 1
2

I Initially, assume A = 1 and φ = 0; generalization is easy.
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Delayed Complex Exponentials
I The 3-point averager involves delayed versions of the input

signal.
I We begin by assessing the impact the delay has on the

complex exponential input signal.
I For

x [n] = exp(j2πfdn)

a delay by k samples leads to

x [n− k ] = exp(j2πfd (n− k))
= ej(2πfd n−2πfd k) = ej2πfd n · e−j2πfd k

= ej(2πfd n+φk ) = ej2πfd n · ejφk

where φk = −2πfdk is the phase shift induced by the k
sample delay.
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Average of Delayed Complex Exponentials
I Now, the output signal y [n] is the average of three delayed

complex exponentials

y [n] = 1
3 ∑2

k=0 x [n− k ]
= 1

3 ∑2
k=0 ej(2πfd n−2πfd k)

I This expression involves the sum of complex exponentials
of the same frequency; the phasor addition rule applies:

y [n] = ej2πfd n · 1
3

2

∑
k=0

e−j2πfd k .

I Important Observation: The output signal is a complex
exponential of the same frequency as the input signal.
I The amplitude and phase are different.
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Frequency Response of the 3-Point Averager

I The output signal y [n] can be rewritten as:

y [n] = ej2πfd n · 1
3 ∑2

k=0 e−j2πfd k

= ej2πfd n ·H(ej2πfd ).

where

H(ej2πfd ) = 1
3 ∑2

k=0 e−j2πfd k

= 1
3 · (1 + e−j2πfd + e−j2π2fd )

= 1
3 · e−j2πfd (ej2πfd + 1 + e−j2πfd )

= e−j2πfd
3 (1 + 2 cos(2πfd )).
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Interpretation

I From the above, we can conclude:
I If the input signal is of the form x [n] = exp(j2πfd n),
I then the output signal is of the form

y [n] = H(ej2πfd ) · exp(j2πfd n).
I The function H(ej2πfd ) is called the frequency response of

the system.
I Note: If we know H(ej2πfd ), we can easily compute the

output signal in response to a complex expontial input
signal.
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Examples
I Recall:

H(ej2πfd ) =
e−j2πfd

3
(1 + 2 cos(2πfd ))

I Let x [n] be a complex exponential with fd = 0.
I Then, all samples of x [n] equal to one.

I The output signal y [n] also has all samples equal to one.
I For fd = 0, the frequency response H(ej2π0) = 1.
I And, the output y [n] is given by

y [n] = H(ej2π0) · exp(j2π0n),

i.e., all samples are equal to one.
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Examples

I Let x [n] be a complex exponential with fd = 1
3 .

I Then, the samples of x [n] are the periodic repetition of

{1,− 1
2 + j

√
3

2 ,− 1
2 −

j
√

3
2 }.

I The 3-point average over three consecutive samples
equals zero; therefore, y [n] = 0.

I For fd = 1
3 , the frequency response H(ej2πfd ) = 0.

I Consequently, the output y [n] is given by

y [n] = H(
1
3
) · exp(j2π

1
3

n) = 0.

Thus, all output samples are equal to zero.
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Plot of Frequency Response
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General Complex Exponential
I Let x [n] be a complex exponential of the from Aej(2πfd n+φ).

I This signal can be written as

x [n] = X · ej2πfd n,

where X = Aejφ is the phasor of the signal.
I Then, the output y [n] is given by

y [n] = H(ej2πfd ) · X · exp(j2πfdn).

I Interpretation: The output is a complex exponential of the
same frequency fd

I The phasor for the output signal is the product
H(ej2πfd ) · X .
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Exercise

Assume that the signal x [n] = exp(j2πfdn) is input to a 4-point
averager.

1. Give a general expression for the output signal and identify
the frequenchy response of the system.

2. Compute the output signals for the specific frequencies
fd = 0, fd = 1/4, and fd = 1/2.
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Lecture: The Frequency Response of LTI
Systems
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Introduction

I We have demonstrated that for linear, time-invariant
systems
I the output signal y [n]
I is the convolution of the input signal x [n] and the impulse

response h[n].

y [n] = x [n] ∗ h[n]
= ∑M

k=0 h[k ] · x [n− k ]

I Question: Find the output signal y [n] when the input
signal is x [n] = A exp(j(2πfdn + φ)).
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Response to a Complex Exponential
I Problem: Find the output signal y [n] when the input signal

is x [n] = A exp(j(2πfdn + φ)).
I Output y [n] is convolution of input and impulse response

y [n] = x [n] ∗ h[n]
= ∑M

k=0 h[k ] · x [n− k ]
= ∑M

k=0 h[k ] · A exp(j(2πfd (n− k) + φ))

= A exp(j(2πfdn + φ)) ·∑M
k=0 h[k ] · exp(−j2πfdk)

= A exp(j(2πfdn + φ)) ·H(ej2πfd )

I The term

H(ej2πfd ) =
M

∑
k=0

h[k ] · exp(−j2πfdk)

is called the Frequency Response of the system.
©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis 240



Introduction to Frequency Response Frequency Response of LTI Systems A comprehensive Example

Interpreting the Frequency Response
The Frequency Response of an LTI system with impulse
response h[n] is

H(ej2πfd ) =
M

∑
k=0

h[k ] · exp(−j2πfdk)

I Observations:
I The response of a LTI system to a complex exponential

signal is a complex exponential signal of the same
frequency.
I Complex exponentials are eigenfunctions of LTI systems.

I When x [n] = A exp(j(2πfd n + φ)), then
y [n] = x [n] ·H(ej2πfd ).
I This is true only for complex exponential input signals!
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Interpreting the Frequency Response
I Observations:

I H(ej2πfd ) is best interpreted in polar coordinates:

H(ej2πfd ) = |H(ej2πfd )| · ej∠H(ej2πfd ).

I Then, for x [n] = A exp(j(2πfd n + φ))

y [n] = x [n] ·H(ej2πfd )

= A exp(j(2πfd n + φ)) · |H(ej2πfd )| · ej∠H(ej2πfd )

= (A · |H(ej2πfd )|) · exp(j(2πfd n + φ +∠H(ej2πfd )))

I The amplitude of the resulting complex exponential is the
product A · |H(ej2πfd )|.
I Therefore, |H(ej2πfd )| is called the gain of the system.

