ECE 201: Introduction to Signal Analysis

Dr. B.-P. Paris
Dept. Electrical and Comp. Engineering
George Mason University

Last updated: December 5, 2019

Part I

Introduction

Lecture: Introduction

Learning Objectives

- Intro to Electrical Engineering via Digital Signal Processing.
- Develop initial understanding of Signals and Systems.
- Learn MATLAB
- Note: Math is not very hard - just algebra.

DSP - Digital Signal Processing

Digital: processing via computers and digital hardware we will use PC's.
Signal: Principally signals are just functions of time

- Entertainment/music
- Communications
- Medical, ...

Processing: analysis and transformation of signals we will use MATLAB

Outline of Topics

- Sinusoidal Signals
- Time and Frequency representation of signals
- MATLAB
- Lectures
- Labs
- Homework
- Sampling
- Filtering
- Spectrum Analysis

Sinusoidal Signals

- Fundamental building blocks for describing arbitrary signals.
- General signals can be expresssed as sums of sinusoids (Fourier Theory)
- Bridge to frequency domain.
- Sinusoids are special signals for linear filters (eigenfunctions).
- Manipulating sinusoids is much easier with the help of complex numbers.

Time and Frequency

- Closely related via sinusoids.
- Provide two different perspectives on signals.
- Many operations are easier to understand in frequency domain.

Sampling

- Conversion from continuous time to discrete time.
- Required for Digital Signal Processing.
- Converts a signal to a sequence of numbers (samples).
- Straightforward operation
- with a few strange effects.

Filtering

- A simple, but powerful, class of operations on signals.
- Filtering transforms an input signal into a more suitable output signal.
- Often best understood in frequency domain.

Spectrum Analysis

- Analyze a given signal to find which frequencies it contains.
- Fourier Transform and fast Fourier Transform
- Spectrogram

Relationship to other ECE Courses

- Next steps after ECE 201:
- ECE 220: Signals and Systems
- ECE 280: Circuits
- Core courses in controls and communications:
- ECE 421: Controls
- ECE 460: Communications
- Electives:
- ECE 410: DSP
- ECE 450: Robotics
- ECE 463: Digital Comms
- ECE 464: Filter Design

Part II

Sinusoids, Complex Numbers, and Complex Exponentials

Lecture: Introduction to Sinusoids

The Formula for Sinusoidal Signals

- The general formula for a sinusoidal signal is

$$
x(t)=A \cdot \cos (2 \pi f t+\phi)
$$

- A, f, and ϕ are parameters that characterize the sinusoidal signal.
- A-Amplitude: determines the height of the sinusoid.
- f - Frequency: determines the number of cycles per second.
- ϕ - Phase: determines the horizontal location of the sinusoid.

- The formula for this sinusoid is:

$$
x(t)=3 \cdot \cos (2 \pi \cdot 50 \cdot t+\pi / 4)
$$

The Significance of Sinusoidal Signals

- Fundamental building blocks for describing arbitrary signals.
- General signals can be expresssed as sums of sinusoids (Fourier Theory)
- Provides bridge to frequency domain.
- Sinusoids are special signals for linear filters (eigenfunctions).
- Sinusoids occur naturally in many situations.
- They are solutions of differential equations of the form

$$
\frac{d^{2} x(t)}{d t^{2}}+a x(t)=0
$$

- Much more on these points as we proceed.

Background: The cosine function

- The properties of sinusoidal signals stem from the properties of the cosine function:
- Periodicity: $\cos (x+2 \pi)=\cos (x)$
- Eveness: $\cos (-x)=\cos (x)$
- Ones of cosine: $\cos (2 \pi k)=1$, for all integers k.
- Minus ones of cosine: $\cos (\pi(2 k+1))=-1$, for all integers k.
- Zeros of cosine: $\cos \left(\frac{\pi}{2}(2 k+1)\right)=0$, for all integers k.
- Relationship to sine function: $\sin (x)=\cos (x-\pi / 2)$ and $\cos (x)=\sin (x+\pi / 2)$.

Amplitude

- The amplitude A is a scaling factor.
- It determines how large the signal is.
- Specifically, the sinusoid oscillates between $+A$ and $-A$.

Frequency and Period

- Sinusoids are periodic signals.
- The frequency f indicates how many times the sinusoid repeats per second.
- The duration of each cycle is called the period of the sinusoid.
It is denoted by T.
- The relationship between frequency and period is

$$
f=\frac{1}{T} \text { and } T=\frac{1}{f}
$$

Phase and Delay

- The phase ϕ causes a sinusoid to be shifted sideways.
- A sinusoid with phase $\phi=0$ has a maximum at $t=0$.
- A sinusoid that has a maximum at $t=\tau$ can be written as

$$
x(t)=A \cdot \cos (2 \pi f(t-\tau))
$$

- Expanding the argument of the cosine leads to

$$
x(t)=A \cdot \cos (2 \pi f t-2 \pi f \tau)
$$

- Comparing to the general formula for a sinusoid reveals

$$
\phi=-2 \pi f \tau \text { and } \tau=\frac{-\phi}{2 \pi f} .
$$

Exercise

1. Plot the sinusoid

$$
x(t)=2 \cos (2 \pi \cdot 10 \cdot t+\pi / 2)
$$

between $t=-0.1$ and $t=0.2$.
2. Find the equation for the sinusoid in the following plot

Vectors and Matrices

- MATLAB is specialized to work with vectors and matrices.
- Most MATLAB commands take vectors or matrices as arguments and perform looping operations automatically.
- Creating vectors in MATLAB:
directly:

$$
x=[1,2,3] ;
$$

using the increment (:) operator:

$$
x=1: 2: 10 ;
$$

produces a vector with elements
[1, 3, 5, 7, 9].
using MATLAB commands For example, to read a .wav file
[x, fs] = wavread('music.wav'); university

Plot a Sinusoid

```
    %% parameters
    A = 3;
    f = 50;
4 phi = pi/4;
    fs=50*f;
    %% generate signal
9 % 5 cycles with 50 samples per cycle
tt = 0 : 1/fs : 5/f;
xx = A* cos(2*pi*f*tt + phi);
%% plot
14 plot(tt,xx)
xlabel( 'Time_(s)' ) % labels for }x\mathrm{ and }y\mathrm{ axis
ylabel( 'Amplitude' )
```


Exercise

- The sinusoid below has frequency $f=10 \mathrm{~Hz}$.
- Three of its maxima are at the the following locations $\tau_{1}=-0.075 \mathrm{~s}, \tau_{2}=0.025 \mathrm{~s}, \tau_{3}=0.125 \mathrm{~s}$
- Use each of these three delays to compute a value for the phase ϕ via the relationship $\phi_{i}=-2 \pi f \tau_{i}$.
- What is the relationship between the phase values ϕ_{i} you obtain?
 UNIVERSITY

Lecture: Adding Sinusoids of the Same Frequency

Adding Sinusoids

- Adding sinusoids of the same frequency is a problem that arises regularly in
- circuit analysis
- linear, time-invariant systems, e.g., filters
- and many other domains
- We will see that adding sinusoids is much easier with complex exponentials
- Today, we will do it the hard way - with trigonometry

A Circuits Example

- For $v(t)=1 \mathrm{~V} \cdot \cos (2 \pi 1 \mathrm{kHz} \cdot t)$, find the current $i(t)$.

Setting up the Problem

- Resistor: $i_{R}(t)=\frac{v_{R}(t)}{R}$
- Capacitor: $i_{C}(t)=C \frac{d v_{C}(t)}{d t}$
- Kirchhoff's current law: $i(t)=i_{R}(t)+i_{C}(t)$
- Kirchhoff's voltage law: $v(t)=v_{R}(t)=v_{C}(t)$
- Therefore,

$$
\begin{aligned}
i(t) & =\frac{v(t)}{R}+C \cdot \frac{d v(t)}{d t} \\
& =\frac{1 \mathrm{~V}}{1 \mathrm{M} \Omega} \cos (2 \pi 1 \mathrm{kHz} \cdot t)-2 \pi \cdot 1 \mathrm{kHz} \cdot 2 \mathrm{nF} \cdot \sin (2 \pi 1 \mathrm{kHz} \cdot t) \\
& =1 \mu \mathrm{~A} \cos (2 \pi 1 \mathrm{kHz} \cdot t)-4 \pi \mu \mathrm{~A} \sin (2 \pi 1 \mathrm{kHz} \cdot \mathrm{t})
\end{aligned}
$$

Simplifying $i(t)$

- Can we write

$$
i(t)=1 \mu \mathrm{~A} \cos (2 \pi 1 \mathrm{kHz} \cdot t)-4 \pi \mu \mathrm{~A} \sin (2 \pi 1 \mathrm{kHz} \cdot \mathrm{t})
$$

as a single sinusoid?

- Specifically, can we express it in the standard form

$$
i(t)=I \cos (2 \pi f t+\phi)
$$

and, if so, what are I, f, and ϕ ?

Solution

- Use the trig identity
$>\cos (x+y)=\cos (x) \cos (y)-\sin (x) \sin (y)$
to change $i(t)=I \cos (2 \pi f t+\phi)$ to

$$
i(t)=I \cdot \cos (\phi) \cos (2 \pi f t)-I \cdot \sin (\phi) \sin (2 \pi f t)
$$

- Compare to

$$
i(t)=1 \mu \mathrm{~A} \cos (2 \pi 1 \mathrm{kHz} \cdot t)-4 \pi \mu \mathrm{~A} \sin (2 \pi 1 \mathrm{kHz} \cdot \mathrm{t})
$$

- Conclude:
- $f=1 \mathrm{kHz}$ - no change in frequency!
$-I \cdot \cos (\phi)=1 \mu \mathrm{~A}$ and $I \cdot \sin (\phi)=4 \pi \mu \mathrm{~A}$.

Solution

- We still must find I and ϕ from
- $I \cdot \cos (\phi)=1 \mu \mathrm{~A}$ and $I \cdot \sin (\phi)=4 \pi \mu \mathrm{~A}$.
- We can find $/$ from

$$
\begin{aligned}
I^{2} \cdot \cos ^{2}(\phi) & +I^{2} \cdot \sin ^{2}(\phi) \\
(1 \mu \mathrm{~A})^{2} & =(4 \pi \mu \mathrm{~A})^{2}
\end{aligned}=\begin{gathered}
I^{2} \\
(12.6 \mu \mathrm{~A})^{2}
\end{gathered}
$$

- Thus, $I=12.6 \mu \mathrm{~A}$.
- Also,

$$
\frac{I \cdot \sin (\phi)}{I \cdot \cos (\phi)}=\tan (\phi)=\frac{4 \pi}{1} .
$$

- Hence, $\phi \approx 0.47 \cdot \pi \approx 85^{\circ}$.
- And, $i(t) \approx 12.6 \mu \mathrm{~A} \cos (2 \pi 1 \mathrm{kHz} \cdot t+0.47 \cdot \pi)$.

Exercise

- Express

$$
x(t)=3 \cdot \cos (2 \pi f t)+4 \cdot \cos (2 \pi f t+\pi / 2)
$$

in the form $A \cdot \cos (2 \pi f t+\phi)$.

- Answer: $x(t) \approx 5 \cos \left(2 \pi f t+53^{\circ}\right)$

Solution to Exercise

- Express

$$
x(t)=3 \cdot \cos (2 \pi f t)+4 \cdot \cos (2 \pi f t+\pi / 2)
$$

in the form $A \cdot \cos (2 \pi f t+\phi)$.

- Solution: Use trig identity $\cos (x+y)=\cos (x) \cos (y)-\sin (x) \sin (y)$ on second term.
- This leads to

$$
\begin{aligned}
x(t)= & 3 \cdot \cos (2 \pi f t)+ \\
& 4 \cdot \cos (2 \pi f t) \cos (\pi / 2)-4 \cdot \sin (2 \pi f t) \sin (\pi / 2) \\
= & 3 \cdot \cos (2 \pi f t)-4 \cdot \sin (2 \pi f t) .
\end{aligned}
$$

- Compare to what we want:

$$
\begin{aligned}
x(t) & =A \cdot \cos (2 \pi f t+\phi) \\
& =A \cdot \cos (\phi) \cos (2 \pi f t)-A \cdot \sin (\phi) \sin (2 \pi f t)
\end{aligned}
$$

Solution cont'd

- We can conclude that A and ϕ must satisfy

$$
A \cdot \cos (\phi)=3 \text { and } A \cdot \sin (\phi)=4
$$

- We can find A from

$$
\begin{array}{cccc}
A^{2} \cdot \cos ^{2}(\phi) & + & A^{2} \cdot \sin ^{2}(\phi) & =A^{2} \\
9 & + & 16 & =
\end{array}
$$

- Thus, $A=5$.
- Also,

$$
\frac{\sin (\phi)}{\cos (\phi)}=\tan (\phi)=\frac{4}{3}
$$

- Hence, $\phi \approx 53^{\circ}\left(\frac{53}{180} \pi\right)$.
- And, $x(t)=5 \cos \left(2 \pi f t+53^{\circ}\right)$.

Summary

- Adding sinusoids of the same frequency is a problem that is frequently encountered in Electrical Engineering.
- We noticed that the frequency of the sum of sinusoids is the same as the frequency of the sinusoids that we added.
- Such problems can be solved using trigonometric identities.
- but, that is very tedious.
- We will see that sums of sinusoids are much easier to compute using complex algebra.

Lecture: Complex Exponentials

Introduction

- The complex exponential signal is defined as

$$
x(t)=A \exp (j(2 \pi f t+\phi)) .
$$

- As with sinusoids, A, f, and ϕ are (real-valued) amplitude, frequency, and phase.
- By Euler's relationship, it is closely related to sinusoidal signals

$$
x(t)=A \cos (2 \pi f t+\phi)+j A \sin (2 \pi f t+\phi)
$$

- We will leverage the benefits the complex representation provides over sinusoids:
- Avoid trigonometry,
- Replace with simple algebra,
- Visualization in the complex plane.

Plot of Complex Exponential

$$
x(t)=1 \cdot \exp (j(2 \pi / 8 t+\pi / 4))
$$

Since $x(t)$ is complex-valued, both real and imaginary parts are functions of time.

Complex Plane

$$
x(t)=1 \cdot e^{j(2 \pi / 8 t+\pi / 4)}
$$

We can think of a complex expontial as signals that rotate along a circle in the complex plane.

Expressing Sinusoids through Complex Exponentials

- There are two ways to write a sinusoidal signal in terms of complex exponentials.
- Real part:

$$
A \cos (2 \pi f t+\phi)=\operatorname{Re}\{A \exp (j(2 \pi f t+\phi))\}
$$

- Inverse Euler:

$$
A \cos (2 \pi f t+\phi)=\frac{A}{2}(\exp (j(2 \pi f t+\phi))+\exp (-j(2 \pi f t+\phi)))
$$

- Both expressions are useful and will be important throughout the course.

Phasors

- Phasors are not directed-energy weapons first seen in the original Star Trek movie.
- That would be phasers!
- Phasors are the complex amplitudes of complex exponential signals:

$$
x(t)=A \exp (j(2 \pi f t+\phi))=A e^{i \phi} \exp (j 2 \pi f t)
$$

- The phasor of this complex exponential is $X=A e^{j \phi}$.
- Thus, phasors capture both amplitude A and phase ϕ - in polar coordinates.
- The real and imaginary parts of the phasor $X=A e^{j \phi}$ are referred to as the in-phase (I) and quadrature (Q) components of X, respectively:

$$
X=I+j Q=A \cos (\phi)+j A \sin (\phi)
$$

Phasor Notation for Complex Exponentials

- The complex exponential signal

$$
x(t)=A \exp (j(2 \pi f t+\phi))=A e^{j \phi} \exp (j 2 \pi f t)
$$

is characterized completely by the combination of
\rightarrow phasor $X=A e^{j \phi}$

- frequency f
- We will frequently use this observation to denote a complex exponential by providing the pair of phasor and frequency:

$$
\left(A e^{j \phi}, f\right)
$$

- We will refer to this notation as the spectrum representation of the complex exponential $x(t)$

From Sinusoids to Phasors

- A sinusoid can be written as

$$
A \cos (2 \pi f t+\phi)=\frac{A}{2}(\exp (j(2 \pi f t+\phi))+\exp (-j(2 \pi f t+\phi)))
$$

- This can be rewritten to provide

$$
A \cos (2 \pi f t+\phi)=\frac{A e^{j \phi}}{2} \exp (j 2 \pi f t)+\frac{A e^{-j \phi}}{2} \exp (-j 2 \pi f t)
$$

- Thus, a sinusoid is composed of two complex exponentials
- One with frequency f and phasor $\frac{A e^{i \phi}}{2}$,
- rotates counter-clockwise in the complex plane;
- one with frequency $-f$ and phasor $\frac{A e^{-j \phi}}{2}$.
- rotates clockwise in the complex plane;
- Note that the two phasors are conjugate complexes of each other.

Exercise

- Write

$$
x(t)=3 \cos (2 \pi 10 t-\pi / 3)
$$

as a sum of two complex exponentials.

- For each of the two complex exponentials, find the frequency and the phasor.
- Repeat for

$$
y(t)=2 \sin (2 \pi 10 t+\pi / 4)
$$

- What are the in-phase and quadrature signals of

$$
z(t)=5 e^{j \pi / 3} \exp (j 2 \pi 10 t)
$$

Answers to Exercise

$$
\begin{aligned}
x(t) & =3 \cos (2 \pi 10 t-\pi / 3) \\
& =\frac{3}{2} e^{-j \pi / 3} e^{j 2 \pi 10 t}+\frac{3}{2} e^{j \pi / 3} e^{-j 2 \pi 10 t}
\end{aligned}
$$

as a sum of two complex exponentials.

- Phasor-frequency pairs: $\left(\frac{3}{2} e^{-j \pi / 3}, 10\right)$ and $\left(\frac{3}{2} e^{j \pi / 3},-10\right)$

$$
\begin{aligned}
y(t) & =2 \sin (2 \pi 10 t+\pi / 4)=2 \cos (2 \pi 10 t-\pi / 4) \\
& =1 e^{-j \pi / 4} e^{j 2 \pi 10 t}+1 e^{j \pi / 4} e^{-j 2 \pi 10 t}
\end{aligned}
$$

$$
z(t)=5 e^{j \pi / 3} \exp (j 2 \pi 10 t)=\left(\frac{5}{2}+j \frac{5 \sqrt{2}}{2}\right) \exp (j 2 \pi 10 t)
$$

Thuc I - 5 and $\cap-5 \sqrt{2}$

Lecture: The Phasor Addition Rule

Problem Statement

- It is often required to add two or more sinusoidal signals.
- When all sinusoids have the same frequency then the problem simplifies.
- This problem comes up very often, e.g., in AC circuit analysis (ECE 280) and later in the class (chapter 5).
- Starting point: sum of sinusoids

$$
x(t)=A_{1} \cos \left(2 \pi f t+\phi_{1}\right)+\ldots+A_{N} \cos \left(2 \pi f t+\phi_{N}\right)
$$

- Note that all frequencies f are the same (no subscript).
- Amplitudes A_{i} phases ϕ_{i} are different in general.
- Short-hand notation using summation symbol (Σ):

$$
x(t)=\sum_{i=1}^{N} A_{i} \cos \left(2 \pi f t+\phi_{i}\right)
$$

The Phasor Addition Rule

- The phasor addition rule implies that there exist an amplitude A and a phase ϕ such that

$$
x(t)=\sum_{i=1}^{N} A_{i} \cos \left(2 \pi f t+\phi_{i}\right)=A \cos (2 \pi f t+\phi)
$$

- Interpretation: The sum of sinusoids of the same frequency but different amplitudes and phases is
- a single sinusoid of the same frequency.
- The phasor addition rule specifies how the amplitude A and the phase ϕ depends on the original amplitudes A_{i} and ϕ_{i}.
- Example: We showed earlier (by means of an unpleasant computation involving trig identities) that:

$$
x(t)=3 \cdot \cos (2 \pi f t)+4 \cdot \cos (2 \pi f t+\pi / 2)=5 \cos \left(2 \pi f t+53^{\circ}\right)
$$

Prerequisites

- We will need two simple prerequisites before we can derive the phasor addition rule.

1. Any sinusoid can be written in terms of complex exponentials as follows

$$
A \cos (2 \pi f t+\phi)=\operatorname{Re}\left\{A e^{j(2 \pi f t+\phi)}\right\}=\operatorname{Re}\left\{A e^{j \phi} e^{j 2 \pi f t}\right\}
$$

Recall that $A e^{j \phi}$ is called a phasor (complex amplitude).
2. For any complex numbers $X_{1}, X_{2}, \ldots, X_{N}$, the real part of the sum equals the sum of the real parts.

$$
\operatorname{Re}\left\{\sum_{i=1}^{N} X_{i}\right\}=\sum_{i=1}^{N} \operatorname{Re}\left\{X_{i}\right\} .
$$

- This should be obvious from the way addition is defined for complex numbers.

$$
\left(x_{1}+j y_{1}\right)+\left(x_{2}+j y_{2}\right)=\left(x_{1}+x_{2}\right)+j\left(y_{1}+y_{2}\right)
$$

Deriving the Phasor Addition Rule

- Objective: We seek to establish that

$$
\sum_{i=1}^{N} A_{i} \cos \left(2 \pi f t+\phi_{i}\right)=A \cos (2 \pi f t+\phi)
$$

and determine how A and ϕ are computed from the A_{i} and ϕ_{i}.

Deriving the Phasor Addition Rule

- Step 1: Using the first pre-requisite, we replace the sinusoids with complex exponentials

$$
\begin{aligned}
\sum_{i=1}^{N} A_{i} \cos \left(2 \pi f t+\phi_{i}\right) & =\sum_{i=1}^{N} \operatorname{Re}\left\{\boldsymbol{A}_{i} e^{j\left(2 \pi f t+\phi_{i}\right)}\right\} \\
& =\sum_{i=1}^{N} \operatorname{Re}\left\{\boldsymbol{A}_{i} e^{j \phi_{i}} e^{j 2 \pi f t}\right\} .
\end{aligned}
$$

Deriving the Phasor Addition Rule

- Step 2: The second prerequisite states that the sum of the real parts equals the the real part of the sum

$$
\sum_{i=1}^{N} \operatorname{Re}\left\{A_{i} e^{j \phi_{i}} e^{j 2 \pi t t}\right\}=\operatorname{Re}\left\{\sum_{i=1}^{N} A_{i} e^{j \phi_{i}} e^{j 2 \pi f t}\right\}
$$

Deriving the Phasor Addition Rule

- Step 3: The exponential $e^{j 2 \pi f t}$ appears in all the terms of the sum and can be factored out

$$
\operatorname{Re}\left\{\sum_{i=1}^{N} A_{i} e^{j \phi_{i}} e^{j 2 \pi f t}\right\}=\operatorname{Re}\left\{\left(\sum_{i=1}^{N} A_{i} e^{j \phi_{i}}\right) e^{j 2 \pi f t}\right\}
$$

- The term $\sum_{i=1}^{N} A_{i} e^{j \phi_{i}}$ is just the sum of complex numbers in polar form.
- The sum of complex numbers is just a complex number X which can be expressed in polar form as $X=A e^{j \phi}$.
- Hence, amplitude A and phase ϕ must satisfy

$$
A e^{j \phi}=\sum_{i=1}^{N} A_{i} e^{j \phi_{i}}
$$

Deriving the Phasor Addition Rule

- Note
- computing $\sum_{i=1}^{N} A_{i} e^{j \phi_{i}}$ requires converting $A_{i} e^{j \phi_{i}}$ to rectangular form,
- the result will be in rectangular form and must be converted to polar form $A e^{i \phi}$.

Deriving the Phasor Addition Rule

- Step 4: Using $A e^{j \phi}=\sum_{i=1}^{N} A_{i} e^{i \phi_{i}}$ in our expression for the sum of sinusoids yields:

$$
\begin{aligned}
\operatorname{Re}\left\{\left(\sum_{i=1}^{N} A_{i} e^{j \phi_{i}}\right) e^{j 2 \pi f t}\right\} & =\operatorname{Re}\left\{A e^{j \phi} e^{j 2 \pi f t}\right\} \\
& =\operatorname{Re}\left\{A e^{j(2 \pi f t+\phi)}\right\} \\
& =A \cos (2 \pi f t+\phi) .
\end{aligned}
$$

- Note: the above result shows that the sum of sinusoids of the same frequency is a sinusoid of the same frequency.

Applying the Phasor Addition Rule

- Applicable only when sinusoids of same frequency need to be added!
- Problem: Simplify

$$
x(t)=A_{1} \cos \left(2 \pi f t+\phi_{1}\right)+\ldots A_{N} \cos \left(2 \pi f t+\phi_{N}\right)
$$

- Solution: proceeds in 4 steps

1. Extract phasors: $X_{i}=A_{i} e^{i \phi_{i}}$ for $i=1, \ldots, N$.
2. Convert phasors to rectangular form:

$$
X_{i}=A_{i} \cos \phi_{i}+j A_{i} \sin \phi_{i} \text { for } i=1, \ldots, N .
$$

3. Compute the sum: $X=\sum_{i=1}^{N} X_{i}$ by adding real parts and imaginary parts, respectively.
4. Convert result X to polar form: $X=A e^{j \phi}$.

- Conclusion: With amplitude A and phase ϕ determined in the final step

$$
x(t)=A \cos (2 \pi f t+\phi)
$$

Example

- Problem: Simplify

$$
x(t)=3 \cdot \cos (2 \pi f t)+4 \cdot \cos (2 \pi f t+\pi / 2)
$$

- Solution:

1. Extract Phasors: $X_{1}=3 e^{j 0}=3$ and $X_{2}=4 e^{i \pi / 2}$.
2. Convert to rectangular form: $X_{1}=3 X_{2}=4 j$.
3. Sum: $X=X_{1}+X_{2}=3+4 j$.
4. Convert to polar form: $A=\sqrt{3^{2}+4^{2}}=5$ and

$$
\phi=\arctan \left(\frac{4}{3}\right) \approx 53^{\circ}\left(\frac{53}{180} \pi\right) .
$$

- Result:

$$
x(t)=5 \cos \left(2 \pi f t+53^{\circ}\right)
$$

The Circuits Example

- For $v(t)=1 \mathrm{~V} \cdot \cos (2 \pi 1 \mathrm{kHz} \cdot t)$, find the current $i(t)$.

Problem Formulation with Phasors

- Source:

$$
v(t)=1 \mathrm{~V} \cdot \cos (2 \pi 1 \mathrm{kHz} \cdot t)=\operatorname{Re}\{1 \mathrm{~V} \cdot \exp (j 2 \pi 1 \mathrm{kHz} \cdot t)\}
$$

\Rightarrow phasor: $V=1 \mathrm{Ve}^{j 0}$

- Kirchhoff's voltage law: $v(t)=v_{R}(t)=v_{C}(t)$;
\Rightarrow phasors: $V=V_{R}=V_{C}$.
- Resistor: $i_{R}(t)=\frac{V_{R}(t)}{R}$;
\Rightarrow phasor: $I_{R}=\frac{V_{R}}{R}$
- Capacitor: $i_{C}(t)=C \frac{d v_{c}(t)}{d t}$;
\Rightarrow phasor: $I_{C}=C \cdot V \cdot j 2 \pi \cdot 1 \mathrm{kHz}$
- Because $\frac{d \exp (j 2 \pi 1 \mathrm{kHz} \cdot t)}{d t}=j 2 \pi 1 \mathrm{kHz} \cdot \exp (j 2 \pi 1 \mathrm{kHz} \cdot t)$
- Kirchhoff's current law: $i(t)=i_{R}(t)+i_{C}(t)$;
\Rightarrow phasors: $I=I_{R}+I_{C}$.

Problem Formulation with Phasors

- Therefore,

$$
\begin{aligned}
I & =\frac{V}{R}+C \cdot V \cdot j 2 \pi \cdot 1 \mathrm{kHz} \\
& =\frac{1 \mathrm{~V}}{1 \mathrm{M} \Omega}+j 2 \pi \cdot 1 \mathrm{kHz} \cdot 2 \mathrm{nF} \cdot 1 \mathrm{~V} \\
& =1 \mu \mathrm{~A}+j 4 \pi \mu \mathrm{~A}
\end{aligned}
$$

- Convert to polar form:

$$
1 \mu \mathrm{~A}+j 4 \pi \mu \mathrm{~A}=12.6 \mu \mathrm{~A} \cdot e^{j 0.47 \pi}
$$

Using:

- $\sqrt{1^{2}+(4 \pi)^{2}} \approx 12.6$
- $\tan ^{-1}((4 \pi)) \approx 0.47 \pi$
- Thus, $i(t) \approx 12.6 \mu \mathrm{~A} \cos (2 \pi 1 \mathrm{kHz} \cdot t+0.47 \cdot \pi)$.

Exercise

- Simplify

$$
\begin{gathered}
x(t)=10 \cos \left(20 \pi t+\frac{\pi}{4}\right)+ \\
10 \cos \left(20 \pi t+\frac{3 \pi}{4}\right)+ \\
20 \cos \left(20 \pi t-\frac{3 \pi}{4}\right)
\end{gathered}
$$

- Answer:

$$
x(t)=10 \sqrt{2} \cos (20 \pi t+\pi)
$$

Part III

Spectrum Representation of Signals

 ASON
Lecture: Sums of Sinusoids (of different frequency)

Introduction

- To this point we have focused on sinusoids of identical frequency f

$$
x(t)=\sum_{i=1}^{N} A_{i} \cos \left(2 \pi f t+\phi_{i}\right)
$$

- Note that the frequency f does not have a subscript i !
- Showed (via phasor addition rule) that the above sum can always be written as a single sinusoid of frequency f.

Introduction

- We will consider sums of sinusoids of different frequencies:

$$
x(t)=\sum_{i=1}^{N} A_{i} \cos \left(2 \pi f_{i} t+\phi_{i}\right)
$$

- Note the subscript on the frequencies f_{i} !
- This apparently minor difference has dramatic consequences.

Sum of Two Sinusoids

$$
x(t)=\frac{4}{\pi} \cos (2 \pi f t-\pi / 2)+\frac{4}{3 \pi} \cos (2 \pi 3 f t-\pi / 2)
$$

Sum of 25 Sinusoids

$$
x(t)=\sum_{n=0}^{25} \frac{4}{(2 n-1) \pi} \cos (2 \pi(2 n-1) f t-\pi / 2)
$$

Non-sinusoidal Signals as Sums of Sinusoids

- If we allow infinitely many sinusoids in the sum, then the result is a square wave signal.
- The example demonstrates that general, non-sinusoidal signals can be represented as a sum of sinusoids.
- The sinusods in the summation depend on the general signal to be represented.
- For the square wave signal we need sinusoids
- of frequencies $(2 n-1) \cdot f$, and
- amplitudes $\frac{4}{(2 n-1) \pi}$.
- (This is not obvious \rightarrow Fourier Series).

Non-sinusoidal Signals as Sums of Sinusoids

- The ability to express general signals in terms of sinusoids forms the basis for the frequency domain or spectrum representation.
- Basic idea: list the "ingredients" of a signal by specifying
- amplitudes and phases, as well as
- frequencies of the sinusoids in the sum.

The Spectrum of a Sum of Sinusoids

- Begin with the sum of sinusoids introduced earlier

$$
x(t)=A_{0}+\sum_{i=1}^{N} A_{i} \cos \left(2 \pi f_{i} t+\phi_{i}\right) .
$$

where we have broken out a possible constant term.

- The term A_{0} can be thought of as corresponding to a sinusoid of frequency zero.
- Using the inverse Euler formula, we can replace the sinusoids by complex exponentials

$$
x(t)=X_{0}+\sum_{i=1}^{N}\left\{\frac{X_{i}}{2} \exp \left(j 2 \pi f_{i} t\right)+\frac{X_{i}^{*}}{2} \exp \left(-j 2 \pi f_{i} t\right)\right\}
$$

where $X_{0}=A_{0}$ and $X_{i}=A_{i} e^{j \phi_{i}}$.

The Spectrum of a Sum of Sinusoids (cont'd)

- Starting with

$$
x(t)=X_{0}+\sum_{i=1}^{N}\left\{\frac{X_{i}}{2} \exp \left(j 2 \pi f_{i} t\right)+\frac{X_{i}^{*}}{2} \exp \left(-j 2 \pi f_{i} t\right)\right\}
$$

where $X_{0}=A_{0}$ and $X_{i}=A_{i} e^{j \phi_{i}}$.

- The spectrum representation simply lists the complex amplitudes and frequencies in the summation:

$$
X(f)=\left\{\left(X_{0}, 0\right),\left(\frac{X_{1}}{2}, f_{1}\right),\left(\frac{X_{1}^{*}}{2},-f_{1}\right), \ldots,\left(\frac{X_{N}}{2}, f_{N}\right),\left(\frac{X_{N}^{*}}{2},-f_{N}\right)\right\}
$$

Example

- Consider the signal

$$
x(t)=3+5 \cos (20 \pi t-\pi / 2)+7 \cos (50 \pi t+\pi / 4)
$$

- Using the inverse Euler relationship

$$
\begin{aligned}
x(t)=3 & +\frac{5}{2} e^{-j \pi / 2} \exp (j 2 \pi 10 t) \\
& +\frac{5}{2} e^{j \pi / 2} \exp (-j 2 \pi 10 t) \\
& +\frac{7}{2} e^{j \pi / 4} \exp (j 2 \pi 25 t)
\end{aligned}+\frac{7}{2} e^{-j \pi / 4} \exp (-j 2 \pi 25 t) .
$$

- Hence,

$$
\begin{aligned}
X(f)=\{(3,0), & \left(\frac{5}{2} e^{-j \pi / 2}, 10\right),\left(\frac{5}{2} e^{j \pi / 2},-10\right), \\
& \left.\left(\frac{7}{2} e^{j \pi / 4}, 25\right),\left(\frac{7}{2} e^{-j \pi / 4},-25\right)\right\}
\end{aligned}
$$

Exercise

- Find the spectrum of the signal:

$$
x(t)=6+4 \cos (10 \pi t+\pi / 3)+5 \cos (20 \pi t-\pi / 7)
$$

Time-domain and Frequency-domain

- Signals are naturally observed in the time-domain.
- A signal can be illustrated in the time-domain by plotting it as a function of time.
- The frequency-domain provides an alternative perspective of the signal based on sinusoids:
- Starting point: arbitrary signals can be expressed as sums of sinusoids (or equivalently complex exponentials).
- The frequency-domain representation of a signal indicates which complex exponentials must be combined to produce the signal.
- Since complex exponentials are fully described by amplitude, phase, and frequency it is sufficient to just specify a list of theses parameters.
- Actually, we list pairs of complex amplitudes ($A e^{i \phi}$) and frequencies f and refer to this list as $X(f)$.

Time-domain and Frequency-domain

- It is possible (but not necessarily easy) to find $X(f)$ from $x(t)$: this is called Fourier or spectrum analysis.
- Similarly, one can construct $x(t)$ from the spectrum $X(f)$: this is called Fourier synthesis.
- Notation: $x(t) \leftrightarrow X(f)$.
- Example (from earlier):
- Time-domain: signal

$$
x(t)=3+5 \cos (20 \pi t-\pi / 2)+7 \cos (50 \pi t+\pi / 4) .
$$

- Frequency Domain: spectrum

$$
\begin{aligned}
X(f)=\{(3,0), & \left(\frac{5}{2} e^{-j \pi / 2}, 10\right),\left(\frac{5}{2} e^{j \pi / 2},-10\right), \\
& \left.\left(\frac{7}{2} e^{j \pi / 4}, 25\right),\left(\frac{7}{2} e^{-j \pi / 4},-25\right)\right\}
\end{aligned}
$$

Plotting a Spectrum

- To illustrate the spectrum of a signal, one typically plots the magnitude versus frequency.
- Sometimes the phase is plotted versus frequency as well.

Why Bother with the Frequency-Domain?

- In many applications, the frequency contents of a signal is very important.
- For example, in radio communications signals must be limited to occupy only a set of frequencies allocated by the FCC.
- Hence, understanding and analyzing the spectrum of a signal is crucial from a regulatory perspective.
- Often, features of a signal are much easier to understand in the frequency domain. (Example on next slides).
- We will see later in this class, that the frequency-domain interpretation of signals is very useful in connection with linear, time-invariant systems.
- Example: A low-pass filter retains low frequency components of the spectrum and removes high-frequency components.

Example: Original signal

Example: Corrupted signal

Synthesis: From Frequency to Time-Domain

- Synthesis is a straightforward process; it is a lot like following a recipe.
- Ingredients are given by the spectrum

$$
X(f)=\left\{\left(X_{0}, 0\right),\left(X_{1}, f_{1}\right),\left(X_{1}^{*},-f_{1}\right), \ldots,\left(X_{N}, f_{N}\right),\left(X_{N}^{*},-f_{N}\right)\right\}
$$

Each pair indicates one complex exponential component by listing its frequency and complex amplitude.

- Instructions for combining the ingredients and producing the (time-domain) signal:

$$
x(t)=\sum_{n=-N}^{N} x_{n} \exp \left(j 2 \pi f_{n} t\right)
$$

- Always simplify the expression you obtain!

Example

- Problem: Find the signal $x(t)$ corresponding to

$$
\begin{aligned}
X(f)=\{(3,0), & \left(\frac{5}{2} e^{-j \pi / 2}, 10\right),\left(\frac{5}{2} e^{j \pi / 2},-10\right), \\
& \left.\left(\frac{7}{2} e^{j \pi / 4}, 25\right),\left(\frac{7}{2} e^{-j \pi / 4},-25\right)\right\}
\end{aligned}
$$

- Solution:

$$
\begin{aligned}
x(t)=3 & +\frac{5}{2} e^{-j \pi / 2} e^{j 2 \pi 10 t}+\frac{5}{2} e^{j \pi / 2} e^{-j 2 \pi 10 t} \\
& +\frac{7}{2} e^{j \pi / 4} e^{j 2 \pi 25 t}+\frac{7}{2} e^{-j \pi / 4} e^{-j 2 \pi 25 t}
\end{aligned}
$$

- Which simplifies to:

$$
x(t)=3+5 \cos (20 \pi t-\pi / 2)+7 \cos (50 \pi t+\pi / 4)
$$

Exercise

- Find the signal with the spectrum:

$$
\begin{aligned}
X(f)=\{(5,0), & \left(2 e^{-j \pi / 4}, 10\right),\left(2 e^{j \pi / 4},-10\right), \\
& \left(\frac{5}{2} e^{j \pi / 4}, 15\right),\left(\frac{5}{2} e^{-j \pi / 4},-15\right)
\end{aligned}
$$

Analysis: From Time to Frequency-Domain

- The objective of spectrum or Fourier analysis is to find the spectrum of a time-domain signal.
- We will restrict ourselves to signals $x(t)$ that are sums of sinusoids

$$
x(t)=A_{0}+\sum_{i=1}^{N} A_{i} \cos \left(2 \pi f_{i} t+\phi_{i}\right)
$$

- We have already shown that such signals have spectrum:

$$
X(f)=\left\{\left(X_{0}, 0\right),\left(\frac{1}{2} X_{1}, f_{1}\right),\left(\frac{1}{2} X_{1}^{*},-f_{1}\right), \ldots,\left(\frac{1}{2} X_{N}, f_{N}\right),\left(\frac{1}{2} X_{N}^{*},-f_{N}\right)\right.
$$

where $X_{0}=A_{0}$ and $X_{i}=A_{i} e^{j \phi_{i}}$.

- We will investigate some interesting signals that can be written as a sum of sinusoids.

Beat Notes

- Consider the signal

$$
x(t)=2 \cdot \cos (2 \pi 5 t) \cdot \cos (2 \pi 400 t)
$$

- This signal does not have the form of a sum of sinusoids; hence, we can not determine it's spectrum immediately.

MATLAB Code for Beat Notes

```
% Parameters
fs = 8192;
dur = 2;
f1 = 5;
f2 = 400;
A = 2;
NP = round(2*fs/f1); % number of samples to plot
% time axis and signal
tt=0:1/fs:dur;
xx = A*\boldsymbol{cos}(2*pi*f1*tt).*\boldsymbol{cos}(2*pi*f2*tt);
plot(tt (1:NP), xx(1:NP),tt(1:NP),A* cos(2*pi*f1*tt(1:NP)),'r')
xlabel('Time(s)')
ylabel('Amplitude')
grid
```


Beat Notes as a Sum of Sinusoids

- Using the inverse Euler relationships, we can write

$$
\begin{aligned}
x(t) & =2 \cdot \cos (2 \pi 5 t) \cdot \cos (2 \pi 400 t) \\
& =2 \cdot \frac{1}{2} \cdot\left(e^{j 2 \pi 5 t}+e^{-j 2 \pi 5 t}\right) \cdot \frac{1}{2} \cdot\left(e^{j 2 \pi 400 t}+e^{-j 2 \pi 400 t}\right) .
\end{aligned}
$$

- Multiplying out yields:

$$
x(t)=\frac{1}{2}\left(e^{j 2 \pi 405 t}+e^{-j 2 \pi 405 t}\right)+\frac{1}{2}\left(e^{j 2 \pi 395 t}+e^{-j 2 \pi 395 t}\right)
$$

- Applying Euler's relationship, lets us write:

$$
x(t)=\cos (2 \pi 405 t)+\cos (2 \pi 395 t)
$$

Spectrum of Beat Notes

- We were able to rewrite the beat notes as a sum of sinusoids

$$
x(t)=\cos (2 \pi 405 t)+\cos (2 \pi 395 t)
$$

- Note that the frequencies in the sum, 395 Hz and 405 Hz , are the sum and difference of the frequencies in the original product, 5 Hz and 400 Hz .
- It is now straightforward to determine the spectrum of the beat notes signal:

$$
X(f)=\left\{\left(\frac{1}{2}, 405\right),\left(\frac{1}{2},-405\right),\left(\frac{1}{2}, 395\right),\left(\frac{1}{2},-395\right)\right\}
$$

Spectrum of Beat Notes

UNIVERSITY

Amplitude Modulation

- Amplitude Modulation is used in communication systems.
- The objective of amplitude modulation is to move the spectrum of a signal $m(t)$ from low frequencies to high frequencies.
- The message signal $m(t)$ may be a piece of music; its spectrum occupies frequencies below 20 KHz .
- For transmission by an AM radio station this spectrum must be moved to approximately 1 MHz .