I The phase of the resulting complex exponential is the sum
φ +∠H(ej2πfd ).
I ∠H(ej2πfd ) is called the phase of the system.
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Example

I Let h[n] = {1,−2,1}.
I Then,

H(ej2πfd ) = ∑2
k=0 h[k ] · exp(−j2πfdk)

= 1− 2 · exp(−j2πfd ) + 1 · exp(−j2πfd2)
= exp(−j2πfd ) · (exp(j2πfd )− 2 + exp(−j2πfd ))
= exp(−j2πfd ) · (2 cos(2πfd )− 2).

I Gain: |H(ej2πfd )| = |2 cos(2πfd )− 2|
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Example
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Example
I The filter with impulse response h[n] = {1,−2,1} is a

high-pass filter.
I It rejects sinusoids with frequencies near fd = 0,
I and passes sinusoids with frequencies near fd = 1

2
I Note how the function of this system is much easier to

describe in terms of the frequency response H(ej2πfd ) than
in terms of the impulse response h[n].

I Question: Find the output signal when input equals
x [n] = 2 exp(j2π1/4n− π/2).

I Solution:

H(
1
4
) = exp(−j2π

1
4
) · (2 cos(2π

1
4
)−2) = −2e−jπ/2 = 2ejπ/2.

Thus,
y [n] = 2ejπ/2 · x [n] = 4 exp(j2πn/4).
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Exercise

1. Find the Frequency Response H(ej2πfd ) for the LTI system
with impulse response h[n] = {1,−1,−1,1}.

2. Find the output for the input signal
x [n] = 2 exp(j(2πn/3− π/4)).
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Computing Frequency Response in MATLAB

function HH = FreqResp( hh, ff )
% FreqResp - compute frequency response of LTI system
%
% inputs:
% hh - vector of impulse repsonse coefficients
% ff - vector of frequencies at which to evaluate frequency response
%
% output:
% HH - frequency response at frequencies in ff.
%
% Syntax:
% HH = FreqResp( hh, ff )

HH = zeros( size(ff) );
for kk = 1:length(hh)

HH = HH + hh(kk)*exp(-j*2*pi*(kk-1)*ff);
end
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Lecture: Comprehensive Example
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Introduction
I Objective: Apply many of the things we covered to the

solution of a “real-world” problem.
I Problem: Design and implement a decoder for

“touch-tone” dialing.
I When dialing a digit on a telphone touch-pad a two-tone

signal is emitted. These are called dual tone
multifrequency (DTMF) signals.

Frequencies (Hz) 1209 1336 1477
697 1 2 3
770 4 5 6
852 7 8 9
941 * 0 #

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis 249



Introduction to Frequency Response Frequency Response of LTI Systems A comprehensive Example

Generating DTMF Signals

I Generating DTMF signals for a given digit is
straightforward.
I Determine the frequencies that the signal contains,
I Generate two sinusoids of these frequencies,
I Add sinusoids.

I Repeat for each digit to be dialed.
I The following MATLAB code extracts digits to be dialed

from a string and forms the signal.
I Function signature:

function tones = dtmfdial( string, fs, tonedur, pausedur)
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Parsing the Dial-String

%% lookup table to translate digits string into numbers
Digits = double(’123456789*0#’);
InverseDigits = zeros(1,length(Digits) );
for kk=1:12

InverseDigits( Digits(kk) ) = kk;
end

RawNumbers = double( string );
numbers = InverseDigits( RawNumbers );

% ensure numbers are integers between 1 and 12
numbers = round( numbers ); % silently discard fractional part
if ( min( numbers ) < 1 || max( numbers ) > 12 )

error( ’input numbers must be integers between 1 and 12’ );
end
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Generating the DTMF Signal

%% construct signal
% convert durations to number of samples
Ntone = round( fs*tonedur );
Npause = round( fs*pausedur);

% figure out how long the output signal will be
Nnumbers = length( numbers );
Nsamples = Nnumbers*(Ntone + Npause);

tones = zeros(1, Nsamples );
pause = zeros(1, Npause);

% associate numbers with DTMF pairs, record normalized frequencies!
dtmfpairs = ...

[ 697 697 697 770 770 770 852 852 852 941 941 941;
1209 1336 1477 1209 1336 1477 1209 1336 1477 1209 1336 1477 ]/fs;
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Generating the DTMF Signal

% loop over all numbers
for kk = 1:length(numbers)

Start = (kk-1)*(Ntone + Npause) + 1;
End = kk*(Ntone + Npause);

freqs = dtmfpairs( :, numbers(kk) );
currtone = 0.5* cos( 2*pi*freqs(1)*(0:Ntone-1) ) + ...

0.5*cos( 2*pi*freqs(2)*(0:Ntone-1) );
tones(Start:End) = [ currtone pause ];

end
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Spectrogram of Signal

0.5 1 1.5 2 2.5
0

500

1000

1500

2000

2500

3000

3500

4000
 

Time

 

F
re

qu
en

cy
 (

H
z)

−140

−120

−100

−80

−60

−40

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis 254



Introduction to Frequency Response Frequency Response of LTI Systems A comprehensive Example

Plan for Recovering the Dial String

I Use bandpass-filters for each of the possible frequencies
I Intent: Isolate the different tones.

I Detect the strongest two tones in each dialing period.
I Map tones to digits (decoding)
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A simple bandpass filter

I We discussed the M-point averager and showed that it has
low-pass filter characteristics.
I Note that the averager’s impulse response consists of M

samples of a constant signal.
I Analogously, a simple bandpass filter centered at

frequency f0 has impulse response equal to
I M samples of 2/M cos(2πf0n).