Amplitude Modulation

- Conventional amplitude modulation proceeds in two steps:

1. A constant A is added to $m(t)$ such that $A+m(t)>0$ for all t.
2. The sum signal $A+m(t)$ is multiplied by a sinusoid $\cos \left(2 \pi f_{c} t\right)$, where f_{c} is the radio frequency assigned to the station.

- Consequently, the transmitted signal has the form:

$$
x(t)=(A+m(t)) \cdot \cos \left(2 \pi f_{c} t\right)
$$

Amplitude Modulation

- We are interested in the spectrum of the AM signal.
- However, we cannot compute $X(f)$ for arbitrary message signals $m(t)$.
- For the special case $m(t)=\cos \left(2 \pi f_{m} t\right)$ we can find the spectrum.
- To mimic the radio case, f_{m} would be a frequency in the audible range.
- As before, we will first need to express the AM signal $x(t)$ as a sum of sinusoids.

Amplitude Modulated Signal

- For $m(t)=\cos \left(2 \pi f_{m} t\right)$, the AM signal equals

$$
x(t)=\left(A+\cos \left(2 \pi f_{m} t\right)\right) \cdot \cos \left(2 \pi f_{c} t\right)
$$

- This simplifies to

$$
x(t)=A \cdot \cos \left(2 \pi f_{c} t\right)+\cos \left(2 \pi f_{m} t\right) \cdot \cos \left(2 \pi f_{c} t\right)
$$

- Note that the second term of the sum is a beat notes signal with frequencies f_{m} and f_{c}.
- We know that beat notes can be written as a sum of sinusoids with frequencies equal to the sum and difference of f_{m} and f_{c} :

$$
x(t)=A \cdot \cos \left(2 \pi f_{c} t\right)+\frac{1}{2} \cos \left(2 \pi\left(f_{c}+f_{m}\right) t\right)+\frac{1}{2} \cos \left(2 \pi\left(f_{c}-\underset{\substack{\text { MASOGE } \\ \text { MASNSN }}}{\left.f_{m}\right)} t\right)\right.
$$

Plot of Amplitude Modulated Signal

For $A=2, f m=50$, and $f c=400$, the AM signal is plotted below.

Spectrum of Amplitude Modulated Signal

- The AM signal is given by

$$
x(t)=A \cdot \cos \left(2 \pi f_{c} t\right)+\frac{1}{2} \cos \left(2 \pi\left(f_{c}+f_{m}\right) t\right)+\frac{1}{2} \cos \left(2 \pi\left(f_{c}-f_{m}\right) t\right)
$$

- Thus, its spectrum is

$$
X(f)= \begin{cases} & \left(\frac{A}{2}, f_{c}\right),\left(\frac{A}{2},-f_{c}\right), \\ & \left.\left(\frac{1}{4}, f_{c}+f_{m}\right),\left(\frac{1}{4},-f_{c}-f_{m}\right),\left(\frac{1}{4}, f_{c}-f_{m}\right),\left(\frac{1}{4},-f_{c}+f_{m}\right)\right\}\end{cases}
$$

Spectrum of Amplitude Modulated Signal

For $A=2, f m=50$, and $f c=400$, the spectrum of the $A M$ signal is plotted below.

Spectrum of Amplitude Modulated Signal

- It is interesting to compare the spectrum of the signal before modulation and after multiplication with $\cos \left(2 \pi f_{c} t\right)$.
- The signal $s(t)=A+m(t)$ has spectrum

$$
S(f)=\left\{(A, 0),\left(\frac{1}{2}, 50\right),\left(\frac{1}{2},-50\right)\right\}
$$

- The modulated signal $x(t)$ has spectrum

$$
\begin{aligned}
X(f)=\left\{\begin{array}{l}
\left(\frac{A}{2}, 400\right),\left(\frac{A}{2},-400\right), \\
\\
\\
\left.\left(\frac{1}{4}, 450\right),\left(\frac{1}{4},-450\right),\left(\frac{1}{4}, 350\right),\left(\frac{1}{4},-350\right)\right\}
\end{array}\right.
\end{aligned}
$$

- Both are plotted on the next page.

Spectrum before and after AM

Spectrum before and after AM

- Comparison of the two spectra shows that amplitude modulation indeed moves a spectrum from low frequencies to high frequencies.
- Note that the shape of the spectrum is precisely preserved.
- Amplitude modulation can be described concisely by stating:
- Half of the original spectrum is shifted by f_{c} to the right, and the other half is shifted by f_{c} to the left.
- Question: How can you get the original signal back so that you can listen to it.
- This is called demodulation.

Lecture: Periodic Signals

What are Periodic Signals?

- A signal $x(t)$ is called periodic if there is a constant T_{0} such that

$$
x(t)=x\left(t+T_{0}\right) \text { for all } t
$$

- In other words, a periodic signal repeats itself every T_{0} seconds.
- The interval T_{0} is called the fundamental period of the signal.
- The inverse of T_{0} is the fundamental frequency of the signal.
- Example:
- A sinusoidal signal of frequency f is periodic with period

$$
T_{0}=1 / f
$$

Harmonic Frequencies

- Consider a sum of sinusoids:

$$
x(t)=A_{0}+\sum_{i=1}^{N} A_{i} \cos \left(2 \pi f_{i} t+\phi_{i}\right)
$$

- A special case arises when we constrain all frequencies f_{i} to be integer multiples of some frequency f_{0} :

$$
f_{i}=i \cdot f_{0}
$$

- The frequencies f_{i} are then called harmonic frequencies of f_{0}.
- We will show that sums of sinusoids with frequencies that are harmonics are periodic.

Harmonic Signals are Periodic

- To establish periodicity, we must show that there is T_{0} such $x(t)=x\left(t+T_{0}\right)$.
- Begin with

$$
\begin{aligned}
x\left(t+T_{0}\right) & =A_{0}+\sum_{i=1}^{N} A_{i} \cos \left(2 \pi f_{i}\left(t+T_{0}\right)+\phi_{i}\right) \\
& =A_{0}+\sum_{i=1}^{N} A_{i} \cos \left(2 \pi f_{i} t+2 \pi f_{i} T_{0}+\phi_{i}\right)
\end{aligned}
$$

- Now, let $f_{0}=1 / T_{0}$ and use the fact that frequencies are harmonics: $f_{i}=i \cdot f_{0}$.

Harmonic Signals are Periodic

- Then, $f_{i} \cdot T_{0}=i \cdot f_{0} \cdot T_{0}=i$ and hence

$$
\begin{aligned}
x\left(t+T_{0}\right) & =A_{0}+\sum_{i=1}^{N} A_{i} \cos \left(2 \pi f_{i} t+2 \pi f_{i} T_{0}+\phi_{i}\right) \\
& =A_{0}+\sum_{i=1}^{N} A_{i} \cos \left(2 \pi f_{i} t+2 \pi i+\phi_{i}\right)
\end{aligned}
$$

- We can drop the $2 \pi i$ terms and conclude that $x\left(t+T_{0}\right)=x(t)$.
- Conclusion: A signal of the form

$$
x(t)=A_{0}+\sum_{i=1}^{N} A_{i} \cos \left(2 \pi i \cdot f_{0} t+\phi_{i}\right)
$$

is periodic with period $T_{0}=1 / f_{0}$.

Finding the Fundamental Frequency

- Often one is given a set of frequencies $f_{1}, f_{2}, \ldots, f_{N}$ and is required to find the fundamental frequency f_{0}.
- Specifically, this means one must find a frequency f_{0} and integers $n_{1}, n_{2}, \ldots, n_{N}$ such that all of the following equations are met:

$$
\begin{aligned}
f_{1} & =n_{1} \cdot f_{0} \\
f_{2} & =n_{2} \cdot f_{0} \\
& \vdots \\
f_{N} & =n_{N} \cdot f_{0}
\end{aligned}
$$

- Note that there isn't always a solution to the above problem.
- However, if all frequencies are integers a solution exists.
- Even if all frequencies are rational a solution exists.

Example

- Find the fundamental frequency for the set of frequencies $f_{1}=12, f_{2}=27, f_{3}=51$.
- Set up the equations:

$$
\begin{aligned}
12 & =n_{1} \cdot f_{0} \\
27 & =n_{2} \cdot f_{0} \\
51 & =n_{3} \cdot f_{0}
\end{aligned}
$$

- Try the solution $n_{1}=1$; this would imply $f_{0}=12$. This cannot satisfy the other two equations.
- Try the solution $n_{1}=2$; this would imply $f_{0}=6$. This cannot satisfy the other two equations.
- Try the solution $n_{1}=3$; this would imply $f_{0}=4$. This cannot satisfy the other two equations.
- Try the solution $n_{1}=4$; this would imply $f_{0}=3$. This can satisfy the other two equations with $n_{2}=9$ and $n_{3}=17$.

Example

- Note that the three sinusoids complete a cycle at the same time at $T_{0}=1 / f_{0}=1 / 3 s$.

NIVERSITY

A Few Things to Note

- Note that the fundamental frequency f_{0} that we determined is the greatest common divisor (gcd) of the original frequencies.
- $f_{0}=3$ is the gcd of $f_{1}=12, f_{2}=27$, and $f_{3}=51$.
- The integers n_{i} are the number of full periods (cycles) the sinusoid of freqency f_{i} completes in the fundamental period $T_{0}=1 / f_{0}$.
- For example, $n_{1}=f_{1} \cdot T_{0}=f_{1} \cdot 1 / f_{0}=4$.
- The sinusoid of frequency f_{1} completes $n_{1}=4$ cycles during the period T_{0}.

Exercise

- Find the fundamental frequency for the set of frequencies $f_{1}=2, f_{2}=3.5, f_{3}=5$.

Fourier Series

- We have shown that a sum of sinusoids with harmonic frequencies is a periodic signal.
- One can turn this statement around and arrive at a very important result:

Any periodic signal can be expressed as a sum of sinusoids with harmonic frequencies.

- The resulting sum is called the Fourier Series of the signal.
- Put differently, a periodic signal can always be written in the form

$$
\begin{aligned}
x(t) & =A_{0}+\sum_{i=1}^{N} A_{i} \cos \left(2 \pi i f_{0} t+\phi_{i}\right) \\
& =X_{0}+\sum_{i=1}^{N} X_{i} e^{j 2 \pi i f_{0} t}+X_{i}^{*} e^{-j 2 \pi i t_{0} t}
\end{aligned}
$$

with $X_{0}=A_{0}$ and $X_{i}=\frac{A_{i}}{2} e^{j \phi_{i}}$.

Fourier Series

- For a periodic signal the complex amplitudes X_{i} can be computed using a (relatively) simple formula.
- Specifically, for a periodic signal $x(t)$ with fundamental period T_{0} the complex amplitudes X_{i} are given by:

$$
X_{i}=\frac{1}{T_{0}} \int_{0}^{T_{0}} x(t) \cdot e^{-j 2 \pi i t / T_{0}} d t
$$

- Note that the integral above can be evaluated over any interval of length T_{0}.

Example: Square Wave

- A square wave signal is periodic and between $t=0$ and $t=T_{0}$ it equals

$$
x(t)=\left\{\begin{array}{cc}
1 & 0 \leq t<\frac{T_{0}}{2} \\
-1 & \frac{T_{0}}{2} \leq t<T_{0}
\end{array}\right.
$$

- From the Fourier Series expansion it follows that $x(t)$ can be written as

$$
x(t)=\sum_{n=0}^{\infty} \frac{4}{(2 n-1) \pi} \cos (2 \pi(2 n-1) f t-\pi / 2)
$$

25-Term Approximation to Square Wave

$$
x(t)=\sum_{n=0}^{25} \frac{4}{(2 n-1) \pi} \cos (2 \pi(2 n-1) f t-\pi / 2)
$$

Limitations of Sum-of-Sinusoid Signals

- So far, we have considered only signals that can be written as a sum of sinusoids.

$$
x(t)=A_{0}+\sum_{i=1}^{N} A_{i} \cos \left(2 \pi f_{i} t+\phi_{i}\right)
$$

- For such signals, we are able to compute the spectrum.
- Note, that signals of this form
\rightarrow are assumed to last forever, i.e., for $-\infty<t<\infty$,
- and their spectrum never changes.
- While such signals are important and useful conceptually, they don't describe real-world signals accurately.
- Real-world signals
- are of finite duration,
- their spectrum changes over time.

Musical Notation

- Musical notation ("sheet music") provides a way to represent real-world signals: a piece of music.
- As you know, sheet music
- places notes on a scale to reflect the frequency of the tone to be played,
- uses differently shaped note symbols to indicate the duration of each tone,
- provides the order in which notes are to be played.
- In summary, musical notation captures how the spectrum of the music-signal changes over time.
- We cannot write signals whose spectrum changes with time as a sum of sinusoids.
- A static spectrum is insufficient to describe such signals.
- Alternative: time-frequency spectrum

Example: Musical Scale

Note	C	D	E	F	G	A	B	C
Frequency (Hz)	262	294	330	349	392	440	494	523

Table: Musical Notes and their Frequencies

Example: Musical Scale

- If we play each of the notes for 250 ms , then the resulting signal can be summarized in the time-frequency spectrum below.

MATLAB Spectrogram Function

- MATLAB has a function spectrogram that can be used to compute the time-frequency spectrum for a given signal.
- The resulting plots are similar to the one for the musical scale on the previous slide.
- Typically, you invoke this function as spectrogram(xx, 256, 128, 256, fs,'yaxis'), where $x x$ is the signal to be analyzed and $f s$ is the sampling frequency.
- The spectrogram for the musical scale is shown on the next slide.

Spectrogram: Musical Scale

- The color indicates the magnitude of the spectrum at a given time and frequency.

university

Chirp Signals

- Objective: construct a signal such that its frequency increases with time.
- Starting Point: A sinusoidal signal has the form:

$$
x(t)=A \cos \left(2 \pi f_{0} t+\phi\right)
$$

- We can consider the argument of the cos as a time-varying phase function

$$
\Psi(t)=2 \pi f_{0} t+\phi
$$

- Question: What happens when we allow more general functions for $\Psi(t)$?
- For example, let

$$
\Psi(t)=700 \pi t^{2}+440 \pi t+\phi
$$

Spectrogram: $\cos (\Psi(t))$

- Question: How is he time-frequency spectrum related to $\Psi(t)$?

Instantaneous Frequency

- For a regular sinusoid, $\Psi(t)=2 \pi f_{0} t+\phi$ and the frequency equals f_{0}.
- This suggests as a possible relationship between $\Psi(t)$ and f_{0}

$$
f_{0}=\frac{1}{2 \pi} \frac{d}{d t} \Psi(t)
$$

- If the above derivative is not a constant, it is called the instantaneous frequency of the signal, $f_{i}(t)$.
- Example: For $\Psi(t)=700 \pi t^{2}+440 \pi t+\phi$ we find

$$
f_{i}(t)=\frac{1}{2 \pi} \frac{d}{d t}\left(700 \pi t^{2}+440 \pi t+\phi\right)=700 t+220
$$

- This describes precisely the red line in the spectrogram on the previous slide.

Constructing a Linear Chirp

- Objective: Construct a signal such that its frequency is initially f_{1} and increases linear to f_{2} after T seconds.
- Solution: The above suggests that

$$
f_{i}(t)=\frac{f_{2}-f_{1}}{T} t+f_{1}
$$

- Consequently, the phase function $\Psi(t)$ must be

$$
\Psi(t)=2 \pi \frac{f_{2}-f_{1}}{2 T} t^{2}+2 \pi f_{1} t+\phi
$$

- Note that ϕ has no influence on the spectrum; it is usually set to 0 .

Constructing a Linear Chirp

- Example: Construct a linear chirp such that the frequency decreases from 1000 Hz to 200 Hz in 2 seconds.
- The desired signal must be

$$
x(t)=\cos \left(-2 \pi 200 t^{2}+2 \pi 1000 t\right)
$$

Exercise

- Construct a linear chirp such that the frequency increases from 50 Hz to 200 Hz in 3 seconds.
- Sketch the time-frequency spectrum of the following signal

$$
x(t)=\cos (2 \pi 500 t+100 \cos (2 \pi 2 t))
$$

Signal Operations in the Frequency Domain

- Signal processing implies that we apply operations to signals; Examples include:
- Adding two signals
- Delaying a signal
- Multiplying a signal with a complex exponential signal
- Question: What does each of these operation do the spectrum of the signal?
- We will answer that question for some common signal processing operations.

Scaling a Signal

- Let $x(t)$ be a signal with spectrum $X(f)=\left\{\left(X_{n}, f_{n}\right)\right\}_{n}$.
- Question: If c is a scalar constant, what is the spectrum of the signal $y(t)=c \cdot x(t)$?
- Since

$$
\begin{gathered}
x(t)=\sum_{n} X_{n} \cdot e^{j 2 \pi f_{n} t} \\
y(t)=c \cdot x(t)=\sum_{n} c \cdot X_{n} \cdot e^{j 2 \pi f_{n} t}
\end{gathered}
$$

- Therefore,

$$
Y(f)=\left\{\left(c \cdot X_{n}, f_{n}\right)\right\}_{n}
$$

- We use the short-hand $Y(f)=c \cdot X(f)$ to denote $\left\{\left(c \cdot X_{n}, f_{n}\right)\right\}_{n}$.

Adding Two Signals

- Let $x(t)$ and $y(t)$ be signals with spectra $X(f)$ and $Y(f)$.
- Question: What is the spectrum of the signal

$$
z(t)=x(t)+y(t) ?
$$

- Since

$$
\begin{aligned}
z(t)=x(t)+y(t) & =\sum_{n} X_{n} \cdot e^{j 2 \pi f_{n} t}+\sum_{n} Y_{n} \cdot e^{j 2 \pi f_{n} t} \\
Z(f) & =\left\{\left(X_{n}+Y_{n}, f_{n}\right)\right\}_{n} .
\end{aligned}
$$

- We use the short-hand $Z(f)=X(f)+Y(f)$ to denote $\left\{\left(X_{n}+Y_{n}, f_{n}\right)\right\}$.
- Example: What is the spectrum $Z(f)$ when signals with spectra $X(f)=\{(3,0),(1,1),(1,-1),(2,2),(2,-2)\}$ and $Y(f)=\{(j, 1),(-j,-1),(1,3),(1,-3)\}$ are added?

Delaying a Signal

- Let $x(t)$ be a signal and $X(f)=\left\{\left(X_{n}, f_{n}\right)\right\}_{n}$ denotes its spectrum.
- Question: What is the spectrum of the signal $y(t)=x(t-\tau)$?
- Since

$$
y(t)=x(t-\tau)=\sum_{n} X_{n} \cdot e^{j 2 \pi f_{n}(t-\tau)}=\sum_{n} X_{n} e^{-j 2 \pi f_{n} \tau} \cdot e^{j 2 \pi f_{n} t}
$$

it follows that

$$
Y(f)=\left\{\left(X_{n} e^{-j 2 \pi f_{n} \tau}, f_{n}\right)\right\}_{n}
$$

- Notice that delaying a signal induces phase shifts in the spectrum
- The phase shifts are proportional to the delay τ and the frequencies f_{n}.

Delaying a Signal - Example

- Example: What is the spectrum $Y(f)$ when the signal with spectrum $X(f)=\{(3,0),(1,1),(1,-1),(2,2),(2,-2)\}$ is shifted by $\tau=\frac{1}{4}$?
- Answer:

$$
Y(f)=\{(3,0),(-j, 1),(j,-1),(-2,2),(-2,-2)\}
$$

Multiplying by a Complex Exponential

- Let $x(t)$ be a signal and $X(f)=\left\{\left(c \cdot X_{n}, f_{n}\right)\right\}_{n}$ denotes its spectrum.
- Question: What is the spectrum of the signal

$$
y(t)=x(t) \cdot e^{j 2 \pi f_{c} t} ?
$$

- Since

$$
y(t)=x(t) \cdot e^{j 2 \pi f_{c} t}=\sum_{n} X_{n} \cdot e^{j 2 \pi f_{n} t} \cdot e^{j 2 \pi f_{c} t}=\sum_{n} X_{n} \cdot e^{j 2 \pi\left(f_{n}+f_{c}\right) t}
$$

it follows that

$$
Y(f)=\left\{X_{n}, f_{n}+f_{c}\right\}
$$

- Notice that the entire spectrum is shifted by f_{c}, i.e., $Y(f)=X\left(f+f_{c}\right)$.
- Notice the "symmetry" with the time delay operation - this is called duality.