I The following MATLAB function implements this design
strategy.
I Alternatively, we could use MATLAB’s filter design tools.
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MATLAB function makeBPF.m
function hh = makeBPF( fd, N )
% makeBPF - design simple bandpass filter
%
% usage:
% hh = makeBPF( fd, N )
%
% inputs:
% fd - center frequency of pass band (normalized by fs)
% N - number of filter coefficients
%
% output:
% hh - vector of filter coefficients

% sample locations
nn = -(N-1)/2:1:(N-1)/2;

% impulse response
hh = 2/N*cos(2*pi*fd*nn);
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Frequency Response of Bandpass Filters
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Output of Bandpass Filters
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Detecting Tones
I The presence or absence is fairly easy to see in the output

of the bandpass filters.
I However a single metric is needed to determine the

presence or absence of each tone.
I Good strategy: for each filter output k = 1, . . . ,7 and each

dialing-period m = 1, . . . ,10, compute the following score s

s(k ,m) = ∑
n in m-th dialing period

(yk [n])2,

where yk denotes the output of the k -th bandpass filter.
I Note that this operation assumes that we know exactly

where each digit starts.
I MATLAB code for computing scores follows.
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MATLAB code for Computing Scores

pause

% decision logic
% decompose samples into periods for each number
Nnumbers = floor( length(xx)/(fs*(tonedur+pausedur)) );
NTonePlusPause = round(fs*(tonedur+pausedur));
NPause = round(fs*pausedur);

% score for each tone period: sum of squares in period
score = zeros(Nnumbers, length(DTMFFreqs));
for nn=1:Nnumbers

Startnn = (nn-1)*NTonePlusPause + 1 + floor(LBPF/2);
Endnn = nn*NTonePlusPause - NPause - floor(LBPF/2);
for kk = 1:length(DTMFFreqs)
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Scores
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Decoding

I It remains to find the two highest scores in each dialing
period.
I More specifically, the highest score among the lower four

frequencies and the highest score among the higher three
frequencies.

I The combination of frequencies yielding the highest score
indicates which digit was dialed in that dialing period.

I MATLAB code follows
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MATLAB code for Decoding Scores

pause

%% Decisions
% in each row of the score matrix find the biggest entry among the first
% four and final three columns
for nn=1:Nnumbers

[ smax, imax_low(nn)] = max( score(nn, 1:4) );
[ smax, imax_high(nn)] = max( score(nn, 5:7) );

end

% decode
% lookup table to translate numbers string into numbers
Digits = double(’123456789*0#’); % table of ASCII codes for dial-pad
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Part VII

Frequency Domain Transforms
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Lecture: Discrete-Time Fourier Transform
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Introduction
I We will take a closer look at transforming signals into the

frequency domain.
I Discrete-Time Fourier Transform (DTFT): applies to

arbitrarily long signals; continuous in discrete frequency fd .
I z-Transform: Generalization of DTFT; basis is a complex

variable z instead of ej2πfd .
I Discrete-Fourier Transform: applies to finite-length

signals; computed for discrete set of frequencies; fast
algorithms.

I Transforms are useful because:
I They provide perspectives on signals and systems that aid

in signal analysis (e.g., bandwidth)
I They simplify many problems that are difficult in the

time-domain, especially convolution.
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Recall: Frequency Response

I Passing a complex exponential signal x [n] = exp(j2πfdn)
through a linear, time-invariant system with impulse
ersponse h[n] yields the output signal

y [n] = H(ej2πfd ) · exp(j2πfdn).

I The frequency response H(ej2πfd ) is given by:

H(ej2πfd ) =
M−1

∑
k=0

h[k ] · exp(−j2πfdk)
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Discrete-Time Fourier Transform
I Analogously, we can define for a signal x [n]

X (ej2πfd ) =
∞

∑
k=−∞

x [k ] · exp(−j2πfdk)

I X (ej2πfd ) is the Discrete-Time Fourier Transform (DTFT) of
the signal x [n]; we write

x [n] DTFT←→ X (ej2πfd ).

I Note that the limits of the sum range from −∞ to ∞.
I To ensure that this infinite sum has a finite value, we must

require that
∞

∑
k=−∞

|x [k ]| < ∞.
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Two Quick Observations

I Linearity: The DTFT is a linear operation.
I Assume that

x1[n]
DTFT←−→ X1(ej2πfd )

and that
x2[n]

DTFT←−→ X2(ej2πfd ).

I Then,

x1[n] + x2[n]
DTFT←−→ X1(ej2πfd ) + X2(ej2πfd )

I Periodicity: The DTFT is periodic in the variable fd :

X (ej2πfd ) = X (ej2π(fd+n)) for any integer n.
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Continuous-Time Fourier Transform

I In ECE 220, you will learn that the (continuous-time)
Fourier transform for a signal x(t) is defined as

X (f ) =
∫ ∞

−∞
x(t) · exp(−j2πft)dt

I Notice the strong similarity between the contrinuous and
discrete-time transforms.
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DTFT of Delayed Impulse

I Let x [n] be a delayed impulse, x [n] = δ[n− n0].
I Note that x [n] has a single non-zero sample at n = n0.

I Therefore,

X (ej2πfd ) =
∞

∑
k=−∞

x [k ] · exp(−j2πfdk)

= exp(−j2πfdno)

I In summary,

δ[n− n0]
DTFT←→ exp(−j2πfdno).
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DTFT of a Finite-Duration Signal
I Combining Linearity and the DTFT for a delayed impulse,

we can easily find the DTFT of a signalk with finitely many
samples.

M−1

∑
k=0

x [k ] · δ[n− k ] DTFT←→
M−1

∑
k=0

x [k ] · exp(−j2πfdk).

I Example: The DTFT of the signal x [n] = {1,2,3,4} is

1 + 2ej2πfd + 3ej4πfd + 4ej6πfd .

I I.e.,

{1,2,3,4} DTFT←→ 1 + 2ej2πfd + 3ej4πfd + 4ej6πfd
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DTFT of a Rectangular Pulse
I Let x [n] be a rectangular pulse of L samples, i.e.,

x [n] = u[n]− u[n− L].
I Then, the DTFT of x [n] is given by

X (ej2πfd ) =
L−1

∑
k=0

1 · ej2πfd k .

I Using the geometric sum formula

S =
L−1

∑
k=0

ak =
1− aL

1− a
,

X (ej2πfd ) =
1− e−j2πfd L

1− e−j2πfd
=

sin(πfdL)
sin(πfd )

· e−jπfd (L−1).

I Thus,

x [n] = u[n]− u[n− L] DTFT←→ sin(πfdL)
sin(πfd )

· e−jπfd (L−1)
©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis 274



DTFT z-Transform DFT

DTFT of a Right-sided Exponential
I Let x [n] = an · u[n] with |a| < 1.
I Then, the DTFT of x [n] is given by

X (ej2πfd ) =
∞

∑
k=−∞

ak · u[k ] · e−j2πfd k =
∞

∑
k=0

ak · e−j2πfd k .

I With the geometric sum formula, we find

X (ej2πfd ) =
1

1− ae−j2πfd

I Thus, if |a| < 1

an · u[n] DTFT←→ 1
1− ae−j2πfd
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Inverse DTFT

I The inverse DTFT is used to find the signal x [n] that
corresponds to a given transform X (ej2πfd ).

I The inverse DTFT is given by

x [n] =
∫ 1

2

− 1
2

X (ej2πfd )ej2πfd ndfd .

I Note: The DTFT is unique, i.e., for each signal x [n] there is
exactly one transform X (ej2πfd ) and vice versa.

I Explicitly using the inverse transform can often be avoided;
instead known DTFT pairs and properties of the DTFT are
used; some examples follow.
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Inverse DTFT of e−j2πfd n0

I We showed that the following is a DTFT pair

δ[n− n0]
DTFT←→ exp(−j2πfdno).

I Thus, the inverse DTFT of exp(−j2πfdno) must be
δ[n− n0]. Check:
I For n = n0:

x [n] =
∫ 1

2

− 1
2

exp(−j2πfd no)ej2πfd ndfd =
∫ 1

2

− 1
2

1dfd = 1.

I For n 6= n0:

x [n] =
∫ 1

2

− 1
2

exp(−j2πfd no)ej2πfd ndfd =
∫ 1

2

− 1
2

ej2πfd (n−n0)dfd = 0.
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Bandlimited Signals
I The inverse DTFT is useful to find signals that are strictly

bandlimited.
I A signal is strictly bandlimited to bandwidth fb < 1

2 when its
DTFT is given by

X (ej2πfd ) =


1 for |fd | ≤ fb

0 for fb < |fd | ≤
1
2

I The strictly bandlimited signal is then

x [n] =
∫ 1

2

− 1
2

X (ej2πfd )ej2πfd ndfd =
sin(2πfbn)

πn
= 2fb · sinc(2πfbn).
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Table of DTFT Pairs

δ[n] DTFT←→ 1

δ[n− n0]
DTFT←→ exp(−j2πfdno)

u[n]− u[n− L] DTFT←→ sin(πfdL)
sin(πfd )

· e−jπfd (L−1)

an · u[n] DTFT←→ 1
1− ae−j2πfd

2fb · sinc(2πfbn) DTFT←→


1 for |fd | ≤ fb

0 for fb < |fd | ≤
1
2
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Exercise

I Find the DTFT of the signals
1.

x1[n] = δ[n]− δ[n− 1] + δ[n− 2]− δ[n− 3].

I Answer: X (ej2πfd ) = 1− e−j2πfd + e−j4πfd − e−j6πfd .

2.

x2[n] =
sin(2πn/4)

πn
+

(
1
2

)n
· u[n]

3.

x3[n] =
(

1
2

)n
· cos(2πn/3) · u[n]
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Lecture: Properties of the DTFT
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Properties of the DTFT

I Direct evaluation of the DTFT or the inverse DTFT is often
tedious.

I In many cases, transforms can be determined through a
combination of
I Known, tabulated transform pairs
I Properties of the DTFT

I Properties of the DTFT describe what happens to the
transform when common operations are applied in the time
domain (e.g., delay, multiplication with a complex
exponential, etc.)

I Very important, a property exists for convolution.
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Linearity

I Linearity: The DTFT is a linear operation.
I Assume that

x1[n]
DTFT←−→ X1(ej2πfd )

and that
x2[n]

DTFT←−→ X2(ej2πfd ).

I Then,

x1[n] + x2[n]
DTFT←−→ X1(ej2πfd ) + X2(ej2πfd )
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Example

I The DTFT of

x [n] =
(

1
2

)n

· u[n] + sin(2πn/4)
πn

is the sum of the transforms of the two individual signals:

X (ej2πfd ) =
1

1− 1
2e−j2πfd

+


1 for |fd | ≤

1
4

0 for
1
4
< |fd | ≤

1
2
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Time Delay
I Let

x [n] DTFT←→ X (ej2πfd ).

I Find the DTFT of y [n] = x [n− nd ]:

Y (ej2πfd ) =
∞

∑
n=−∞

y [n] · e−j2πfd n =
∞

∑
n=−∞

x [n− nd ] · e−j2πfd n

I Substituting m = n− nd and, therefore, n = m + nd yields

Y (ej2πfd ) =
∞

∑
m=−∞

x [m] ·e−j2πfd (m+nd ) = e−j2πfd nn ·X (ej2πfd )

I Hence, the Time Delay property is:

x [n− nd ]
DTFT←→ e−j2πfd nn · X (ej2πfd )
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Example

I Find the DTFT of a shifted rectangular pulse from 1 to
L + 1

x [n] = u[n− 1]− u[n− (L + 1)].

I Combining the DTFT of a rectangular pulse

u[n]− u[n− L] DTFT←→ sin(πfdL)
sin(πfd )

· e−jπfd (L−1)

with the time delay property leads to

u[n− 1]− u[n− (L + 1)] DTFT←→ sin(πfdL)
sin(πfd )

· e−jπfd (L+1)
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Frequency Shift Property
I Let

x [n] DTFT←→ X (ej2πfd ).