Exercise: Spectrum of AM Signal

- We discussed that amplitude modulation processess a message signal to produce the transmitted signal $s(t)$:

$$
s(t)=(A+m(t)) \cdot \cos \left(2 \pi f_{c} t\right) .
$$

- Assume that the spectrum of $m(t)$ is $M(f)$.
- Question: Use the Spectrum Operations we discussed to express the spectrum $S(f)$ in terms of $M(f)$.
- Answer:

$$
S(f)=\frac{1}{2} M\left(f+f_{c}\right)+\frac{1}{2} M\left(f-f_{c}\right)+\left\{\left(\frac{A}{2}, f_{c}\right)+\left\{\left(\frac{A}{2},-f_{c}\right)\right\}\right.
$$

Part IV

Sampling of Signals

and ASON
university

Lecture: Introduction to Sampling

Sampling and Discrete-Time Signals

- MATLAB, and other digital processing systems, can not process continuous-time signals.
- Instead, MATLAB requires the continuous-time signal to be converted into a discrete-time signal.
- The conversion process is called sampling.
- To sample a continuous-time signal, we evaluate it at a discrete set of times $t_{n}=n T_{s}$, where
- n is a integer,
$>T_{s}$ is called the sampling period (time between samples),
$\rightarrow f_{s}=1 / T_{s}$ is the sampling rate (samples per second).

Sampling and Discrete-Time Signals

- Sampling results in a sequence of samples

$$
x\left(n T_{s}\right)=A \cdot \cos \left(2 \pi f n T_{s}+\phi\right)
$$

- Note that the independent variable is now n, not t.
- To emphasize that this is a discrete-time signal, we write

$$
x[n]=A \cdot \cos \left(2 \pi f n T_{s}+\phi\right)
$$

- Sampling is a straightforward operation.
- We will see that the sampling rate f_{s} must be chosen with care!

Sampled Signals in MATLAB

- Note that we have worked with sampled signals whenever we have used MATLAB.
- For example, we use the following MATLAB fragment to generate a sinusoidal signal:

```
fs = 100;
tt = 0:1/fs:3;
```


- The resulting signal xx is a discrete-time signal:
- The vector xx contains the samples, and
- the vector $t \mathrm{t}$ specifies the sampling instances:

$$
0,1 / f_{s}, 2 / f_{s}, \ldots, 3
$$

- We will now turn our attention to the impact of the sampling rate f_{s}.

Example: Three Sinuoids

- Objective: In MATLAB, compute sampled versions of three sinusoids:

$$
\begin{aligned}
& \text { 1. } x(t)=\cos (2 \pi t+\pi / 4) \\
& \text { 2. } x(t)=\cos (2 \pi 9 t-\pi / 4) \\
& \text { 3. } x(t)=\cos (2 \pi 11 t+\pi / 4)
\end{aligned}
$$

- The sampling rate for all three signals is $f_{s}=10$.

MATLAB code

```
% plot_SamplingDemo - Sample three sinusoidal signals to
%
                                demonstrate the impact of sampling
```

```
%% set parameters
```

%% set parameters
fs = 10;
fs = 10;
dur = 10;
dur = 10;
%% generate signals
%% generate signals
tt = 0:1/fs:dur;
tt = 0:1/fs:dur;
xx1 = cos(2*pi*tt+pi/4);
xx1 = cos(2*pi*tt+pi/4);
xx2 = cos(2*pi*9*tt-pi/4);
xx2 = cos(2*pi*9*tt-pi/4);
xx3 = cos(2*pi*11*tt+pi/4);
xx3 = cos(2*pi*11*tt+pi/4);
%% plot
%% plot
plot(tt,xx1,' : o',tt, xx2,':x',tt, xx3,' :+');
plot(tt,xx1,' : o',tt, xx2,':x',tt, xx3,' :+');
xlabel('Time_(s)')
xlabel('Time_(s)')
grid
grid
legend('f=1',' f=9',' f=11','Location','EastOutside')

```
legend('f=1',' f=9',' f=11','Location','EastOutside')
```

000000
0000000000000000000

Resulting Plot

What happened?

- The samples for all three signals are identical: how is that possible?
- Is there a "bug" in the MATLAB code?
- No, the code is correct.
- Suspicion: The problem is related to our choice of sampling rate.
- To test this suspicion, repeat the experiment with a different sampling rate.
- We also reduce the duration to keep the number of samples constant - that keeps the plots reasonable.

MATLAB code

```
% plot_SamplingDemoHigh - Sample three sinusoidal signals to
% demonstrate the impact of sampling
%% set parameters
fs = 100;
dur = 1;
%% generate signals
tt = 0:1/fs:dur;
xx1 = cos(2*pi*tt+pi/4);
xx2 = cos(2*pi*9*tt-pi/4);
xx3 = cos(2*pi*11*tt+pi/4);
%% plots
plot (tt, xx1,'-*',tt,xx2,'-x',tt, xx3,'-+', ...
        tt(1:10:end), xx1(1:10:end),'ok');
```


grid

```
xlabel('Time_(s)')
legend('f=1','f=9','f=11','f_s=10',' Location','EastOutside')
```


Resulting Plot

The Influence of the Sampling Rate

- Now the three sinusoids are clearly distinguishable and lead to different samples.
- Since the only parameter we changed is the sampling rate f_{s}, it must be responsible for the ambiguity in the first plot.
- Notice also that every 10-th sample (marked with a black circle) is identical for all three sinusoids.
- Since the sampling rate was 10 times higher for the second plot, this explains the first plot.
- It is useful to investigate the effect of sampling mathematically, to understand better what impact it has.
- To do so, we focus on sampling sinusoidal signals.

Sampling a Sinusoidal Signal

- A continuous-time sinusoid is given by

$$
x(t)=A \cos (2 \pi f t+\phi)
$$

- When this signal is sampled at rate f_{s}, we obtain the discrete-time signal

$$
x[n]=A \cos \left(2 \pi f n / f_{s}+\phi\right)
$$

- It is useful to define the normalized frequency $\hat{f}_{d}=\frac{f}{f_{s}}$, so that

$$
x[n]=A \cos \left(2 \pi \hat{f}_{d} n+\phi\right)
$$

Three Cases

- We will distinguish between three cases:

1. $0 \leq \hat{f}_{d} \leq 1 / 2$ (Oversampling, this is what we want!)
2. $1 / 2<\hat{f}_{d} \leq 1$ (Undersampling, folding)
3. $1<\hat{f}_{d} \leq 3 / 2$ (Undersampling, aliasing)

- This captures the three situations addressed by the first example:

$$
\begin{aligned}
& \text { 1. } f=1, f_{s}=10 \Rightarrow \hat{f}_{d}=1 / 10 \\
& \text { 2. } f=9, f_{s}=10 \Rightarrow \hat{f}_{d}=9 / 10 \\
& \text { 3. } f=11, f_{s}=10 \Rightarrow \hat{f}_{d}=11 / 10
\end{aligned}
$$

- We will see that all three cases lead to identical samples.

Oversampling

- When the sampling rate is such that $0 \leq \hat{f}_{d} \leq 1 / 2$, then the samples of the sinusoidal signal are given by

$$
x[n]=A \cos \left(2 \pi \hat{f}_{d} n+\phi\right)
$$

- This cannot be simplified further.
- It provides our base-line.
- Oversampling is the desired behaviour!

Undersampling, Aliasing

- When the sampling rate is such that $1<\hat{f}_{d} \leq 3 / 2$, then we define the apparent frequency $\hat{f}_{a}=\hat{f}_{d}-1$.
- Notice that $0<\hat{f}_{a} \leq 1 / 2$ and $\hat{f}_{d}=\hat{f}_{a}+1$.
- For $f=11, f_{s}=10 \Rightarrow \hat{f}_{d}=11 / 10 \Rightarrow \hat{f}_{a}=1 / 10$.
- The samples of the sinusoidal signal are given by

$$
x[n]=A \cos \left(2 \pi \hat{f}_{d} n+\phi\right)=A \cos \left(2 \pi\left(1+\hat{f}_{a}\right) n+\phi\right)
$$

- Expanding the terms inside the cosine,

$$
x[n]=A \cos \left(2 \pi \hat{f}_{a} n+2 \pi n+\phi\right)=A \cos \left(2 \pi \hat{f}_{a} n+\phi\right)
$$

- Interpretation: The samples are identical to those from a sinusoid with frequency $f=\hat{f}_{a} \cdot f_{s}$ and phase ϕ.

Undersampling, Folding

- When the sampling rate is such that $1 / 2<\hat{f}_{d} \leq 1$, then we introduce the apparent frequency $\hat{f}_{a}=1-\hat{f}_{d}$; again
$0<\hat{f}_{a} \leq 1 / 2$; also $\hat{f}_{d}=1-\hat{f}_{a}$.
- For $f=9, f_{s}=10 \Rightarrow \hat{f}_{d}=9 / 10 \Rightarrow \hat{f}_{a}=1 / 10$.
- The samples of the sinusoidal signal are given by

$$
x[n]=A \cos \left(2 \pi \hat{f}_{d} n+\phi\right)=A \cos \left(2 \pi\left(1-\hat{f}_{a}\right) n+\phi\right)
$$

- Expanding the terms inside the cosine,

$$
x[n]=A \cos \left(-2 \pi \hat{f}_{a} n+2 \pi n+\phi\right)=A \cos \left(-2 \pi \hat{f}_{a} n+\phi\right)
$$

- Because of the symmetry of the cosine, this equals

$$
x[n]=A \cos \left(2 \pi \hat{f}_{a} n-\phi\right)
$$

- Interpretation: The samples are identical to those from a sinusoid with frequency $f=\hat{f}_{a} \cdot f_{s}$ and phase $-\phi$ (phase

Sampling Higher-Frequency Sinusoids

- For sinusoids of even higher frequencies f, either folding or aliasing occurs.
- As before, let \hat{f}_{d} be the normalized frequency f / f_{s}.
- Decompose \hat{f}_{d} into an integer part N and fractional part f_{p}.
- Example: If \hat{f}_{d} is 5.7 then N equals 5 and f_{p} is 0.7.
- Notice that $0 \leq f_{p}<1$, always.
- Phase Reversal occurs when the phase of the sampled sinusoid is the negative of the phase of the continuous-time sinusoid.
- We distinguish between
- Folding occurs when $f_{p}>1 / 2$. Then the apparent frequency \hat{f}_{a} equals $1-f_{p}$ and phase reversal occurs.
- Aliasing occurs when $f_{p} \leq 1 / 2$. Then the apparent frequency is $\hat{f}_{a}=f_{p}$; no phase reversal occurs.

Examples

- For the three sinusoids considered earlier:

$$
\begin{aligned}
& \text { 1. } f=1, \phi=\pi / 4, f_{s}=10 \Rightarrow \hat{f}_{d}=1 / 10 \\
& \text { 2. } f=9, \phi=-\pi / 4, f_{s}=10 \Rightarrow \hat{f}_{d}=9 / 10 \\
& \text { 3. } f=11, \phi=\pi / 4, f_{s}=10 \Rightarrow \hat{f}_{d}=11 / 10
\end{aligned}
$$

- The first case, represents oversampling: The apparent frequency $\hat{f}_{a}=\hat{f}_{d}$ and no phase reversal occurs.
- The second case, represents folding: The apparent \hat{f}_{a} equals $1-\hat{f}_{d}$ and phase reversal occurs.
- In the final example, the fractional part of $\hat{f}_{d}=1 / 10$. Hence, this case represents alising; no phase reversal occurs.

Exercise

The discrete-time sinusoidal signal

$$
x[n]=5 \cos \left(2 \pi 0.2 n-\frac{\pi}{4}\right) .
$$

was obtained by sampling a continuous-time sinusoid of the form

$$
x(t)=A \cos (2 \pi f t+\phi)
$$

at the sampling rate $f_{s}=8000 \mathrm{~Hz}$.

1. Provide three different sets of paramters A, f, and ϕ for the continuous-time sinusoid that all yield the discrete-time sinusoid above when sampled at the indicated rate. The parameter f must satisfy $0<f<12000 \mathrm{~Hz}$ in all three cases.
2. For each case indicate if the signal is undersampled or oversampled and if aliasing or folding occurred.

Experiments

- Two experiments to illustrate the effects that sampling introduces:

1. Sampling a chirp signal.
2. Sampling a rotating phasor.

Experiment: Sampling a Chirp Signal

- Objective: Directly observe folding and aliasing by means of a chirp signal.
- Experiment Set-up:
- Set sampling rate. Baseline: $f_{s}=44.1 \mathrm{KHz}$ (oversampled), Comparison: $f_{s}=8.192 \mathrm{KHz}$ (undersampled)
- Generate a (sampled) chirp signal with instantaneous frequency increasing from 0 to 20 KHz in 10 seconds.
- Evaluate resulting signal by
- playing it through the speaker,
- plotting the periodogram.
- Expected Outcome?
- Expected Outcome:
- Directly observe folding and aliasing in second part of experiment.

Periodogram of undersampled Chirp


```
%% Parameters
fs = 8192; % 44.1KHz for oversampling, 8192 for undersampling
% chitp: 0 to 20KHz in 10 seconds
fstart = 0;
fend = 20e3;
dur = 10;
%% generate signal
tt = 0:1/fs:dur;
psi = 2*pi*(fend-fstart)/(2*dur)*tt.^2; % phase function
xx = cos(psi);
%% spectrogram
spectrogram( xx, 256, 128, 256, fs,'yaxis');
%% play sound
soundsc( xx, fs);
```


Apparent and Normalized Frequency

Experiment: Sampling a Rotating Phasor

- Objective: Investigate sampling effects when we can distinguish between positive and negative frequencies.
- Experiment Set-up:
- Animation: rotating phasor in the complex plane.
- Sampling rate describes the number of "snap-shots" per second (strobes).
- Frequency the number of times the phasor rotates per second.
- positive frequency: counter-clockwise rotation.
- negative frequency: clockwise rotation.
- Expected Outcome?
- Expected Outcome:
- Folding: leads to reversal of direction.
- Aliasing: same direction but apparent frequency is lower than true frequency.

True and Apparent Frequency

$f_{s}=20$

True Frequency	-0.5	0	0.5	19.5	20	20.5
Apparent Frequency	-0.5	0	0.5	-0.5	0	0.5

- Note, that instead of folding we observe negative frequencies.
- occurs when true frequency equals 9.5 in above example.

```
%% parameters
fs = 10; % sampling rate in frames per second
dur = 10; % signal duration in seconds
ff = 9.5; % frequency of rotating phasor
phi = 0; % initial phase of phasor
A = 1; % amplitude
%% Prepare for plot
figure(1)
% unit circle (plotted for reference)
cc = exp(1j*2*pi*(0:0.01:1));
ccx = A*real(cc);
cci = A*imag(cc);
```

TitleString $=$ sprintf('Rotating_Phasor:_f_d_=ュ\%5.2f', ff/fs);

```
%% Animation
for tt = 0:1/fs:dur
    tic; % establish time-reference
    plot(ccx, cci, ':', ...
        [0 A* cos(2*pi*ff*tt+phi)], [0 A*sin(2*pi*ff*tt+phi)], '-ob');
    axis('square')
    axis([-A A -A A]);
    title(TitleString)
    xlabel('Real')
    ylabel('Imag')
    grid on;
    drawnow % force plots to be redrawn
    te = toc;
    % pause until the next sampling instant, if possible
    if ( te < 1/fs)
        pause(1/fs-te)
    end
end

\section*{Lecture: The Sampling Theorem}

\section*{The Sampling Theorem}
- We have analyzed the relationship between the frequency \(f\) of a sinusoid and the sampling rate \(f_{s}\).
- We saw that the ratio \(f / f_{s}\) must be less than \(1 / 2\), i.e., \(f_{s}>2 \cdot f\). Otherwise aliasing or folding occurs.
- This insight provides the first half of the famous sampling theorem

A continuous-time signal \(x(t)\) with frequencies no higher than \(f_{\text {max }}\) can be reconstructed exactly from its samples \(x[n]=x\left(n T_{s}\right)\), if the the samples are taken at a rate \(f_{s}=1 / T_{s}\) that is greater than \(2 \cdot f_{\max }\).
- This very import result is attributed to Claude Shannon and Harry Nyquist.

\section*{Reconstructing a Signal from Samples}
- The sampling theorem suggests that the original continuous-time signal \(x(t)\) can be recreated from its samples \(x[n]\).
- Assuming that samples were taken at a high enough rate.
- This process is referred to as reconstruction or D-to-C conversion (discrete-time to continuous-time conversion).
- In principle, the continous-time signal is reconstructed by placing a suitable pulse at each sample location and adding all pulses.
- The amplitude of each pulse is given by the sample value.

\section*{Suitable Pulses}
- Suitable pulses include
- Rectangular pulse (zero-order hold):
\[
p(t)= \begin{cases}1 & \text { for }-T_{s} / 2 \leq t<T_{s} / 2 \\ 0 & \text { else. }\end{cases}
\]
- Triangular pulse (linear interpolation)
\[
p(t)=\left\{\begin{array}{cl}
1+t / T_{s} & \text { for }-T_{s} \leq t \leq 0 \\
1-t / T_{s} & \text { for } 0 \leq t \leq T_{s} \\
0 & \text { else. }
\end{array}\right.
\]

\section*{Reconstruction}
- The reconstructed signal \(\hat{x}(t)\) is computed from the samples and the pulse \(p(t)\) :
\[
\hat{x}(t)=\sum_{n=-\infty}^{\infty} x[n] \cdot p\left(t-n T_{s}\right)
\]
- The reconstruction formula says:
- place a pulse at each sampling instant \(\left(p\left(t-n T_{s}\right)\right)\),
- scale each pulse to amplitude \(x[n]\),
- add all pulses to obtain the reconstructed signal.

\section*{Ideal Reconstruction}
- Reconstruction with the above pulses will be pretty good.
- Particularly, when the sampling rate is much greater than twice the signal frequency (significant oversampling).
- However, reconstruction is not perfect as suggested by the sampling theorem.
- To obtain perfect reconstruction the following pulse must be used:
\[
p(t)=\frac{\sin \left(\pi t / T_{s}\right)}{\pi t / T_{s}}
\]
- This pulse is called the sinc pulse.
- Note, that it is of infinite duration and, therefore, is not practical.
- In practice a truncated version may be used for excellent reconstruction.

\section*{The sinc pulse}


\section*{Part V}

\section*{Introduction to Linear, Time-Invariant Systems} HASON
university

\section*{Lecture: Introduction to Systems and FIR filters}

\section*{Systems}
- A system is used to process an input signal \(x[n]\) and produce the ouput signal \(y[n]\).
- We focus on discrete-time signals and systems;
- a correspoding theory exists for continuous-time signals and systems.
- Many different systems:
- Filters: remove undesired signal components,
- Modulators and demodulators,
- Detectors.


\section*{Representative Examples}
- The following are examples of systems:
- Squarer: \(y[n]=(x[n])^{2}\);
- Modulator: \(y[n]=x[n] \cdot \cos \left(2 \pi f_{d} n\right)\);
- Averager: \(y[n]=\frac{1}{M} \sum_{k=0}^{M-1} x[n-k]\);
- FIR Filter: \(y[n]=\sum_{k=0}^{M} b_{k} x[n-k]\)
- In MATLAB, systems are generally modeled as functions with \(x[n]\) as the first input argument and \(y[n]\) as the output argument.
- Example: first two lines of function implementing a squarer.
```