I Find the DTFT of y [n] = x [n] · ej2πf0n:

Y (ej2πfd ) =
∞

∑
n=−∞

y [n] ·e−j2πfd n =
∞

∑
n=−∞

x [n] ·e−j2πf0n ·e−j2πfd n

I Combining the exponentials yields

Y (ej2πfd ) =
∞

∑
n=−∞

y [n] · e−j2π(fd−f0)n = X (ej2π(fd−f0))

I Frequency shift property

x [n] · ej2πf0n DTFT←→ X (ej2π(fd−f0))
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Example
I The impulse response of an ideal bandpass filter with

bandwidth B and center frequency fc is obtained by
I frequency shifting by fc
I an ideal lowpass with cutoff frequency B/2

I Using the transform for the ideal lowpass

2fb · sinc(2πfbn) DTFT←→


1 for |fd | ≤ fb

0 for fb < |fd | ≤
1
2

the inverse DTFT of the ideal band pass is given by

x [n] = B · sinc(2π
B
2

n) · ej2πfcn

I This technique is very useful to convert lowpass filters into
bandpass or highpass filters.
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Convolution Property
I The convolution property follows from linearity and the time

delay property.
I Recall that the convolution of signals x [n] and h[n] is

defined as

y [n] = x [n] ∗ h[n] =
∞

∑
k=−∞

h[k ] · x [n− k ].

I With the time-delay property and linearity, the right hand
side transforms to

Y (ej2πfd ) =
∞

∑
k=−∞

h[k ] · e−j2πfd kX (ej2πfd ).

I Since ∑∞
k=−∞ h[k ] · e−j2πfd k = H(ej2πfd ),

x [n] ∗ h[n] DTFT←→ X (ej2πfd ) ·H(ej2πfd )
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Example

I Convolution of two right sided exponentials (|a|, |b| < 1
and a 6= b)

y [n] = (an · u[n]) ∗ (bn · u[n])

has DTFT

Y (ej2πfd ) =
1

1− ae−j2πfd
· 1

1− be−j2πfd

I Question: What is the inverse transform of Y (ej2πfd )? I.e.,
is there a closed form expression for y [n]?
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Example continued
I The expression

Y (ej2πfd ) =
1

1− ae−j2πfd
· 1

1− be−j2πfd

can be rewritten as

Y (ej2πfd ) =
a

a− b
· 1

1− ae−j2πfd
− b

a− b
· 1

1− be−j2πfd

I The inverse transform of Y (ej2πfd ) is

y [n] =
a

a− b
· an · u[n]− b

a− b
· bn · u[n].
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Parseval’s Theorem

I The Energy of a discrete-time signal x [n] is defined as

E =
∞

∑
k=−∞

|x [n]|2.

I Parseval’s theorem states that the energy can also be
computed using the DTFT

E =
∞

∑
k=−∞

|x [n]|=
∫ 1

2

− 1
2

|X (ej2πfd )|2dfd
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Example

I Find the energy of the sinc pulse

x [n] = 2fb · sinc(2πfbn).

I This is impossible in the time domain and trivial in the
frequency domain

E =
∞

∑
k=−∞

|x [n]|=
∫ 1

2

− 1
2

|X (ej2πfd )|2dfd = 2fb
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Lecture: The z-Transform
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Introduction
I Question: What is the output of an LTI system when the

input is an exponential signal x [n] = zn?
I z is complex-valued.

- -LTI Systemx [n] = zn y [n] =?

I Answer:

y [n] = H(z) · zn with H(z) =
∞

∑
n=−∞

h[n] · z−n

I H(z) is the z-Transform of the LTI system with impulse
response h[n].
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Definitions and Observations

I Analogously, we can define the z-Transform of a signal x [n]

X (z) =
∞

∑
n=−∞

x [n] · z−n

I Notation:
x [n] z←→ X (z).

I Note: we can think of the ztransform as a generalization of
the DTFT.
I The DTFT arises when z = ej2πfd .

I The z-Transform is a linear operation.
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Examples

I The z-Transforms of the following signals generalize easily
from the DTFTs computed earlier.

δ[n] z←→ 1

δ[n− n0]
z←→ z−no

u[n]− u[n− L] z←→ 1− z−L

1− z−1

an · u[n] z←→ 1
1− az−1
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z-Transform of a Finite Duration Signal
I The z-Transform of a signal with finitely many samples is

easily computed

M−1

∑
k=0

x [k ] · δ[n− k ] z←→
M−1

∑
k=0

x [k ] · z−k .

I Example: The DTFT of the signal x [n] = {1,2,3,4} is

{1,2,3,4} z←→ 1 + 2z−1 + 3z−2 + 4z−3

I The z transform of a finite-duration signal is a polynomial in
z−1.
I The coefficients of the polynomial are the samples of the

signal.
I The inverse z-transform is trivial to determine when it is

given as a polynomial.
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Properties of the z-Transform

Linearity
x1[n] + x2[n]

z←→ Xz(z) + X2(z)

Delay
x [n− n0]

z←→ z−n0 · X (z)

Convolution
x [n] ∗ h[n] z←→ X (z) ·H(z)
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Unit Delay System
I The unit delay system is an LTI system

y [n] = x [n− 1]

I Its impulse response and z-Transform are is

h[n] = δ[n− 1] H(z) = z−1

I In terms of the z-transform:

Y (z) = z−1 · X (z)

I In the z-domain, a unit delay corresponds to multiplication
by z−1.

I In block diagrams, delays are often labeled z−1.
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Equivalence of Convolution and Polynomial
Multiplcation

I The convolution property states

x [n] ∗ h[n] z←→ X (z) ·H(z).

I We saw that the z-Transforms of finite duration signals are
polynomials. Hence, convolution is equivalent to
polynomial multiplaction.

I Example: x [n] = {1,2,1} and h[n] = {1,1}; by
convolution

x [n] ∗ h[n] = {1,3,3, ,1}.
I In terms of z-Transforms:

X (z) ·H(z) = (1 + 2z−1 + 1z−2) · (1 + 1z−1)

= 1 + 3z−1 + 3z−2 + z−3
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Zeros of H(z)
I An important use of the z-Transform is providing insight

into the properties of a filter.
I Of particular interest are the zeros of a filter’s z-Transform

H(z).
I Example: The L-point averager has the z-Transform

H(z) =
1
L
· 1− z−L

1− z−1 =
1
L
·

L−1

∏
k=1

(1− e−j2πk/L · z−k ).

I The factorization shows that zeros of H(z) occur when
z = e−j2πk/L.

I Note that
I zeros occur along the unit circle |z| = 1
I at angles that correspond to frequencies fd = k/L for

k = 1, . . . ,L− 1.
I Zeros are evenly spaced in the stop-band of the filter.
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Roots of H(z) for L-Point Averager
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Roots of H(z) and magnitude of Frequency Response for
L = 11-point Averager.
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Roots of H(z) for a very good Lowpass Filter

I A very-good lowpass filter with
I normalized cutoff frequency fc = 0.2 (end of pass

passband)
I width of transition band ∆f = 0.1 (stop band starts at

fc + δf ).

can be designed in MATLAB with:

%% parameters
L = 30;
fc = 0.2; % cutoff frequency - relative to Nyquist frequency
df = 0.1; % width of transition band

%% generate impulse response
h = firpm(L, [0, fc, fc+df, 0.5]/0.5, [1, 1, 0, 0]);
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Roots of H(z) for a very good Lowpass Filter
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Roots of H(z) and magnitude of Frequency Response for a
very good LPF. Zeros are on the unit-circle in the stop band. In
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IIR Filter
I Question: Can we realize a filter with the infinite impulse

response (IIR) h[n] = an · u[n]?
I Recall that

an · u[n] z←→ 1
1− az−1

I Hence,

Y (z) = X (Z ) · 1
1− az−1 or Y (z) · (1− az−1) = X (z).

I In the time domain,

y [n]− ay [n− 1] = x [n] or y [n] = x [n] + ay [n− 1].
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Lecture: Discrete Fourier Transform (DFT)
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DTFT z-Transform DFT

Introduction
I The Discrete Fourier Transform (DFT) is a work horse of

Digital Signal Processing.
I Its primary uses include:

I Measuring the spectrum of a signal from samples
I Fast algorithms for convolution or correlation

I The DFT is computed from a block of N samples
x [0], . . . , x [N − 1].

I It computes the DTFT at N evenly spaced, discrete
frequencies:

X [k ] = X (ej2π·k/N ·n) for k = 0, . . . ,N − 1

I Fast algorithms (Fast Fourier Transform (FFT)) exist to
compute the DFT.
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Definitions
I (Forward) Discrete Fourier transform: for a block of N

samples x [n], the DFT X [k ] is given by

X [k ] =
N−1

∑
n=0

x [n] · exp(−j2π · k/N · n) for k = 0, . . . ,N − 1

I Inverse Discrete Fourier transform: a block of N
samples x [n], is obtained from the DFT X [k ] by

x [n] =
1
N

N−1

∑
k=0

X [k ] · exp(j2π · k/N · n) for n = 0, . . . ,N − 1
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Observations
I The DFT is discrete in both time and frequency.

I In contrast, the DTFT is discrete in time but continuous in
frequency.

I The signal x [n] is implicitly assumed to repeat periodically
with period N.

x [n + N ] =
1
N

N−1

∑
k=0

X [k ] · exp(j2π · k/N · (n + N))

=
1
N

N−1

∑
k=0

X [k ] · exp(j2π · k/N · n) · exp(j2π · k) = x [n]

I This observation has ramifications for the delay and
convolution properties of the DFT.
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Implicit Periodicity
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The signal with DFT X [k ] is implicitly periodic; the period
equals the block length N.
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Example
I The DFT1 of the length N = 4 signal {1,1,0,0}:

X [0] = 1e−j0 + 1e−j0 + 0e−j0 + 0e−j0

= 1 + 1 + 0 + 0 = 2

X [1] = 1e−j0 + 1e−j2π/4 + 0e−j4π/4 + 0e−j6π/4

= 1 + (−j) + 0 + 0 =
√

2e−jπ/4

X [2] = 1e−j0 + 1e−j4π/4 + 0e−j8π/4 + 0e−j12π/4

= 1 + (−1) + 0 + 0 = 0

X [3] = 1e−j0 + 1e−j6π/4 + 0e−j12π/4 + 0e−j18π/4

= 1 + (j) + 0 + 0 =
√

2ejπ/4

Thus, X [k ] = {2,
√

2e−jπ/4,0,
√

2ejπ/4}
1Exponentials are e−j2knπ/N
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Fast Transform (FFT)
I The main practical benefit of the DFT stems from the fact

that a computationally efficient algorithm exists.
I A naive (brute-force) implementation of the DFT requires

N2 complex multioplications and additions.
I N outputs must be computed
I Each requires N multiplications and additions

I The Fast Fourier Transform algorithm (FFT) reduces the
number of complex multiplications and additions to
N · log2(N).
I It recursively splits the DFT of length N into 2 DFTs of

length N/2 (divide-and-conquer)
I Until length-2 DFTs can be computed trivially.

I A naive DFT of length N = 1024 requires approximately
106 multiplications and additions; the FFT requires only
approximately 104.
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DFT of a Shifted Impulse
I The finite, length N duration of the signal block and the

associated, implicit assumption that x [n] is periodic with
period N has some unexpected consequences.

I We showed that the DTFT of a shifted impulse is

δ[n− nd ]
DTFT←→ e−j2πfd nd

I DFT with shift nd < N: assume N = 8 and nd = 3

X [k ] = e−j2πk/Nnd = e−j3π/4k

I DFT with shift nd ≥ N: assume N = 8 and nd = 11

X [k ] = e−j2πk/Nnd = e−j11π/4k = e−j3π/4k ·e−j2π = e−j3π/4k

I Delays induce phase shifts proportional to nd mod N:

X [k ] = e−j2πk/Nnd = e−j2πk/N(nd mod N)
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Delay Property

I The same phenomenon affects the delay property.
I When the implicitly periodic signal is delayed, the block of N

samples is filled with periodic samples.
I For example, when the signal x [n] = {1,2,3,4} is shifted

by nd = 2 positions it becomes
x [(n− nd ) mod N ] = {3,4,1,2}.