function yy = squarer(xx)
% squarer - output signal is the square of the input signal

```

\section*{Squarer}
- System relationship between input and output signals:
\[
y[n]=(x[n])^{2}
\]
- Example: Input signal: \(x[n]=\{1,2,3,4,3,2,1\}\)
- Notation: \(x[n]=\{1,2,3,4,3,2,1\}\) means \(x[0]=1, x[1]=2, \ldots, x[6]=1\); all other \(x[n]=0\).
- Output signal: \(y[n]=\{1,4,9,16,9,4,1\}\).

\section*{Modulator}
- System relationship between input and output signals:
\[
y[n]=(x[n]) \cdot \cos \left(2 \pi f_{d} n\right) ;
\]
where the modulator frequency \(f_{d}\) is a parameter of the system.
- Example:
- Input signal: \(x[n]=\{1,2,3,4,3,2,1\}\)
\(>\) assume \(f_{d}=0.5\), i.e., \(\cos \left(2 \pi f_{d} n\right)=\{\ldots, 1,-1,1,-1, \ldots\}\).
- Output signal: \(y[n]=\{1,-2,3,-4,3,-2,1\}\).

\section*{Averager}
- System relationship between input and output signals:
\[
\begin{aligned}
y[n] & =\frac{1}{M} \sum_{k=0}^{M-1} x[n-k] \\
& =\frac{1}{M} \cdot(x[n]+x[n-1]+\ldots+x[n-(M-1)]) \\
& =\sum_{k=0}^{M-1} \frac{1}{M} \cdot x[n-k] .
\end{aligned}
\]
- This system computes the sliding average over the \(M\) most recent samples.
- Example: Input signal: \(x[n]=\{1,2,3,4,3,2,1\}\)
- For computing the output signal, a table is very useful.
- synthetic multiplication table.

\section*{3-Point Averager ( \(M=3\) )}
\begin{tabular}{|r|cccccccccc|}
\hline\(n\) & -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\(x[n]\) & 0 & 1 & 2 & 3 & 4 & 3 & 2 & 1 & 0 & 0 \\
\hline\(\frac{1}{M} \cdot x[n]\) & 0 & \(\frac{1}{3}\) & \(\frac{2}{3}\) & 1 & \(\frac{4}{3}\) & 1 & \(\frac{2}{3}\) & \(\frac{1}{3}\) & 0 & 0 \\
\(+\frac{1}{M} \cdot x[n-1]\) & 0 & 0 & \(\frac{1}{3}\) & \(\frac{2}{3}\) & 1 & \(\frac{4}{3}\) & 1 & \(\frac{2}{3}\) & \(\frac{1}{3}\) & 0 \\
\(+\frac{1}{M} \cdot x[n-2]\) & 0 & 0 & 0 & \(\frac{1}{3}\) & \(\frac{2}{3}\) & 1 & \(\frac{4}{3}\) & 1 & \(\frac{2}{3}\) & \(\frac{1}{3}\) \\
\hline\(y[n]\) & 0 & \(\frac{1}{3}\) & 1 & 2 & 3 & \(\frac{10}{3}\) & 3 & 2 & 1 & \(\frac{1}{3}\) \\
\hline
\end{tabular}
\[
y[n]=\left\{\frac{1}{3}, 1,2,3, \frac{10}{3}, 3,2,1, \frac{1}{3}\right\}
\]

\section*{General FIR Filter}
- The M-point averager is a special case of the general FIR filter.
- FIR stands for Finite Impulse Response; we will see what this means later.
- The system relationship between the input \(x[n]\) and the output \(y[n]\) is given by
\[
y[n]=\sum_{k=0}^{M-1} b_{k} \cdot x[n-k] .
\]
- \(M\) is the number of filter coefficients.
- \(M-1\) is called the order of the filter.

\section*{General FIR Filter}
- System relationship:
\[
y[n]=\sum_{k=0}^{M-1} b_{k} \cdot x[n-k] .
\]
- The filter coefficients \(b_{k}\) determine the characteristics of the filter.
- Much more on the relationship between the filter coefficients \(b_{k}\) and the characteristics of the filter later.
- Clearly, with \(b_{k}=\frac{1}{M}\) for \(k=0,1, \ldots, M-1\) we obtain the M-point averager.
- Again, computation of the output signal can be done via a synthetic multiplication table.
- Example: \(x[n]=\{1,2,3,4,3,2,1\}\) and \(b_{k}=\{1,-2,1\}\).

\section*{FIR Filter \(\left(b_{k}=\{1,-2,1\}\right)\)}
\begin{tabular}{|c|cccccccccc|}
\hline \hline\(n\) & -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\(x[n]\) & 0 & 1 & 2 & 3 & 4 & 3 & 2 & 1 & 0 & 0 \\
\hline \(1 \cdot x[n]\) & 0 & 1 & 2 & 3 & 4 & 3 & 2 & 1 & 0 & 0 \\
\(-2 \cdot x[n-1]\) & 0 & 0 & -2 & -4 & -6 & -8 & -6 & -4 & -2 & 0 \\
\(+1 \cdot x[n-2]\) & 0 & 0 & 0 & 1 & 2 & 3 & 4 & 3 & 2 & 1 \\
\hline\(y[n]\) & 0 & 1 & 0 & 0 & 0 & -2 & 0 & 0 & 0 & 1 \\
\hline
\end{tabular}
- \(y[n]=\{1,0,0,0,-2,0,0,0,1\}\)
- Note that the output signal \(y[n]\) is longer than the input signal \(x[n]\).
- Note, synthetic multiplication works only for short, finite-duration signal.

\section*{Exercise}
1. Find the output signal \(y[n]\) for an FIR filter
\[
y[n]=\sum_{k=0}^{M-1} b_{k} \cdot x[n-k]
\]
with filter coefficients \(b_{k}=\{1,-1,2\}\) when the input signal is \(x[n]=\{1,2,4,2,4,2,1\}\).

\section*{Unit Step Sequence and Unit Step Response}
- The signal with samples
\[
u[n]= \begin{cases}1 & \text { for } n \geq 0 \\ 0 & \text { for } n<0\end{cases}
\]
is called the unit-step sequence or unit-step signal.
- The output of an FIR filter when the input is the unit-step signal \((x[n]=u[n])\) is called the unit-step response \(r[n]\).


\section*{Unit-Step Response of the 3-Point Averager}
- Input signal: \(x[n]=u[n]\).
- Output signal: \(r[n]=\frac{1}{3} \sum_{k=0}^{2} u[n-k]\).
\begin{tabular}{|r|cccccc|}
\hline \hline\(n\) & -1 & 0 & 1 & 2 & 3 & \(\ldots\) \\
\(u[n]\) & 0 & 1 & 1 & 1 & 1 & \(\ldots\) \\
\hline\(\frac{1}{3} u[n]\) & 0 & \(\frac{1}{3}\) & \(\frac{1}{3}\) & \(\frac{1}{3}\) & \(\frac{1}{3}\) & \(\ldots\) \\
\(+\frac{1}{3} u[n-1]\) & 0 & 0 & \(\frac{1}{3}\) & \(\frac{1}{3}\) & \(\frac{1}{3}\) & \(\ldots\) \\
\(+\frac{1}{3} u[n-2]\) & 0 & 0 & 0 & \(\frac{1}{3}\) & \(\frac{1}{3}\) & \(\ldots\) \\
\hline\(r[n]\) & 0 & \(\frac{1}{3}\) & \(\frac{2}{3}\) & 1 & 1 & \(\ldots\) \\
\hline \hline
\end{tabular}

\section*{Unit-Impulse Sequence and Unit-Impulse Response}
- The signal with samples
\[
\delta[n]= \begin{cases}1 & \text { for } n=0, \\ 0 & \text { for } n \neq 0\end{cases}
\]
is called the unit-impulse sequence or unit-impulse signal.
- The output of an FIR filter when the input is the unit-impulse signal ( \(x[n]=\delta[n]\) ) is called the unit-impulse response, denoted \(h[n]\).
- Typically, we will simply call the above signals simply impulse signal and impulse response.
- We will see that the impulse-response captures all characteristics of a FIR filter.
- This implies that impulse response is a very important concept!

\section*{Unit-Impulse Response of a FIR Filter}
- Input signal: \(x[n]=\delta[n]\).
- Output signal: \(h[n]=\sum_{k=0}^{M-1} b_{k} \delta[n-k]\).
\begin{tabular}{|r|ccccccc|}
\hline \hline\(n\) & -1 & 0 & 1 & 2 & 3 & \(\ldots\) & M \\
\(\delta[n]\) & 0 & 1 & 0 & 0 & 0 & \(\ldots\) & 0 \\
\hline\(b_{0} \cdot \delta[n]\) & 0 & \(b_{0}\) & 0 & 0 & 0 & \(\ldots\) & 0 \\
\(+b_{1} \cdot \delta[n-1]\) & 0 & 0 & \(b_{1}\) & 0 & 0 & \(\ldots\) & 0 \\
\(+b_{2} \cdot \delta[n-2]\) & 0 & 0 & 0 & \(b_{2}\) & 0 & \(\ldots\) & 0 \\
\(\vdots\) & & & & \(\vdots\) & & & \\
\(+b_{M} \cdot \delta[n-M]\) & 0 & 0 & 0 & 0 & 0 & \(\ldots\) & \(b_{M}\) \\
\hline\(h[n]\) & 0 & \(b_{0}\) & \(b_{1}\) & \(b_{2}\) & \(b_{3}\) & \(\ldots\) & \(b_{M}\) \\
\hline \hline
\end{tabular}

\section*{Important Insights}
- For an FIR filter, the impulse response equals the sequence of filter coefficients:
\[
h[n]=\left\{\begin{array}{cl}
b_{n} & \text { for } n=0,1, \ldots, M-1 \\
0 & \text { else. }
\end{array}\right.
\]
- Because of this relationship, the system relationship for an FIR filter can also be written as
\[
\begin{aligned}
y[n] & =\sum_{k=0}^{M-1} b_{k} x[n-k] \\
& =\sum_{k=0}^{M=1} h[k] x[n-k] \\
& =\sum_{-\infty}^{\infty} h[k] x[n-k] .
\end{aligned}
\]
- The operation \(y[n]=h[n] * x[n]=\sum_{-\infty}^{\infty} h[k] x[n-k]\) is called convolution; it is a very, very important operation.

\section*{Exercise}
1. Find the impulse response \(h[n]\) for the FIR filter with difference equation
\[
y[n]=2 \cdot x[n]+x[n-1]-3 \cdot x[n-3] .
\]
2. Compute the output signal, when the input signal is \(x[n]=u[n]\).
3. Compute the output signal, when the input signal is \(x[n]=\exp (-\alpha n) \cdot u[n]\).

\section*{Lecture: Linear, Time-Invariant Systems}

\section*{Introduction}
- We have introduced systems as devices that process an input signal \(x[n]\) to produce an output signal \(y[n]\).
- Example Systems:
- Squarer: \(y[n]=(x[n])^{2}\)
- Modulator: \(y[n]=x[n] \cdot \cos \left(2 \pi f_{d} n\right)\), with \(0<f_{d} \leq \frac{1}{2}\).
- FIR Filter:
\[
y[n]=\sum_{k=0}^{M-1} h[k] \cdot x[n-k]
\]

Recall that \(h[k]\) is the impulse response of the filter and that the above operation is called convolution of \(h[n]\) and \(x[n]\).
- Objective: Define important characteristics of systems and determine which systems possess these characteristics.

\section*{Causal Systems}
- Definition: A system is called causal when it uses only the present and past samples of the input signal to compute the present value of the output signal.
- Causality is usually easy to determine from the system equation:
- The output \(y[n]\) must depend only on input samples
\[
x[n], x[n-1], x[n-2], \ldots .
\]
- Input samples \(x[n+1], x[n+2], \ldots\) must not be used to find \(y[n]\).

\section*{- Examples:}
- All three systems on the previous slide are causal.
- The following system is non-causal:
\[
y[n]=\frac{1}{3} \sum_{k=-1}^{1} x[n-k]=\frac{1}{3}(x[n+1]+x[n]+x[n-1]) .
\]

\section*{Linear Systems}
- The following test procedure defines linearity and shows how one can determine if a system is linear:
1. Reference Signals: For \(i=1,2\), pass input signal \(x_{i}[n]\) through the system to obtain output \(y_{i}[n]\).
2. Linear Combination: Form a new signal \(x[n]\) from the linear combination of \(x_{1}[n]\) and \(x_{2}[n]\) :
\[
x[n]=x_{1}[n]+x_{2}[n] .
\]

Then, Pass signal \(x[n]\) through the system and obtain \(y[n]\).
3. Check: The system is linear if
\[
y[n]=y_{1}[n]+y_{2}[n]
\]
- The above must hold for all inputs \(x_{1}[n]\) and \(x_{2}[n]\).
- For a linear system, the superposition principle holds.

\section*{Illustration}


\section*{Example: Squarer}
- Squarer: \(y[n]=(x[n])^{2}\)
1. References: \(y_{i}[n]=\left(x_{i}[n]\right)^{2}\) for \(i=1,2\).
2. Linear Combination: \(x[n]=x_{1}[n]+x_{2}[n]\) and
\[
\begin{aligned}
y[n] & =(x[n])^{2}=\left(x_{1}[n]+x_{2}[n]\right)^{2} \\
& =\left(x_{1}[n]\right)^{2}+\left(x_{2}[n]\right)^{2}+2 x_{1}[n] x_{2}[n]
\end{aligned}
\]
3. Check:
\[
y[n] \neq y_{1}[n]+y_{2}[n]=\left(x_{1}[n]\right)^{2}+\left(x_{2}[n]\right)^{2} .
\]
- Conclusion: not linear.

\section*{Example: Modulator}
- Modulator: \(y[n]=x[n] \cdot \cos \left(2 \pi f_{d} n\right)\)
1. References: \(y_{i}[n]=x_{i}[n] \cdot \cos \left(2 \pi f_{d} n\right)\) for \(i=1,2\).
2. Linear Combination: \(x[n]=x_{1}[n]+x_{2}[n]\) and
\[
\begin{aligned}
y[n] & =x[n] \cdot \cos \left(2 \pi f_{d} n\right) \\
& =\left(x_{1}[n]+x_{2}[n]\right) \cdot \cos \left(2 \pi f_{d} n\right) .
\end{aligned}
\]
3. Check:
\[
y[n]=y_{1}[n]+y_{2}[n]=x_{1}[n] \cdot \cos \left(2 \pi f_{d} n\right)+x_{2}[n] \cdot \cos \left(2 \pi f_{d} n\right) .
\]
- Conclusion: linear.

\section*{Example: FIR Filter}
- FIR Filter: \(y[n]=\sum_{k=0}^{M-1} h[k] \cdot x[n-k]\)
1. References: \(y_{i}[n]=\sum_{k=0}^{M-1} h[k] \cdot x_{i}[n-k]\) for \(i=1,2\).
2. Linear Combination: \(x[n]=x_{1}[n]+x_{2}[n]\) and
\[
y[n]=\sum_{k=0}^{M-1} h[k] \cdot x[n-k]=\sum_{k=0}^{M-1} h[k] \cdot\left(x_{1}[n-k]+x_{2}[n-k]\right) .
\]
3. Check:
\[
y[n]=y_{1}[n]+y_{2}[n]=\sum_{k=0}^{M-1} h[k] \cdot x_{1}[n-k]+\sum_{k=0}^{M-1} h[k] \cdot x_{2}[n-k] .
\]

Conclusion: linear.

\section*{Time-invariance}
- The following test procedure defines time-invariance and shows how one can determine if a system is time-invariant:
1. Reference: Pass input signal \(x[n]\) through the system to obtain output \(y[n]\).
2. Delayed Input: Form the delayed signal \(x_{d}[n]=x\left[n-n_{0}\right]\). Then, Pass signal \(x_{d}[n]\) through the system and obtain \(y_{d}[n]\).
3. Check: The system is time-invariant if
\[
y\left[n-n_{0}\right]=y_{d}[n]
\]
- The above must hold for all inputs \(x[n]\) and all delays \(n_{0}\).
- Interpretation: A time-invariant system does not change, over time, the way it processes the input signal.

\section*{Illustration}


These two outputs must be identical


\section*{Example: Squarer}
- Squarer: \(y[n]=(x[n])^{2}\)
1. Reference: \(y[n]=(x[n])^{2}\).
2. Delayed Input: \(x_{d}[n]=x\left[n-n_{0}\right]\) and
\[
y_{d}[n]=\left(x_{d}[n]\right)^{2}=\left(x\left[n-n_{0}\right]\right)^{2} .
\]
3. Check:
\[
y\left[n-n_{0}\right]=\left(x\left[n-n_{0}\right]\right)^{2}=y_{d}[n] .
\]
- Conclusion: time-invariant.

\section*{Example: Modulator}
- Modulator: \(y[n]=x[n] \cdot \cos \left(2 \pi f_{d} n\right)\).
1. Reference: \(y[n]=x[n] \cdot \cos \left(2 \pi f_{d} n\right)\).
2. Delayed Input: \(x_{d}[n]=x\left[n-n_{0}\right]\) and
\[
y_{d}[n]=x_{d}[n] \cdot \cos \left(2 \pi f_{d} n\right)=x\left[n-n_{0}\right] \cdot \cos \left(2 \pi f_{d} n\right)
\]
3. Check:
\[
y\left[n-n_{0}\right]=x\left[n-n_{0}\right] \cdot \cos \left(2 \pi f_{d}\left(n-n_{0}\right)\right) \neq y_{d}[n] .
\]
- Conclusion: not time-invariant.

\section*{Example: Modulator}
- Alternatively, to show that the modulator is not time-invariant, we construct a counter-example.
- Let \(x[n]=\{0,1,2,3, \ldots\}\), i.e., \(x[n]=n\), for \(n \geq 0\).
- Also, let \(f_{d}=\frac{1}{2}\), so that
\[
\cos \left(2 \pi f_{d} n\right)=\left\{\begin{array}{cl}
1 & \text { for } n \text { even } \\
-1 & \text { for } n \text { odd }
\end{array}\right.
\]
- Then, \(y[n]=x[n] \cdot \cos \left(2 \pi f_{d} n\right)=\{0,-1,2,-3, \ldots\}\).
- With \(n_{0}=1, x_{d}[n]=x[n-1]=\{0,0,1,2,3, \ldots\}\), we get \(y_{d}[n]=\{0,0,1,-2,3, \ldots\}\).
- Clearly, \(y_{d}[n] \neq y[n-1]\).
- not time-invariant

\section*{Example: FIR Filter}
- Reference: \(y[n]=\sum_{k=0}^{M-1} h[k] \cdot x[n-k]\).
- Delayed Input: \(x_{d}[n]=x\left[n-n_{0}\right]\), and
\[
y_{d}[n]=\sum_{k=0}^{M-1} h[k] \cdot x_{d}[n-k]=\sum_{k=0}^{M-1} h[k] \cdot x\left[n-n_{0}-k\right] .
\]
- Check:
\[
y\left[n-n_{0}\right]=\sum_{k=0}^{M-1} h[k] \cdot x\left[n-n_{0}-k\right]=y_{d}[n]
\]
- time-invariant

\section*{Exercise}
- Let \(u[n]\) be the unit-step sequence (i.e., \(u[n]=1\) for \(n \geq 0\) and \(u[n]=0\), otherwise).
- The system is a 3-point averager:
\[
y[n]=\frac{1}{3}(x[n]+x[n-1]+x[n-2]) .
\]
1. Find the output \(y_{1}[n]\) when the input \(x_{1}[n]=u[n]\).
2. Find the output \(y_{2}[n]\) when the input \(x_{2}[n]=u[n-2]\).
3. Find the output \(y[n]\) when the input \(x[n]=u[n]-u[n-2]\).
4. How are linearity and time-invariance evident in your results?

\title{
Lecture: Convolution and Linear, Time-Invariant Systems
}

\section*{Overview}
- Today: a really important, somewhat challenging, class.
- Key result: for every linear, time-invariant system (LTI system) the output is obtained from input via convolution.
- Convolution is a very important operation!
- Prerequisites from previous classes:
- Impulse signal and impulse response,
- convolution,
- linearity, and
- time-invariance.

\section*{Reminders: Convolution and Impulse Response}
- We learned so far:
- For FIR filters, input-output relationship
\[
y[n]=\sum_{k=0}^{M} b_{k} x[n-k] .
\]
- If \(x[n]=\delta[n]\), then \(y[n]=h[n]\) is called the impulse response of the system.
- For FIR filters:
\[
h[n]=\left\{\begin{array}{cl}
b_{n} & \text { for } 0 \leq n \leq M \\
0 & \text { else. }
\end{array}\right.
\]
- Convolution: input-output relationship
\[
y[n]=x[n] * h[n]=\sum_{k=-\infty}^{\infty} h[k] \cdot x[n-k]=\sum_{k=-\infty}^{\infty} x[k] \cdot h[n-k] .
\]

\section*{Reminders: Linearity and Time-Invariance}
- Linearity:
- For arbitrary input signals \(x_{1}[n]\) and \(x_{2}[n]\), let the ouputs be denoted \(y_{1}[n]\) and \(y_{2}[n]\).
- Further, for the input signal \(x[n]=x_{1}[n]+x_{2}[n]\), let the output signal be \(y[n]\).
- The system is linear if \(y[n]=y_{1}[n]+y_{2}[n]\).
- Time-Invariance:
- For an arbitrary input signal \(x[n]\), let the output be \(y[n]\).
- For the delayed input \(x_{d}[n]=x\left[n-n_{0}\right]\), let the output be \(y_{d}[n]\).
- The system is time-invariant if \(y_{d}[n]=y\left[n-n_{0}\right]\).
- Today: For any linear, time-invariant system: input-output relationship is \(y[n]=x[n] * h[n]\).

\section*{Preliminaries}
- We need a few more facts and relationships for the impulse signal \(\delta[n]\).
- To start, recall:
- If input to a system is the impulse signal \(\delta[n]\),
- then, the output is called the impulse response,
- and is denoted by \(h[n]\).
- We will derive a method for expressing arbitrary signals \(x[n]\) in terms of impulses.

\section*{Sifting with Impulses}
- Question: What happens if we multiply a signal \(x[n]\) with an impulse signal \(\delta[n]\) ?
- Because
\[
\delta[n]= \begin{cases}1 & \text { for } n=0 \\ 0 & \text { else }\end{cases}
\]
- it follows that
\[
x[n] \cdot \delta[n]=x[0] \cdot \delta[n]=\left\{\begin{array}{cl}
x[0] & \text { for } n=0 \\
0 & \text { else }
\end{array}\right.
\]

\section*{Illustration}




\section*{Sifting with Impulses}
- Related Question: What happens if we multiply a signal \(x[n]\) with a delayed impulse signal \(\delta[n-k]\) ?
- Recall that \(\delta[n-k]\) is an impulse located at the \(k\)-th sampling instance:
\[
\delta[n-k]= \begin{cases}1 & \text { for } n=k \\ 0 & \text { else }\end{cases}
\]
- It follows that
\[
x[n] \cdot \delta[n-k]=x[k] \cdot \delta[n-k]=\left\{\begin{array}{cl}
x[k] & \text { for } n=k \\
0 & \text { else }
\end{array}\right.
\]

\section*{Illustration}




\section*{Decomposing a Signal with Impulses}
- Question: What happens if we combine (add) signals of the form \(x[n] \cdot \delta[n-k]\) ?
- Specifically, what is
\[
\sum_{k=-\infty}^{\infty} x[k] \cdot \delta[n-k] ?
\]
- Notice that the above sum represents the convolution of \(x[n]\) and \(\delta[n], \delta[n] * x[n]\).

\section*{Decomposing a Signal with Impulses}
\begin{tabular}{|r||c|c|c|c|c|c|}
\hline\(n\) & \(\ldots\) & -1 & 0 & 1 & 2 & \(\ldots\) \\
\(x[n]\) & \(\ldots\) & \(\mathrm{x}[-1]\) & \(\mathrm{x}[0]\) & \(\mathrm{x}[1]\) & \(\mathrm{x}[2]\) & \(\ldots\) \\
\(\delta[n]\) & \(\ldots\) & 0 & 1 & 0 & 0 & \(\ldots\) \\
\hline\(\vdots\) & \(\vdots\) & \(\vdots\) & \(\vdots\) & \(\vdots\) & \(\vdots\) & \(\vdots\) \\
\(x[-1] \cdot \delta[n+1]\) & \(\ldots\) & \(\mathrm{x}[-1]\) & 0 & 0 & 0 & \(\ldots\) \\
\(x[0] \cdot \delta[n]\) & \(\ldots\) & 0 & \(\mathrm{x}[0]\) & 0 & 0 & \(\ldots\) \\
\(x[1] \cdot \delta[n-1]\) & \(\ldots\) & 0 & 0 & \(\mathrm{x}[1]\) & 0 & \(\ldots\) \\
\(x[2] \cdot \delta[n-2]\) & \(\ldots\) & 0 & 0 & 0 & \(\mathrm{x}[2]\) & \(\ldots\) \\
\(\vdots\) & \(\vdots\) & \(\vdots\) & \(\vdots\) & \(\vdots\) & \(\vdots\) & \(\vdots\) \\
\hline \hline
\end{tabular}

\section*{Decomposing a Signal with Impulses}
- From these considerations we conclude that
\[
\sum_{k=-\infty}^{\infty} x[k] \cdot \delta[n-k]=x[n] .
\]
- Notice that this implies
\[
x[n] * \delta[n]=x[n] .
\]
- We now have a way to write a signal \(x[n]\) as a sum of scaled and delayed impulses.
- Next, we exploit this relationship to derive our main result.

\section*{Applying Linearity and Time-Invariance}
- We know already that input \(\delta[n]\) produces output \(h[n]\) (impulse repsonse). We write:
\[
\delta[n] \mapsto h[n] .
\]
- For a time-invariant system:
\[
\delta[n-k] \mapsto h[n-k] .
\]
- And for a linear system:
\[
x[k] \cdot \delta[n-k] \mapsto x[k] \cdot h[n-k] .
\]

\section*{Derivation of the Convolution Sum}
- Linearity: linear combination of input signals produces output equal to linear combination of individual outputs.
\[
\begin{array}{|rcl|}
\hline \text { Input } & \mapsto & \text { Output } \\
\hline \hline \vdots & \vdots & \vdots \\
x[-1] \cdot \delta[n+1] & \mapsto & x[-1] \cdot h[n+1] \\
x[0] \cdot \delta[n] & \mapsto & x[0] \cdot h[n] \\
x[1] \cdot \delta[n-1] & \mapsto & x[1] \cdot h[n-1] \\
x[2] \cdot \delta[n-1] & \mapsto & x[2] \cdot h[n-2] \\
\vdots & \vdots & \vdots \\
\hline \hline \sum_{k=-\infty}^{\infty} x[k] \cdot \delta[n-k]=x[n] & \mapsto & y[n]=\sum_{k=-\infty}^{\infty} x[k] \cdot h[n-k] \\
\hline
\end{array}
\]

\section*{Summary and Conclusions}
- We just derived the convolution sum formula:
\[
y[n]=x[n] * h[n]=\sum_{k=-\infty}^{\infty} x[k] \cdot h[n-k] .
\]
- We only assumed that the system is linear and time-invariant.
- Therefore, we can conclude that for any linear, time-invariant system, the output is the convolution of input and impulse response.
- Needless to say: convolution and impulse response are enormously important concepts.

\section*{Identity System}
- From our discussion, we can draw another conclusion.
- Question: How can we characterize a LTI system for which the output \(y[n]\) is the same as the input \(x[n]\).
- Such a system is called the identity system.
- Specifically, we want the impulse response \(h[n]\) of such a system.
- As always, one finds the impulse response \(h[n]\) as the output of the LTI system when the impulse \(\delta[n]\) is the input.
- Since the ouput is the same as the input for an identity system, we find the impulse response of the identity system
\[
h[n]=\delta[n] .
\]

\section*{Ideal Delay Systems}
- Closely Related Question: How can one characterize a LTI system for which the output \(y[n]\) is a delayed version of the input \(x[n]\) :
\[
y[n]=x\left[n-n_{0}\right]
\]
where \(n_{0}\) is the delay introduced by the system
- Such a system is called an ideal delay system.
- Again, we want the impulse response \(h[n]\) of such a system.
- As before, one finds the impulse response \(h[n]\) as the output of the LTI system when the impulse \(\delta[n]\) is the input.
- Since the ouput is merely a delayed version of the input, we find
\[
h[n]=\delta\left[n-n_{0}\right] .
\]

\section*{Exercise}
- Show that convolution is a commutative operation, i.e., that \(x[n] * h[n]\) equals \(h[n] * x[n]\).

\title{
Lecture: Convolution and Linear, Time-Invariant Systems
}

\section*{Building Blocks}
- Recall that the input-output relationship for an FIR filter is given by
\[
y[n]=\sum_{k=0}^{M} b_{k} x[n-k] .
\]
- Digital systems implementing this relationships are easily constructed from simple building blocks:


Adder


Multiplier


Unit-delay

\section*{Operation of Building Blocks}


Adder


Multiplier


Unit-delay
- Adder: sum of two signals
\[
z[n]=x[n]+y[n] .
\]
- Multiplier: product of signal with a scalar
\[
y[n]=b \cdot x[n]
\]
- Unit-delay: delays input by one sample:
\[
y[n]=x[n-1]
\]

\section*{Block Diagrams}

\section*{Part VI}

\section*{Frequency Response} ASON
UNIVERSIT

\section*{Lecture: Introduction to Frequency Response}

\section*{Introduction}
- We have discussed:
- Sinusoidal and complex exponential signals,
- Spectrum representation of signals:
- arbitrary signals can be expressed as the sum of sinusoidal (or complex exponential) signals.
- Linear, time-invariant systems.
- Next: complex exponential signals as input to linear, time-invariant systems.


\section*{Example: 3-Point Averaging Filter}
- Consider the 3-point averager:
\[
y[n]=\frac{1}{3} \sum_{k=0}^{2} x[n-k]=\frac{1}{3} \cdot(x[n]+x[n-1]+x[n-2]) .
\]
- Question: What is the output \(y[n]\) if the input is \(x[n]=\exp \left(j 2 \pi f_{d} n\right)\) ?
- Recall that \(f_{d}\) is the normalized frequency \(f / f_{s}\); we are assuming the signal is oversampled, \(\left|f_{d}\right|<\frac{1}{2}\)
- Initially, assume \(A=1\) and \(\phi=0\); generalization is easy.

\section*{Delayed Complex Exponentials}
- The 3-point averager involves delayed versions of the input signal.
- We begin by assessing the impact the delay has on the complex exponential input signal.
- For
\[
x[n]=\exp \left(j 2 \pi f_{d} n\right)
\]
a delay by \(k\) samples leads to
\[
\begin{aligned}
x[n-k] & =\exp \left(j 2 \pi f_{d}(n-k)\right) \\
& =e^{j\left(2 \pi f_{d} n-2 \pi f_{d} k\right)}=e^{j 2 \pi f_{d} n} \cdot e^{-j 2 \pi f_{d} k} \\
& =e^{j\left(2 \pi f_{d} n+\phi_{k}\right)}=e^{j 2 \pi f_{d} n} \cdot e^{j \phi_{k}}
\end{aligned}
\]
where \(\phi_{k}=-2 \pi f_{d} k\) is the phase shift induced by the \(k\) sample delay.

\section*{Average of Delayed Complex Exponentials}
- Now, the output signal \(y[n]\) is the average of three delayed complex exponentials
\[
\begin{aligned}
y[n] & =\frac{1}{3} \sum_{k=0}^{2} x[n-k] \\
& =\frac{1}{3} \sum_{k=0}^{2} e^{j\left(2 \pi f_{d} n-2 \pi f_{d} k\right)}
\end{aligned}
\]
- This expression involves the sum of complex exponentials of the same frequency; the phasor addition rule applies:
\[
y[n]=e^{j 2 \pi f_{d} n} \cdot \frac{1}{3} \sum_{k=0}^{2} e^{-j 2 \pi f_{d} k}
\]
- Important Observation: The output signal is a complex exponential of the same frequency as the input signal.
- The amplitude and phase are different.

\section*{Frequency Response of the 3-Point Averager}
- The output signal \(y[n]\) can be rewritten as:
\[
\begin{aligned}
y[n] & =e^{j 2 \pi f_{d} n} \cdot \frac{1}{3} \sum_{k=0}^{2} e^{-j 2 \pi f_{d} k} \\
& =e^{j 2 \pi f_{d} n} \cdot H\left(e^{j 2 \pi f_{d}}\right) .
\end{aligned}
\]
where
\[
\begin{aligned}
H\left(e^{j 2 \pi f_{d}}\right) & =\frac{1}{3} \sum_{k=0}^{2} e^{-j 2 \pi f_{d} k} \\
& =\frac{1}{3} \cdot\left(1+e^{-j 2 \pi f_{d}}+e^{-j 2 \pi 2 f_{d}}\right) \\
& =\frac{1}{3} \cdot e^{-j 2 \pi f_{d}}\left(e^{j 2 \pi f_{d}}+1+e^{-j 2 \pi f_{d}}\right) \\
& =\frac{e^{-j 2 \pi f_{d}}}{3}\left(1+2 \cos \left(2 \pi f_{d}\right)\right) .
\end{aligned}
\]

\section*{Interpretation}
- From the above, we can conclude:
- If the input signal is of the form \(x[n]=\exp \left(j 2 \pi f_{d} n\right)\),
- then the output signal is of the form
\[
y[n]=H\left(e^{j 2 \pi f_{d}}\right) \cdot \exp \left(j 2 \pi f_{d} n\right) .
\]
- The function \(H\left(e^{j 2 \pi f_{d}}\right)\) is called the frequency response of the system.
- Note: If we know \(H\left(e^{j 2 \pi f_{d}}\right)\), we can easily compute the output signal in response to a complex expontial input signal.

\section*{Examples}
- Recall:
\[
H\left(e^{j 2 \pi f_{d}}\right)=\frac{e^{-j 2 \pi f_{d}}}{3}\left(1+2 \cos \left(2 \pi f_{d}\right)\right)
\]
- Let \(x[n]\) be a complex exponential with \(f_{d}=0\).
- Then, all samples of \(x[n]\) equal to one.
- The output signal \(y[n]\) also has all samples equal to one.
- For \(f_{d}=0\), the frequency response \(H\left(e^{j 2 \pi 0}\right)=1\).
- And, the output \(y[n]\) is given by
\[
y[n]=H\left(e^{j 2 \pi 0}\right) \cdot \exp (j 2 \pi 0 n)
\]
i.e., all samples are equal to one.

\section*{Examples}
- Let \(x[n]\) be a complex exponential with \(f_{d}=\frac{1}{3}\).
- Then, the samples of \(x[n]\) are the periodic repetition of \(\left\{1,-\frac{1}{2}+\frac{j \sqrt{3}}{2},-\frac{1}{2}-\frac{j \sqrt{3}}{2}\right\}\).
- The 3-point average over three consecutive samples equals zero; therefore, \(y[n]=0\).
- For \(f_{d}=\frac{1}{3}\), the frequency response \(H\left(e^{j 2 \pi f_{d}}\right)=0\).
- Consequently, the output \(y[n]\) is given by
\[
y[n]=H\left(\frac{1}{3}\right) \cdot \exp \left(j 2 \pi \frac{1}{3} n\right)=0
\]

Thus, all output samples are equal to zero.

\section*{Plot of Frequency Response}



\section*{General Complex Exponential}
- Let \(x[n]\) be a complex exponential of the from \(A e^{j\left(2 \pi f_{d} n+\phi\right)}\).
- This signal can be written as
\[
x[n]=X \cdot e^{j 2 \pi f_{d} n}
\]
where \(X=A e^{j \phi}\) is the phasor of the signal.
- Then, the output \(y[n]\) is given by
\[
y[n]=H\left(e^{j 2 \pi f_{d}}\right) \cdot X \cdot \exp \left(j 2 \pi f_{d} n\right)
\]
- Interpretation: The output is a complex exponential of the same frequency \(f_{d}\)
- The phasor for the output signal is the product \(H\left(e^{j 2 \pi f_{d}}\right) \cdot X\).

\section*{Exercise}

Assume that the signal \(x[n]=\exp \left(j 2 \pi f_{d} n\right)\) is input to a 4-point averager.
1. Give a general expression for the output signal and identify the frequenchy response of the system.
2. Compute the output signals for the specific frequencies
\[
f_{d}=0, f_{d}=1 / 4, \text { and } f_{d}=1 / 2
\]

\section*{Lecture: The Frequency Response of LTI Systems}

\section*{Introduction}
- We have demonstrated that for linear, time-invariant systems
- the output signal \(y[n]\)
- is the convolution of the input signal \(x[n]\) and the impulse response \(h[n]\).
\[
\begin{aligned}
y[n] & =x[n] * h[n] \\
& =\sum_{k=0}^{M} h[k] \cdot x[n-k]
\end{aligned}
\]
- Question: Find the output signal \(y[n]\) when the input signal is \(x[n]=A \exp \left(j\left(2 \pi f_{d} n+\phi\right)\right)\).

\section*{Response to a Complex Exponential}
- Problem: Find the output signal \(y[n]\) when the input signal is \(x[n]=A \exp \left(j\left(2 \pi f_{d} n+\phi\right)\right)\).
- Output \(y[n]\) is convolution of input and impulse response
\[
\begin{aligned}
y[n] & =x[n] * h[n] \\
& =\sum_{k=0}^{M} h[k] \cdot x[n-k] \\
& =\sum_{k=0}^{M} h[k] \cdot A \exp \left(j\left(2 \pi f_{d}(n-k)+\phi\right)\right) \\
& =A \exp \left(j\left(2 \pi f_{d} n+\phi\right)\right) \cdot \sum_{k=0}^{M} h[k] \cdot \exp \left(-j 2 \pi f_{d} k\right) \\
& =A \exp \left(j\left(2 \pi f_{d} n+\phi\right)\right) \cdot H\left(e^{j 2 \pi f_{d}}\right)
\end{aligned}
\]
- The term
\[
H\left(e^{j 2 \pi f_{d}}\right)=\sum_{k=0}^{M} h[k] \cdot \exp \left(-j 2 \pi f_{d} k\right)
\]
is called the Frequency Response of the system.

\section*{Interpreting the Frequency Response} The Frequency Response of an LTI system with impulse response \(h[n]\) is
\[
H\left(e^{j 2 \pi f_{d}}\right)=\sum_{k=0}^{M} h[k] \cdot \exp \left(-j 2 \pi f_{d} k\right)
\]

\section*{Observations:}
- The response of a LTI system to a complex exponential signal is a complex exponential signal of the same frequency.
- Complex exponentials are eigenfunctions of LTI systems.
- When \(x[n]=A \exp \left(j\left(2 \pi f_{d} n+\phi\right)\right)\), then \(y[n]=x[n] \cdot H\left(e^{j 2 \pi f_{d}}\right)\).
- This is true only for complex exponential input signals!

\section*{Interpreting the Frequency Response Observations:}
- \(H\left(e^{j 2 \pi f_{d}}\right)\) is best interpreted in polar coordinates:
\[
H\left(e^{j 2 \pi f_{d}}\right)=\left|H\left(e^{j 2 \pi f_{d}}\right)\right| \cdot e^{j \angle H\left(e^{j 2 \pi f_{d}}\right)} .
\]
- Then, for \(x[n]=A \exp \left(j\left(2 \pi f_{d} n+\phi\right)\right)\)
\[
\begin{aligned}
y[n] & =x[n] \cdot H\left(e^{j 2 \pi f_{d}}\right) \\
& =A \exp \left(j\left(2 \pi f_{d} n+\phi\right)\right) \cdot\left|H\left(e^{j 2 \pi f_{d}}\right)\right| \cdot e^{j \angle H\left(e^{j 2 \pi f_{d}}\right)} \\
& =\left(A \cdot\left|H\left(e^{j 2 \pi f_{d}}\right)\right|\right) \cdot \exp \left(j\left(2 \pi f_{d} n+\phi+\angle H\left(e^{j 2 \pi f_{d}}\right)\right)\right)
\end{aligned}
\]
- The amplitude of the resulting complex exponential is the product \(A \cdot\left|H\left(e^{j 2 \pi f_{d}}\right)\right|\).
- Therefore, \(\left|H\left(e^{j 2 \pi f_{d}}\right)\right|\) is called the gain of the system.
- The phase of the resulting complex exponential is the sum \(\phi+\angle H\left(e^{j 2 \pi f_{d}}\right)\).
- \(\angle H\left(e^{j 2 \pi f_{d}}\right)\) is called the phase of the system.

\section*{Example}
- Let \(h[n]=\{1,-2,1\}\).
- Then,
\[
\begin{aligned}
H\left(e^{j 2 \pi f_{d}}\right) & =\sum_{k=0}^{2} h[k] \cdot \exp \left(-j 2 \pi f_{d} k\right) \\
& =1-2 \cdot \exp \left(-j 2 \pi f_{d}\right)+1 \cdot \exp \left(-j 2 \pi f_{d} 2\right) \\
& =\exp \left(-j 2 \pi f_{d}\right) \cdot\left(\exp \left(j 2 \pi f_{d}\right)-2+\exp \left(-j 2 \pi f_{d}\right)\right) \\
& =\exp \left(-j 2 \pi f_{d}\right) \cdot\left(2 \cos \left(2 \pi f_{d}\right)-2\right)
\end{aligned}
\]
- Gain: \(\left|H\left(e^{j 2 \pi f_{d}}\right)\right|=\left|2 \cos \left(2 \pi f_{d}\right)-2\right|\)

\section*{Example}



Misoce

\section*{Example}
- The filter with impulse response \(h[n]=\{1,-2,1\}\) is a high-pass filter.
- It rejects sinusoids with frequencies near \(f_{d}=0\),
- and passes sinusoids with frequencies near \(f_{d}=\frac{1}{2}\)
- Note how the function of this system is much easier to describe in terms of the frequency response \(H\left(e^{j 2 \pi f_{d}}\right)\) than in terms of the impulse response \(h[n]\).
- Question: Find the output signal when input equals \(x[n]=2 \exp (j 2 \pi 1 / 4 n-\pi / 2)\).
- Solution:
\[
H\left(\frac{1}{4}\right)=\exp \left(-j 2 \pi \frac{1}{4}\right) \cdot\left(2 \cos \left(2 \pi \frac{1}{4}\right)-2\right)=-2 e^{-j \pi / 2}=2 e^{j \pi / 2}
\]

Thus,
\[
y[n]=2 e^{j \pi / 2} \cdot x[n]=4 \exp (j 2 \pi n / 4)
\]

\section*{Exercise}
1. Find the Frequency Response \(H\left(e^{j 2 \pi f_{d}}\right)\) for the LTI system with impulse response \(h[n]=\{1,-1,-1,1\}\).
2. Find the output for the input signal \(x[n]=2 \exp (j(2 \pi n / 3-\pi / 4))\).

\section*{Computing Frequency Response in MATLAB}
```