I This is refered to as circular shifting.
I For the DFT, the delay property is therefore

x [(n− nd ) mod N ]
DFT←→ X [k ] · e−j2πk/Nṅd
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Implicit Periodicity
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Shifting the implicitly periodic signal induces a circular shift over
the block of N samples.
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Convolution Property
I Similarly, the convolution property for the DFT is different

from that for the DTFT or z-Transform.
I A modified form of convolution, called circular convolution

has a product-form transform.
I Let x [n] and h[n] be length-N signals with DFT X [k ] and

H [k ], respectively.
I Then, the (circular) convolution property is

N−1

∑
m=0

h[m]x [(n−m) mod N ]
DFT←→ X [k ] ·H [k ]

I Note that circular convolution is very different from normal
convolution.

I Question: How can the (circular) convolution property be
used for fast convolution?
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Zero-Padding

I Turning circular convolution into regular convolution is
straightforward:
I The signals x [n] and h[n] to be convolved must be

extended by appending zeros such that
I They have the same length N, and
I if x [n] has length Nx and h[n] has length Nh, then

N ≥ Nx + Nh − 1.
I This is called zero-padding.

I Example: Let x [n] = {1,2,3,4} and h[n] = {3,2,1}, then
the zero-padded signals are

x̃ [n] = {1,2,3,4,0,0} x̃ [n] = {3,2,1,0,0,0}
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Implicit Periodicity
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With zero-padding, the shifting of the implicitly periodic signal
introduces only zero samples in the block of N samples.
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Convolution with FFTs
I Fast convolution based on FFTs of zero-padded signals

can be implemented as follows:

% signals
x = [1,2,3];
h = [1,1];

% zero-padding to length 4
xp = [x, 0];
hp = [h, 0, 0];

% transforms
Xp = fft(xp);
Hp = fft(hp);

% multiply and inverse transform
y = ifft(Xp.*Hp)
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Complex Numbers

Part IX

Review of Complex Algebra
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Complex Numbers

Lecture: Introduction to Complex Numbers
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Complex Numbers

Why Complex Numbers?

I Complex numbers are closely related to sinusoids.
I They eliminate the need for trigonometry ...
I ... and replace it with simple algebra.

I Complex algebra is really simple - this is not an oxymoron.
I Complex numbers can be represented as vectors.

I Used to visualize the relationship between sinusoids.
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Complex Numbers

The Basics

I Complex unity: j =
√
−1.

I Complex numbers can be written as

z = x + j · y .

This is called the rectangular or cartesian form.
I x is called the real part of z: x = Re{z}.
I y is called the imaginary part of z: y = Im{z}.

I z can be thought of a vector in a two-dimensional plane.
I Cordinates are x and y .
I Coordinate system is called the complex plane.
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Illustration - The Complex Plane
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Complex Numbers

Euler’s Formulas
I Euler’s formula provides the connection between complex

numbers and trigonometric functions.

ejφ = cos(φ) + j · sin(φ).

I Euler’s formula allows conversion between trigonometric
functions and exponentials.
I Exponentials have simple algebraic rules!

I Inverse Euler’s formulas:

cos(φ) =
ejφ + e−jφ

2

sin(φ) =
ejφ − e−jφ

2j

I These relationships are very important.
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Complex Numbers

Polar Form
I Recall z = x + j · y
I From the diagram it

follows that

z = r cos(φ) + jr sin(φ).

I And by Euler’s
relationship:

z = r · (cos(φ) + j sin(φ))
= r · ejφ

I This is called the polar
form.

Re

Im

−r r

−jr

jr

φ
y = r sin φ

x = r cos φ
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Complex Numbers

Converting from Polar to Cartesian Form
I Some problems are best solved in rectangular coordinates,

while others are easier in polar form.
I Need to convert between the two forms.

I A complex number polar form z = r · ejφ is easily
converted to cartesian form.

z = r cos(φ) + jr sin(φ).

I Example:

4 · ejπ/3 = 4 · cos(π/3) + j · 4 · sin(π/3)
= 4 · 1

2 + j · 4 ·
√

3
2

= 2 + j · 2 ·
√

3.
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Complex Numbers

Converting from Cartesian to Polar Form
I A complex number z = x + jy in cartesian form is

converted to polar form via

r =
√

x2 + y2

and
tan(φ) =

y
x
.

I The computation of the angle φ requires some care.
I One must distinguish between the cases x < 0 and x > 0.

φ =

{
arctan( y

x ) if x > 0
arctan( y

x ) + π if x < 0

I If x = 0, φ equals +π/2 or −π/2 depending on the sign
of y .
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Complex Numbers

Exercise

I Convert to polar form
1. z = 1 + j
2. z = 3 · j
3. z = −1− j

I Convert to cartesian form
1. z = 3e−j3π/4

I in MATLAB, plot cos(jx) for −2 ≤ x ≤ 2 then explain the
shape of the resulting graph.
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Complex Numbers

Lecture: Complex Algebra
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Complex Numbers

Introduction

I All normal rules of algebra apply to complex numbers!
I One thing to look for: j · j = −1.
I Some operations are best carried out in rectangular

coordinates.
I Addition and subtraction
I Multiplication and division aren’t very hard, either.

I Others are easier in polar coordinates.
I Multiplication and division.
I Powers and roots

I New operation: conjugate complex.
I A little more subtle: absolute value.
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Complex Numbers

Conjugate Complex

I The conjugate complex z∗ of a complex number z has
I the same real part as z: Re{z} = Re{z∗}, and
I the opposite imaginary part: Im{z} = −Im{z∗}.

I Rectangular form:

If z = x + jy then z∗ = x − jy .

I Polar form:

If z = r · ejφ then z∗ = r · e−jφ.