function HH = FreqResp(hh, ff)
% FreqResp - compute frequency response of LTI system
\circ
inputs:
% hh - vector of impulse repsonse coefficients
% ff - vector of frequencies at which to evaluate frequency respon
%
% output:
% HH - frequency response at frequencies in ff.
%
% Syntax:
% HH = FreqResp(hh, ff)
HH = zeros(size(ff));
for kk = 1:length(hh)
HH = HH + hh(kk)*exp(-j*2*pi*(kk-1)*ff);
end

```

\section*{Lecture: Comprehensive Example} ASON university

\section*{Introduction}
- Objective: Apply many of the things we covered to the solution of a "real-world" problem.
- Problem: Design and implement a decoder for "touch-tone" dialing.
- When dialing a digit on a telphone touch-pad a two-tone signal is emitted. These are called dual tone multifrequency (DTMF) signals.
\begin{tabular}{|c||c|c|c|}
\hline Frequencies (Hz) & 1209 & 1336 & 1477 \\
\hline \hline 697 & 1 & 2 & 3 \\
\hline 770 & 4 & 5 & 6 \\
\hline 852 & 7 & 8 & 9 \\
\hline 941 & \({ }^{*}\) & 0 & \(\#\) \\
\hline \hline
\end{tabular}

\section*{Generating DTMF Signals}
- Generating DTMF signals for a given digit is straightforward.
- Determine the frequencies that the signal contains,
- Generate two sinusoids of these frequencies,
- Add sinusoids.
- Repeat for each digit to be dialed.
- The following MATLAB code extracts digits to be dialed from a string and forms the signal.
- Function signature:
```

function tones = dtmfdial(string, fs, tonedur, pausedur)

```

\section*{Parsing the Dial-String}
```

%% lookup table to translate digits string into numbers
Digits = double('123456789*0\#');
InverseDigits = zeros(1,length(Digits));
for kk=1:12
InverseDigits(Digits(kk)) = kk;
end
RawNumbers = double(string);
numbers = InverseDigits(RawNumbers);
% ensure numbers are integers between 1 and 12
numbers = round(numbers); % silently discard fractional part
if (min(numbers) < 1 || max(numbers) > 12)

```

```

end

```

\section*{Generating the DTMF Signal}
```

%% construct signal
% convert durations to number of samples
Ntone = round(fs*tonedur);
Npause = round(fs*pausedur);
% figure out how long the output signal will be
Nnumbers = length(numbers);
Nsamples = Nnumbers*(Ntone + Npause);
tones = zeros(1, Nsamples);
pause = zeros(1, Npause);
% associate numbers with DTMF pairs, record normalized frequencies!
dtmfpairs = ...
[697 697 697 770 770 770 852 852 852 941 941 941;
1209 1336 1477 1209 1336 1477 1209 1336 1477 1209 1336 1477]/fs

```

\section*{Generating the DTMF Signal}
```

% loop over all numbers
for kk = 1:length(numbers)
Start = (kk-1)*(Ntone + Npause) + 1;
End = kk*(Ntone + Npause);
freqs = dtmfpairs(:, numbers(kk));
currtone = 0.5* cos(2*pi*freqs(1)*(0:Ntone-1)) + ...
0.5*\boldsymbol{cos(2*pi*freqs (2)*(0:Ntone-1));}
tones(Start:End) = [currtone pause];
end

```

\section*{Spectrogram of Signal}


UNIVERSITY

\section*{Plan for Recovering the Dial String}
- Use bandpass-filters for each of the possible frequencies
- Intent: Isolate the different tones.
- Detect the strongest two tones in each dialing period.
- Map tones to digits (decoding)

\section*{A simple bandpass filter}
- We discussed the \(M\)-point averager and showed that it has low-pass filter characteristics.
- Note that the averager's impulse response consists of \(M\) samples of a constant signal.
- Analogously, a simple bandpass filter centered at frequency \(f_{0}\) has impulse response equal to
- \(M\) samples of \(2 / M \cos \left(2 \pi f_{0} n\right)\).
- The following MATLAB function implements this design strategy.
- Alternatively, we could use MATLAB's filter design tools.

\section*{MATLAB function makeBPF.m}
```

function hh = makeBPF(fd, N)
% makeBPF - design simple bandpass filter
%
% usage:
% hh = makeBPF(fd, N)
%
% inputs:
% fd - center frequency of pass band (normalized by fs)
% N - number of filter coefficients
%
% output:
% hh - vector of filter coefficients
% sample locations
nn = - (N-1)/2:1:(N-1)/2;
% impulse response
hh = 2/N*\boldsymbol{cos}(2*pi*fd*nn);

```

\section*{Frequency Response of Bandpass Filters}


\section*{Output of Bandpass Filters}


\section*{Detecting Tones}
- The presence or absence is fairly easy to see in the output of the bandpass filters.
- However a single metric is needed to determine the presence or absence of each tone.
- Good strategy: for each filter output \(k=1, \ldots, 7\) and each dialing-period \(m=1, \ldots, 10\), compute the following score s
\[
s(k, m)=\sum_{n \text { in } m \text {-th dialing period }}\left(y_{k}[n]\right)^{2},
\]
where \(y_{k}\) denotes the output of the \(k\)-th bandpass filter.
- Note that this operation assumes that we know exactly where each digit starts.
- MATLAB code for computing scores follows.

\section*{MATLAB code for Computing Scores}
```

pause
% decision logic
% decompose samples into periods for each number
Nnumbers = floor(length(xx)/(fs*(tonedur+pausedur)));
NTonePlusPause = round(fs*(tonedur+pausedur));
NPause = round(fs*pausedur);
% score for each tone period: sum of squares in period
score = zeros(Nnumbers, length(DTMFFreqs));
for nn=1:Nnumbers
Startnn = (nn-1)*NTonePlusPause + 1 + floor(LBPF/2);
Endnn = nn*NTonePlusPause - NPause - floor(LBPF/2);
for kk = 1:length(DTMFFreqs)

```

\section*{Scores}


\section*{Decoding}
- It remains to find the two highest scores in each dialing period.
- More specifically, the highest score among the lower four frequencies and the highest score among the higher three frequencies.
- The combination of frequencies yielding the highest score indicates which digit was dialed in that dialing period.
- MATLAB code follows

\section*{MATLAB code for Decoding Scores}

\section*{pause}
```

%으ᄋ Decisions
% in each row of the score matrix find the biggest entry among the fir
% four and final three columns
for nn=1:Nnumbers
[smax, imax_low(nn)] = max(score(nn, 1:4));
[smax, imax_high(nn)] = max(score(nn, 5:7));
end
% decode
% lookup table to translate numbers string into numbers
Digits = double('123456789*0\#'); % table of ASCII codes for dial-

```

\section*{Part VII}

\section*{Frequency Domain Transforms}

\title{
Lecture: Discrete-Time Fourier Transform
}

\section*{Introduction}
- We will take a closer look at transforming signals into the frequency domain.
- Discrete-Time Fourier Transform (DTFT): applies to arbitrarily long signals; continuous in discrete frequency \(f_{d}\).
- z-Transform: Generalization of DTFT; basis is a complex variable \(z\) instead of \(e^{j 2 \pi f_{d}}\).
- Discrete-Fourier Transform: applies to finite-length signals; computed for discrete set of frequencies; fast algorithms.
- Transforms are useful because:
- They provide perspectives on signals and systems that aid in signal analysis (e.g., bandwidth)
- They simplify many problems that are difficult in the time-domain, especially convolution.

\section*{Recall: Frequency Response}
- Passing a complex exponential signal \(x[n]=\exp \left(j 2 \pi f_{d} n\right)\) through a linear, time-invariant system with impulse ersponse \(h[n]\) yields the output signal
\[
y[n]=H\left(e^{j 2 \pi f_{d}}\right) \cdot \exp \left(j 2 \pi f_{d} n\right) .
\]
- The frequency response \(H\left(e^{j 2 \pi f_{d}}\right)\) is given by:
\[
H\left(e^{j 2 \pi f_{d}}\right)=\sum_{k=0}^{M-1} h[k] \cdot \exp \left(-j 2 \pi f_{d} k\right)
\]

\section*{Discrete-Time Fourier Transform}
- Analogously, we can define for a signal \(x[n]\)
\[
X\left(e^{j 2 \pi f_{d}}\right)=\sum_{k=-\infty}^{\infty} x[k] \cdot \exp \left(-j 2 \pi f_{d} k\right)
\]
- \(X\left(e^{\text {j22 } 2 f_{d}}\right)\) is the Discrete-Time Fourier Transform (DTFT) of the signal \(x[n]\); we write
\[
x[n] \stackrel{\text { DTFT }}{\rightleftarrows} X\left(e^{j 2 \pi f_{d}}\right) .
\]
- Note that the limits of the sum range from \(-\infty\) to \(\infty\).
- To ensure that this infinite sum has a finite value, we must require that
\[
\sum_{k=-\infty}^{\infty}|x[k]|<\infty
\]

\section*{Two Quick Observations}
- Linearity: The DTFT is a linear operation.
- Assume that
\[
x_{1}[n] \stackrel{\mathrm{DTFT}}{\longleftrightarrow} X_{1}\left(e^{j 2 \pi f_{d}}\right)
\]
and that
\[
x_{2}[n] \stackrel{\mathrm{DTFT}}{\longleftrightarrow} X_{2}\left(e^{j 2 \pi f_{d}}\right)
\]
- Then,
\[
x_{1}[n]+x_{2}[n] \stackrel{\text { DTFT }}{\longleftrightarrow} X_{1}\left(e^{j 2 \pi f_{d}}\right)+X_{2}\left(e^{j 2 \pi f_{d}}\right)
\]
- Periodicity: The DTFT is periodic in the variable \(f_{d}\) :
\[
X\left(e^{j 2 \pi f_{d}}\right)=X\left(e^{j 2 \pi\left(f_{d}+n\right)}\right) \quad \text { for any integer } n
\]

\section*{Continuous-Time Fourier Transform}
- In ECE 220, you will learn that the (continuous-time) Fourier transform for a signal \(x(t)\) is defined as
\[
X(f)=\int_{-\infty}^{\infty} x(t) \cdot \exp (-j 2 \pi f t) d t
\]
- Notice the strong similarity between the contrinuous and discrete-time transforms.

\section*{DTFT of Delayed Impulse}
- Let \(x[n]\) be a delayed impulse, \(x[n]=\delta\left[n-n_{0}\right]\).
- Note that \(x[n]\) has a single non-zero sample at \(n=n_{0}\).
- Therefore,
\[
\begin{aligned}
X\left(e^{j 2 \pi f_{d}}\right) & =\sum_{k=-\infty}^{\infty} x[k] \cdot \exp \left(-j 2 \pi f_{d} k\right) \\
& =\exp \left(-j 2 \pi f_{d} n_{0}\right)
\end{aligned}
\]
- In summary,
\[
\delta\left[n-n_{0}\right] \stackrel{\text { DTFT }}{\longleftrightarrow} \exp \left(-j 2 \pi f_{d} n_{0}\right) .
\]

\section*{DTFT of a Finite-Duration Signal}
- Combining Linearity and the DTFT for a delayed impulse, we can easily find the DTFT of a signalk with finitely many samples.
\[
\sum_{k=0}^{M-1} x[k] \cdot \delta[n-k] \stackrel{\text { DTFT }}{\longleftrightarrow} \sum_{k=0}^{M-1} x[k] \cdot \exp \left(-j 2 \pi f_{d} k\right) .
\]
- Example: The DTFT of the signal \(x[n]=\{1,2,3,4\}\) is
\[
1+2 e^{j 2 \pi f_{d}}+3 e^{j 4 \pi f_{d}}+4 e^{j 6 \pi f_{d}}
\]
- l.e.,
\[
\{1,2,3,4\} \stackrel{\text { DTFT }}{\longleftrightarrow} 1+2 e^{j 2 \pi f_{d}}+3 e^{j 4 \pi f_{d}}+4 e^{j 6 \pi f_{d}}
\]

\section*{DTFT of a Rectangular Pulse}
- Let \(x[n]\) be a rectangular pulse of \(L\) samples, i.e.,
\(x[n]=u[n]-u[n-L]\).
- Then, the DTFT of \(x[n]\) is given by
\[
X\left(e^{j 2 \pi f_{d}}\right)=\sum_{k=0}^{L-1} 1 \cdot e^{j 2 \pi f_{d} k}
\]
- Using the geometric sum formula
\[
\begin{gathered}
S=\sum_{k=0}^{L-1} a^{k}=\frac{1-a^{L}}{1-a} \\
X\left(e^{j 2 \pi f_{d}}\right)=\frac{1-e^{-j 2 \pi f_{d} L}}{1-e^{-j 2 \pi f_{d}}}=\frac{\sin \left(\pi f_{d} L\right)}{\sin \left(\pi f_{d}\right)} \cdot e^{-j \pi f_{d}(L-1)}
\end{gathered}
\]
- Thus,

\section*{DTFT of a Right-sided Exponential}
- Let \(x[n]=a^{n} \cdot u[n]\) with \(|a|<1\).
- Then, the DTFT of \(x[n]\) is given by
\[
X\left(e^{j 2 \pi f_{d}}\right)=\sum_{k=-\infty}^{\infty} a^{k} \cdot u[k] \cdot e^{-j 2 \pi f_{d} k}=\sum_{k=0}^{\infty} a^{k} \cdot e^{-j 2 \pi f_{d} k} .
\]
- With the geometric sum formula, we find
\[
X\left(e^{j 2 \pi f_{d}}\right)=\frac{1}{1-a e^{-j 2 \pi f_{d}}}
\]
- Thus, if \(|a|<1\)
\[
a^{n} \cdot u[n] \stackrel{\text { DTFT }}{\longleftrightarrow} \frac{1}{1-a e^{-j 2 \pi f_{d}}}
\]

\section*{Inverse DTFT}
- The inverse DTFT is used to find the signal \(x[n]\) that corresponds to a given transform \(X\left(e^{j 2 \pi f_{d}}\right)\).
- The inverse DTFT is given by
\[
x[n]=\int_{-\frac{1}{2}}^{\frac{1}{2}} X\left(e^{j 2 \pi f_{d}}\right) e^{j 2 \pi f_{d} n} d f_{d}
\]
- Note: The DTFT is unique, i.e., for each signal \(x[n]\) there is exactly one transform \(X\left(e^{j 2 \pi f_{d}}\right)\) and vice versa.
- Explicitly using the inverse transform can often be avoided; instead known DTFT pairs and properties of the DTFT are used; some examples follow.

\section*{Inverse DTFT of \(e^{-j 2 \pi f_{d} n_{0}}\)}
- We showed that the following is a DTFT pair
\[
\delta\left[n-n_{0}\right] \stackrel{\text { DTFT }}{\longleftrightarrow} \exp \left(-j 2 \pi f_{d} n_{o}\right) .
\]
- Thus, the inverse DTFT of \(\exp \left(-j 2 \pi f_{d} n_{o}\right)\) must be \(\delta\left[n-n_{0}\right]\). Check:
- For \(n=n_{0}\) :
\[
x[n]=\int_{-\frac{1}{2}}^{\frac{1}{2}} \exp \left(-j 2 \pi f_{d} n_{o}\right) e^{j 2 \pi f_{d} n} d f_{d}=\int_{-\frac{1}{2}}^{\frac{1}{2}} 1 d f_{d}=1
\]
- For \(n \neq n_{0}\) :
\[
x[n]=\int_{-\frac{1}{2}}^{\frac{1}{2}} \exp \left(-j 2 \pi f_{d} n_{0}\right) e^{j 2 \pi f_{d} n} d f_{d}=\int_{-\frac{1}{2}}^{\frac{1}{2}} e^{j 2 \pi f_{d}\left(n-n_{0}\right)} d f_{d}=0 .
\]

\section*{Bandlimited Signals}
- The inverse DTFT is useful to find signals that are strictly bandlimited.
- A signal is strictly bandlimited to bandwidth \(f_{b}<\frac{1}{2}\) when its DTFT is given by
\[
X\left(e^{j 2 \pi f_{d}}\right)= \begin{cases}1 & \text { for }\left|f_{d}\right| \leq f_{b} \\ 0 & \text { for } f_{b}<\left|f_{d}\right| \leq \frac{1}{2}\end{cases}
\]
- The strictly bandlimited signal is then
\[
x[n]=\int_{-\frac{1}{2}}^{\frac{1}{2}} X\left(e^{j 2 \pi f_{d}}\right) e^{j 2 \pi f_{d} n} d f_{d}=\frac{\sin \left(2 \pi f_{b} n\right)}{\pi n}=2 f_{b} \cdot \operatorname{sinc}\left(2 \pi f_{b} n\right)
\]

\section*{Table of DTFT Pairs}
\[
\begin{aligned}
\delta[n] & \stackrel{\text { DTFT }}{\longleftrightarrow} 1 \\
\delta\left[n-n_{0}\right] & \stackrel{\text { DTFT }}{\longleftrightarrow} \exp \left(-j 2 \pi f_{d} n_{o}\right) \\
u[n]-u[n-L] & \stackrel{\text { DTFT }}{\longleftrightarrow} \frac{\sin \left(\pi f_{d} L\right)}{\sin \left(\pi f_{d}\right)} \cdot e^{-j \pi f_{d}(L-1)} \\
a^{n} \cdot u[n] & \stackrel{\text { DTFT }}{\longleftrightarrow} \frac{1}{1-a e^{-j 2 \pi f_{d}}} \\
2 f_{b} \cdot \operatorname{sinc}\left(2 \pi f_{b} n\right) & \stackrel{\text { DTFT }}{\longleftrightarrow} \begin{cases}1 & \text { for }\left|f_{d}\right| \leq f_{b} \\
0 & \text { for } f_{b}<\left|f_{d}\right| \leq \frac{1}{2}\end{cases}
\end{aligned}
\]

\section*{Exercise}
- Find the DTFT of the signals
1.
\[
x_{1}[n]=\delta[n]-\delta[n-1]+\delta[n-2]-\delta[n-3] .
\]
- Answer: \(X\left(e^{j 2 \pi f_{d}}\right)=1-e^{-j 2 \pi f_{d}}+e^{-j 4 \pi f_{d}}-e^{-j 6 \pi f_{d}}\).
2.
\[
x_{2}[n]=\frac{\sin (2 \pi n / 4)}{\pi n}+\left(\frac{1}{2}\right)^{n} \cdot u[n]
\]
3.
\[
x_{3}[n]=\left(\frac{1}{2}\right)^{n} \cdot \cos (2 \pi n / 3) \cdot u[n]
\]

\section*{Lecture: Properties of the DTFT}

ASON
university

\section*{Properties of the DTFT}
- Direct evaluation of the DTFT or the inverse DTFT is often tedious.
- In many cases, transforms can be determined through a combination of
- Known, tabulated transform pairs
- Properties of the DTFT
- Properties of the DTFT describe what happens to the transform when common operations are applied in the time domain (e.g., delay, multiplication with a complex exponential, etc.)
- Very important, a property exists for convolution.

\section*{Linearity}
- Linearity: The DTFT is a linear operation.
- Assume that
\[
x_{1}[n] \stackrel{\text { DTFT }}{\longleftrightarrow} X_{1}\left(e^{j 2 \pi f_{d}}\right)
\]
and that
\[
x_{2}[n] \stackrel{\text { DTFT }}{\longleftrightarrow} X_{2}\left(e^{j 2 \pi f_{d}}\right) .
\]
- Then,
\[
x_{1}[n]+x_{2}[n] \stackrel{\text { DTFT }}{\longleftrightarrow} X_{1}\left(e^{j 2 \pi f_{d}}\right)+X_{2}\left(e^{j 2 \pi f_{d}}\right)
\]

\section*{Example}
- The DTFT of
\[
x[n]=\left(\frac{1}{2}\right)^{n} \cdot u[n]+\frac{\sin (2 \pi n / 4)}{\pi n}
\]
is the sum of the transforms of the two individual signals:
\[
X\left(e^{j 2 \pi f_{d}}\right)=\frac{1}{1-\frac{1}{2} e^{-j 2 \pi f_{d}}}+ \begin{cases}1 & \text { for }\left|f_{d}\right| \leq \frac{1}{4} \\ 0 & \text { for } \frac{1}{4}<\left|f_{d}\right| \leq \frac{1}{2}\end{cases}
\]

\section*{Time Delay}
- Let
\[
x[n] \stackrel{D T F T}{\longleftrightarrow} X\left(e^{j 2 \pi f_{d}}\right) .
\]
- Find the DTFT of \(y[n]=x\left[n-n_{d}\right]\) :
\[
Y\left(e^{j 2 \pi f_{d}}\right)=\sum_{n=-\infty}^{\infty} y[n] \cdot e^{-j 2 \pi f_{d} n}=\sum_{n=-\infty}^{\infty} x\left[n-n_{d}\right] \cdot e^{-j 2 \pi f_{d} n}
\]
- Substituting \(m=n-n_{d}\) and, therefore, \(n=m+n_{d}\) yields
\[
Y\left(e^{j 2 \pi f_{d}}\right)=\sum_{m=-\infty}^{\infty} x[m] \cdot e^{-j 2 \pi f_{d}\left(m+n_{d}\right)}=e^{-j 2 \pi f_{d} n_{n}} \cdot X\left(e^{j 2 \pi f_{d}}\right)
\]
- Hence, the Time Delay property is:
\[
x\left[n-n_{d}\right] \stackrel{\text { DTFT }}{\longleftrightarrow} e^{-j 2 \pi f_{d} n_{n}} \cdot X\left(e^{j 2 \pi f_{d}}\right)
\]

\section*{Example}
- Find the DTFT of a shifted rectangular pulse from 1 to \(L+1\)
\[
x[n]=u[n-1]-u[n-(L+1)] .
\]
- Combining the DTFT of a rectangular pulse
\[
u[n]-u[n-L] \stackrel{\mathrm{DTFT}}{\longleftrightarrow} \frac{\sin \left(\pi f_{d} L\right)}{\sin \left(\pi f_{d}\right)} \cdot e^{-j \pi f_{d}(L-1)}
\]
with the time delay property leads to
\[
u[n-1]-u[n-(L+1)] \stackrel{\text { DTFT }}{\longleftrightarrow} \frac{\sin \left(\pi f_{d} L\right)}{\sin \left(\pi f_{d}\right)} \cdot e^{-j \pi f_{d}(L+1)}
\]

\section*{Frequency Shift Property}
- Let
\[
x[n] \stackrel{\text { DTFT }}{\rightleftarrows} X\left(e^{j 2 \pi f_{d}}\right) .
\]
- Find the DTFT of \(y[n]=x[n] \cdot e^{i 2 \pi f_{0} n}\) :
\[
Y\left(e^{j 2 \pi f_{d}}\right)=\sum_{n=-\infty}^{\infty} y[n] \cdot e^{-j 2 \pi f_{d} n}=\sum_{n=-\infty}^{\infty} x[n] \cdot e^{-j 2 \pi f_{0} n} \cdot e^{-j 2 \pi f_{d} n}
\]
- Combining the exponentials yields
\[
Y\left(e^{j 2 \pi f_{d}}\right)=\sum_{n=-\infty}^{\infty} y[n] \cdot e^{-j 2 \pi\left(f_{d}-f_{0}\right) n}=X\left(e^{j 2 \pi\left(f_{d}-f_{0}\right)}\right)
\]
- Frequency shift property
\[
x[n] \cdot e^{j 2 \pi f_{0} n} \stackrel{\text { DTFT }}{\longleftrightarrow} X\left(e^{j 2 \pi\left(f_{d}-f_{0}\right)}\right)
\]

\section*{Example}
- The impulse response of an ideal bandpass filter with bandwidth \(B\) and center frequency \(f_{c}\) is obtained by
- frequency shifting by \(f_{c}\)
- an ideal lowpass with cutoff frequency \(B / 2\)
- Using the transform for the ideal lowpass
\[
2 f_{b} \cdot \operatorname{sinc}\left(2 \pi f_{b} n\right) \stackrel{\text { DTFT }}{\longleftrightarrow} \begin{cases}1 & \text { for }\left|f_{d}\right| \leq f_{b} \\ 0 & \text { for } f_{b}<\left|f_{d}\right| \leq \frac{1}{2}\end{cases}
\]
the inverse DTFT of the ideal band pass is given by
\[
x[n]=B \cdot \operatorname{sinc}\left(2 \pi \frac{B}{2} n\right) \cdot e^{j 2 \pi f_{c} n}
\]
- This technique is very useful to convert lowpass filters into bandpass or highpass filters.

\section*{Convolution Property}
- The convolution property follows from linearity and the time delay property.
- Recall that the convolution of signals \(x[n]\) and \(h[n]\) is defined as
\[
y[n]=x[n] * h[n]=\sum_{k=-\infty}^{\infty} h[k] \cdot x[n-k] .
\]
- With the time-delay property and linearity, the right hand side transforms to
\[
Y\left(e^{j 2 \pi f_{d}}\right)=\sum_{k=-\infty}^{\infty} h[k] \cdot e^{-j 2 \pi f_{d} k} X\left(e^{j 2 \pi f_{d}}\right)
\]
- Since \(\sum_{k=-\infty}^{\infty} h[k] \cdot e^{-j 2 \pi f_{d} k}=H\left(e^{j 2 \pi f_{d}}\right)\),
\[
x[n] * h[n] \stackrel{\text { DTFT }}{\longleftrightarrow} X\left(e^{j 2 \pi f_{d}}\right) \cdot H\left(e^{j 2 \pi f_{d}}\right)
\]

\section*{Example}
- Convolution of two right sided exponentials \((|a|,|b|<1\) and \(a \neq b\) )
\[
y[n]=\left(a^{n} \cdot u[n]\right) *\left(b^{n} \cdot u[n]\right)
\]
has DTFT
\[
Y\left(e^{j 2 \pi f_{d}}\right)=\frac{1}{1-a e^{-j 2 \pi f_{d}}} \cdot \frac{1}{1-b e^{-j 2 \pi f_{d}}}
\]
- Question: What is the inverse transform of \(Y\left(e^{j 2 \pi f_{d}}\right)\) ? I.e., is there a closed form expression for \(y[n]\) ?

\section*{Example continued}
- The expression
\[
Y\left(e^{j 2 \pi f_{d}}\right)=\frac{1}{1-a e^{-j 2 \pi f_{d}}} \cdot \frac{1}{1-b e^{-j 2 \pi f_{d}}}
\]
can be rewritten as
\[
Y\left(e^{j 2 \pi f_{d}}\right)=\frac{a}{a-b} \cdot \frac{1}{1-a e^{-j 2 \pi f_{d}}}-\frac{b}{a-b} \cdot \frac{1}{1-b e^{-j 2 \pi f_{d}}}
\]
- The inverse transform of \(Y\left(e^{j 2 \pi f_{d}}\right)\) is
\[
y[n]=\frac{a}{a-b} \cdot a^{n} \cdot u[n]-\frac{b}{a-b} \cdot b^{n} \cdot u[n] .
\]

\section*{Parseval's Theorem}
- The Energy of a discrete-time signal \(x[n]\) is defined as
\[
E=\sum_{k=-\infty}^{\infty}|x[n]|^{2} .
\]
- Parseval's theorem states that the energy can also be computed using the DTFT
\[
E=\sum_{k=-\infty}^{\infty}|x[n]|=\int_{-\frac{1}{2}}^{\frac{1}{2}}\left|X\left(e^{j 2 \pi f_{d}}\right)\right|^{2} d f_{d}
\]

\section*{Example}
- Find the energy of the sinc pulse
\[
x[n]=2 f_{b} \cdot \operatorname{sinc}\left(2 \pi f_{b} n\right)
\]
- This is impossible in the time domain and trivial in the frequency domain
\[
E=\sum_{k=-\infty}^{\infty}|x[n]|^{=} \int_{-\frac{1}{2}}^{\frac{1}{2}}\left|X\left(e^{j 2 \pi f_{d}}\right)\right|^{2} d f_{d}=2 f_{b}
\]

\section*{Lecture: The \(z\)-Transform}

\section*{Introduction}
- Question: What is the output of an LTI system when the input is an exponential signal \(x[n]=z^{n}\) ?
- \(z\) is complex-valued.
\[
x[n]=z^{n} \longrightarrow \text { LTI System } \quad y[n]=?
\]
- Answer:
\[
y[n]=H(z) \cdot z^{n} \quad \text { with } \quad H(z)=\sum_{n=-\infty}^{\infty} h[n] \cdot z^{-n}
\]
- \(H(z)\) is the \(z\)-Transform of the LTI system with impulse response \(h[n]\).

\section*{Definitions and Observations}
- Analogously, we can define the \(z\)-Transform of a signal \(x[n]\)
\[
X(z)=\sum_{n=-\infty}^{\infty} x[n] \cdot z^{-n}
\]
- Notation:
\[
x[n] \stackrel{2}{\longleftrightarrow} X(z) .
\]
- Note: we can think of the ztransform as a generalization of the DTFT.
- The DTFT arises when \(z=e^{j 2 \pi f_{d}}\).
- The \(z\)-Transform is a linear operation.

\section*{Examples}
- The \(z\)-Transforms of the following signals generalize easily from the DTFTs computed earlier.
\[
\begin{aligned}
& \delta[n] \stackrel{z}{\longleftrightarrow} 1 \\
& \delta\left[n-n_{0}\right] \stackrel{z}{\longleftrightarrow} z^{-n_{0}} \\
& u[n]-u[n-L] \stackrel{z}{\longleftrightarrow} \frac{1-z^{-L}}{1-z^{-1}} \\
& a^{n} \cdot u[n] \stackrel{z}{\longleftrightarrow} \frac{1}{1-a z^{-1}}
\end{aligned}
\]

\section*{\(z\)-Transform of a Finite Duration Signal}
- The \(z\)-Transform of a signal with finitely many samples is easily computed
\[
\sum_{k=0}^{M-1} x[k] \cdot \delta[n-k] \stackrel{z}{\longleftrightarrow} \sum_{k=0}^{M-1} x[k] \cdot z^{-k}
\]
- Example: The DTFT of the signal \(x[n]=\{1,2,3,4\}\) is
\[
\{1,2,3,4\} \stackrel{z}{\longleftrightarrow} 1+2 z^{-1}+3 z^{-2}+4 z^{-3}
\]
- The \(z\) transform of a finite-duration signal is a polynomial in \(z^{-1}\).
- The coefficients of the polynomial are the samples of the signal.
- The inverse \(z\)-transform is trivial to determine when it is given as a polynomial.

\section*{Properties of the \(z\)-Transform}

Linearity
\[
x_{1}[n]+x_{2}[n] \stackrel{z}{\longleftrightarrow} X_{z}(z)+X_{2}(z)
\]

Delay
\[
x\left[n-n_{0}\right] \stackrel{z}{\longleftrightarrow} z^{-n_{0}} \cdot X(z)
\]

Convolution
\[
x[n] * h[n] \stackrel{z}{\longleftrightarrow} X(z) \cdot H(z)
\]

\section*{Unit Delay System}
- The unit delay system is an LTI system
\[
y[n]=x[n-1]
\]
- Its impulse response and \(z\)-Transform are is
\[
h[n]=\delta[n-1] \quad H(z)=z^{-1}
\]
- In terms of the \(z\)-transform:
\[
Y(z)=z^{-1} \cdot X(z)
\]
- In the \(z\)-domain, a unit delay corresponds to multiplication by \(z^{-1}\).
- In block diagrams, delays are often labeled \(z^{-1}\).

\section*{Equivalence of Convolution and Polynomial Multiplcation}
- The convolution property states
\[
x[n] * h[n] \stackrel{z}{\longleftrightarrow} X(z) \cdot H(z)
\]
- We saw that the \(z\)-Transforms of finite duration signals are polynomials. Hence, convolution is equivalent to polynomial multiplaction.
- Example: \(x[n]=\{1,2,1\}\) and \(h[n]=\{1,1\}\); by convolution
\[
x[n] * h[n]=\{1,3,3,, 1\} .
\]
- In terms of \(z\)-Transforms:
\[
\begin{aligned}
X(z) \cdot H(z) & =\left(1+2 z^{-1}+1 z^{-2}\right) \cdot\left(1+1 z^{-1}\right) \\
& =1+3 z^{-1}+3 z^{-2}+z^{-3}
\end{aligned}
\]

\section*{Zeros of \(H(z)\)}
- An important use of the \(z\)-Transform is providing insight into the properties of a filter.
- Of particular interest are the zeros of a filter's \(z\)-Transform \(H(z)\).
- Example: The \(L\)-point averager has the \(z\)-Transform
\[
H(z)=\frac{1}{L} \cdot \frac{1-z^{-L}}{1-z^{-1}}=\frac{1}{L} \cdot \prod_{k=1}^{L-1}\left(1-e^{-j 2 \pi k / L} \cdot z^{-k}\right)
\]
- The factorization shows that zeros of \(H(z)\) occur when \(z=e^{-j 2 \pi k / L}\).
- Note that
- zeros occur along the unit circle \(|z|=1\)
- at angles that correspond to frequencies \(f_{d}=k / L\) for \(k=1, \ldots, L-1\).
Zeros are evenly spaced in the stop-band of the filter.

\section*{Roots of \(H(z)\) for L-Point Averager}



Roots of \(H(z)\) and magnitude of Frequency Response for \(L=11\)-point Averager.

\section*{Roots of \(H(z)\) for a very good Lowpass Filter}
- A very-good lowpass filter with
- normalized cutoff frequency \(f_{c}=0.2\) (end of pass passband)
- width of transition band \(\Delta f=0.1\) (stop band starts at \(\left.f_{c}+\delta f\right)\).
can be designed in MATLAB with:
```