I Note, z and z∗ are mirror images of each other in the
complex plane with respect to the real axis.
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Complex Numbers

Illustration - Conjugate Complex

Re

Im

−r r

−jr

jr

φ
y = r sin φ

z

−φ
−y = −r sin φ

z∗
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Complex Numbers

Addition and Subtraction
I Addition and subtraction can only be done in rectangular

form.
I If the complex numbers to be added are in polar form

convert to rectangular form, first.
I Let z1 = x1 + jy1 and z2 = x2 + jy2.
I Addition:

z1 + z2 = (x1 + x2) + j(y1 + y2)

I Subtraction:

z1 − z2 = (x1 − x2) + j(y1 − y2)

I Complex addition works like vector addition.
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Complex Numbers

Illustration - Complex Addition

Re

Im

z1

z2

z1 + z2
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Complex Numbers

Multiplication
I Multiplication of complex numbers is possible in both polar

and rectangular form.
I Polar Form: Let z1 = r1 · ejφ1 and z2 = r2 · ejφ2 , then

z1 · z2 = r1 · r2 · exp(j(φ1 + φ2)).

I Rectangular Form: Let z1 = x1 + jy1 and z2 = x2 + jy2,
then

z1 · z2 = (x1 + jy1) · (x2 + jy2)
= x1x2 + j2y1y2 + jx1y2 + jx2y1
= (x1x2 − y1y2) + j(x1y2 + x2y1).

I Polar form provides more insight: multiplication involves
rotation in the complex plane (because of φ1 + φ2).
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Complex Numbers

Absolute Value
I The absolute value of a complex number z is defined as

|z| =
√

z · z∗, thus, |z|2 = z · z∗.

I Note, |z| and |z|2 are real-valued.
I In MATLAB, abs(z) computes |z|.

I Polar Form: Let z = r · ejφ,

|z|2 = r · ejφ · r · e−jφ = r2.

I Hence, |z| = r .
I Rectangular Form: Let z = x + jy ,

|z|2 = (x + jy) · (x − jy)
= x2 − j2y2 − jxy + jxy
= x2 + y2.
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Complex Numbers

Division
I Closely related to multiplication

z1

z2
=

z1z∗2
z2z∗2

=
z1z∗2
|z2|2

.

I Polar Form: Let z1 = r1 · ejφ1 and z2 = r2 · ejφ2 , then
z1

z2
=

r1

r2
· exp(j(φ1 − φ2)).

I Rectangular Form: Let z1 = x1 + jy1 and z2 = x2 + jy2,
then

z1
z2

=
z1z∗2
|z2|2

= (x1+jy1)·(x2−jy2)

x2
2+y2

2

= (x1x2+y1y2)+j(−x1y2+x2y1)

x2
2+y2

2
.

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis 339



Complex Numbers

Exercises

I For z1 = 3ejπ/4 and z2 = 2e−jπ/2, compute
1. z1 + z2,
2. z1 · z2, and
3. |z1|.

Give your results in both polar and rectangular forms.
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Complex Numbers

Lecture: Complex Algebra - Continued
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Complex Numbers

Good to know ...

I You should try and remember the following relationships
and properties.
I ej2π = 1
I ejπ = −1
I ejπ/2 = j
I e−jπ/2 = −j
I |ejφ| = 1 for all values of φ
I exp(j(φ + 2π)) = ejφ
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Complex Numbers

Powers of Complex Numbers
I A complex number z is easily raised to the n-th power if z

is in polar form.
I Specifically,

zn = (r · ejφ)n

= rn · ejnφ

I The magnitude r is raised to the n-th power
I The phase φ is multiplied by n.

I The above holds for arbitrary values of n, including
I n an integer (e.g., z2),
I n a fraction (e.g., z1/2 =

√
z)

I n a negative number (e.g., z−1 = 1/z)
I n a complex number (e.g., z j )
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Complex Numbers

Roots of Unity
I Quite often all complex numbers z solving the following

equation must be found

zN = 1.

I Here N is an integer.
I There are N different complex numbers solving this

equation.
I The solutions have the form

z = ej2πn/N for n = 0,1,2, . . . ,N − 1.

I Note that zN = ej2πn = 1!
I The solutions are called the N-th roots of unity.
I In the complex plane, all solutions lie on the unit circle and

are separated by angle 2π/N.
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Complex Numbers

Roots of a Complex Number

I The more general problem is to find all solutions of the
equation

zN = r · ejφ.

I In this case, the N solutions are given by

z = r1/N · exp(j φ + 2πn
N

) for n = 0,1,2, . . . ,N − 1.
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Complex Numbers

Example: Roots of a Complex Number

I Example: Find all solutions of z5 = −1.
I Solution:

I Note −1 = ejπ, i.e., r = 1 and φ = π.
I There are N = 5 solutions:

I All have magnitude 1.
I The five angles are π/5, 3π/5, 5π/5, 7π/5, 9π/5.

©2009-2019, B.-P. Paris ECE 201: Intro to Signal Analysis 346



Complex Numbers

Roots of a Complex Number
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Complex Numbers

Two Ways to Express cos(φ)

I First relationship: cos(φ) = Re{ejφ}
I Second relationship (inverse Euler):

cos(φ) =
ejφ + e−jφ

2
.

I The first form is best suited as the starting point for
problems involving the cosine or sine of a sum.
I cos(α + β)

I The second form is best when products of sines and
cosines are needed
I cos(α) · cos(β)

I Rule of thumb: look to create products of exponentials.
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Complex Numbers

Example

I Show that cos(x + y) equals cos(x) cos(y)− sin(x) sin(y):

cos(x + y) = Re{ej(x+y)} = Re{ejx · ejy}
= Re{(cos(x) + j sin(x)) · (cos(y) + j sin(y))}
= Re{(cos(x) cos(y)− sin(x) sin(y))+

j(cos(x) sin(y) + sin(x) cos(y))}
= cos(x) cos(y)− sin(x) sin(y).
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Complex Numbers

Example

I Show that cos(x) cos(y) equals 1
2 cos(x + y) + 1

2 cos(x − y):

cos(x) cos(y) = ejx+e−jx

2
ejy+e−jy

2
= ej(x+y)+ej(−x−y)+ej(x−y)+ej(−x+y)

4
= ej(x+y)+e−j(x+y)

4 + ej(x−y)+e−j(x−y)

4
= 1

2 cos(x + y) + 1
2 cos(x − y).
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Complex Numbers

Exercises

I Simplify
1. (
√

2−
√

2j)8

2. (
√

2−
√

2j)−1

I Advanced
1. j j

2. cos(j)
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