%% parameters
L = 30;
fc = 0.2; % cutoff frequency - relative to Nyquist frequency
df = 0.1; % width of transition band
%% generate impulse response
h = firpm(L, [0, fc, fc+df, 0.5]/0.5, [1, 1, 0, 0]);

```

\section*{Roots of \(H(z)\) for a very good Lowpass Filter}



Roots of \(H(z)\) and magnitude of Frequency Response for a very good LPF. Zeros are on the unit-circle in the stop band. In the pass band, pairs of roots form a "channel" to keep the

\section*{IIR Filter}
- Question: Can we realize a filter with the infinite impulse response (IIR) \(h[n]=a^{n} \cdot u[n]\) ?
- Recall that
\[
a^{n} \cdot u[n] \stackrel{z}{\longleftrightarrow} \frac{1}{1-a z^{-1}}
\]
- Hence,
\[
Y(z)=X(Z) \cdot \frac{1}{1-a z^{-1}} \quad \text { or } \quad Y(z) \cdot\left(1-a z^{-1}\right)=X(z)
\]
- In the time domain,
\[
y[n]-a y[n-1]=x[n] \quad \text { or } \quad y[n]=x[n]+a y[n-1] .
\]

\section*{Lecture: Discrete Fourier Transform (DFT)}

\section*{Introduction}
- The Discrete Fourier Transform (DFT) is a work horse of Digital Signal Processing.
- Its primary uses include:
- Measuring the spectrum of a signal from samples
- Fast algorithms for convolution or correlation
- The DFT is computed from a block of \(N\) samples \(x[0], \ldots, x[N-1]\).
- It computes the DTFT at \(N\) evenly spaced, discrete frequencies:
\[
X[k]=X\left(e^{j 2 \pi \cdot k / N \cdot n}\right) \quad \text { for } k=0, \ldots, N-1
\]
- Fast algorithms (Fast Fourier Transform (FFT)) exist to compute the DFT. university

\section*{Definitions}
- (Forward) Discrete Fourier transform: for a block of \(N\) samples \(x[n]\), the DFT \(X[k]\) is given by
\[
X[k]=\sum_{n=0}^{N-1} x[n] \cdot \exp (-j 2 \pi \cdot k / N \cdot n) \quad \text { for } k=0, \ldots, N-1
\]
- Inverse Discrete Fourier transform: a block of \(N\) samples \(x[n]\), is obtained from the DFT \(X[k]\) by
\[
x[n]=\frac{1}{N} \sum_{k=0}^{N-1} X[k] \cdot \exp (j 2 \pi \cdot k / N \cdot n) \quad \text { for } n=0, \ldots, N-1
\]

\section*{Observations}
- The DFT is discrete in both time and frequency.
- In contrast, the DTFT is discrete in time but continuous in frequency.
- The signal \(x[n]\) is implicitly assumed to repeat periodically with period \(N\).
\[
\begin{aligned}
x[n+N] & =\frac{1}{N} \sum_{k=0}^{N-1} X[k] \cdot \exp (j 2 \pi \cdot k / N \cdot(n+N)) \\
& =\frac{1}{N} \sum_{k=0}^{N-1} X[k] \cdot \exp (j 2 \pi \cdot k / N \cdot n) \cdot \exp (j 2 \pi \cdot k)=x[n]
\end{aligned}
\]
- This observation has ramifications for the delay and convolution properties of the DFT. university

\section*{Implicit Periodicity}


The signal with DFT \(X[k]\) is implicitly periodic; the period equals the block length \(N\).

\section*{Example}
- The \(\operatorname{DFT}^{1}\) of the length \(N=4\) signal \(\{1,1,0,0\}\) :
\[
\begin{aligned}
X[0] & =1 e^{-j 0}+1 e^{-j 0}+0 e^{-j 0}+0 e^{-j 0} \\
& =1+1+0+0=2 \\
X[1] & =1 e^{-j 0}+1 e^{-j 2 \pi / 4}+0 e^{-j 4 \pi / 4}+0 e^{-j 6 \pi / 4} \\
& =1+(-j)+0+0=\sqrt{2} e^{-j \pi / 4} \\
X[2] & =1 e^{-j 0}+1 e^{-j 4 \pi / 4}+0 e^{-j 8 \pi / 4}+0 e^{-j 12 \pi / 4} \\
& =1+(-1)+0+0=0 \\
X[3] & =1 e^{-j 0}+1 e^{-j 6 \pi / 4}+0 e^{-j 12 \pi / 4}+0 e^{-j 18 \pi / 4} \\
& =1+(j)+0+0=\sqrt{2} e^{j \pi / 4}
\end{aligned}
\]

Thus, \(X[k]=\left\{2, \sqrt{2} e^{-j \pi / 4}, 0, \sqrt{2} e^{j \pi / 4}\right\}\)
\({ }^{1}\) Exponentials are \(e^{-j 2 k n \pi / N}\)

\section*{Fast Transform (FFT)}
- The main practical benefit of the DFT stems from the fact that a computationally efficient algorithm exists.
- A naive (brute-force) implementation of the DFT requires \(N^{2}\) complex multioplications and additions.
- \(N\) outputs must be computed
- Each requires \(N\) multiplications and additions
- The Fast Fourier Transform algorithm (FFT) reduces the number of complex multiplications and additions to \(N \cdot \log _{2}(N)\).
- It recursively splits the DFT of length \(N\) into 2 DFTs of length \(N / 2\) (divide-and-conquer)
- Until length-2 DFTs can be computed trivially.
- A naive DFT of length \(N=1024\) requires approximately \(10^{6}\) multiplications and additions; the FFT requires only approximately \(10^{4}\).

\section*{DFT of a Shifted Impulse}
- The finite, length \(N\) duration of the signal block and the associated, implicit assumption that \(x[n]\) is periodic with period \(N\) has some unexpected consequences.
- We showed that the DTFT of a shifted impulse is
\[
\delta\left[n-n_{d}\right] \stackrel{\text { DTFT }}{\longleftrightarrow} e^{-j 2 \pi f_{d} n_{d}}
\]
- DFT with shift \(n_{d}<N\) : assume \(N=8\) and \(n_{d}=3\)
\[
X[k]=e^{-j 2 \pi k / N n_{d}}=e^{-j 3 \pi / 4 k}
\]
- DFT with shift \(n_{d} \geq N\) : assume \(N=8\) and \(n_{d}=11\) \(X[k]=e^{-j 2 \pi k / N n_{d}}=e^{-j 11 \pi / 4 k}=e^{-j 3 \pi / 4 k} \cdot e-j 2 \pi=e^{-j 3 \pi / 4 k}\)
- Delays induce phase shifts proportional to \(n_{d} \bmod N\) :
\[
X[k]=e^{-j 2 \pi k / N n_{d}}=e^{-j 2 \pi k / N\left(n_{d} \bmod N\right)}
\]

\section*{Delay Property}
- The same phenomenon affects the delay property.
- When the implicitly periodic signal is delayed, the block of \(N\) samples is filled with periodic samples.
- For example, when the signal \(x[n]=\{1,2,3,4\}\) is shifted by \(n_{d}=2\) positions it becomes \(x\left[\left(n-n_{d}\right) \bmod N\right]=\{3,4,1,2\}\).
- This is refered to as circular shifting.
- For the DFT, the delay property is therefore
\[
x\left[\left(n-n_{d}\right) \bmod N\right] \stackrel{\text { DFT }}{\longleftrightarrow} X[k] \cdot e^{-j 2 \pi k / N n_{d}}
\]

\section*{Implicit Periodicity}



Shifting the implicitly periodic signal induces a circular shift over the block of \(N\) samples.

\section*{Convolution Property}
- Similarly, the convolution property for the DFT is different from that for the DTFT or \(z\)-Transform.
- A modified form of convolution, called circular convolution has a product-form transform.
- Let \(x[n]\) and \(h[n]\) be length \(-N\) signals with DFT \(X[k]\) and \(H[k]\), respectively.
- Then, the (circular) convolution property is
\[
\sum_{m=0}^{N-1} h[m] x[(n-m) \bmod N] \stackrel{\mathrm{DFT}}{\longleftrightarrow} X[k] \cdot H[k]
\]
- Note that circular convolution is very different from normal convolution.
- Question: How can the (circular) convolution property be used for fast convolution?

\section*{Zero-Padding}
- Turning circular convolution into regular convolution is straightforward:
- The signals \(x[n]\) and \(h[n]\) to be convolved must be extended by appending zeros such that
- They have the same length \(N\), and
- if \(x[n]\) has length \(N_{x}\) and \(h[n]\) has length \(N_{h}\), then
\[
N \geq N_{x}+N_{h}-1
\]
- This is called zero-padding.
- Example: Let \(x[n]=\{1,2,3,4\}\) and \(h[n]=\{3,2,1\}\), then the zero-padded signals are
\[
\tilde{x}[n]=\{1,2,3,4,0,0\} \quad \tilde{x}[n]=\{3,2,1,0,0,0\}
\]

\section*{Implicit Periodicity}



With zero-padding, the shifting of the implicitly periodic signal introduces only zero samples in the block of \(N\) samples.

\section*{Convolution with FFTs}
- Fast convolution based on FFTs of zero-padded signals can be implemented as follows:
```

% signals
x = [1,2,3];
h = [1,1];
% zero-padding to length 4
xp = [x, 0];
hp = [h, 0, 0];
% transforms
Xp = fft(xp);
Hp = fft(hp);
% multiply and inverse transform
y = ifft(Xp.*Hp)

```

\section*{Part IX}

\section*{Review of Complex Algebra}

\section*{Lecture: Introduction to Complex Numbers}

\section*{Why Complex Numbers?}
- Complex numbers are closely related to sinusoids.
- They eliminate the need for trigonometry ...
- ... and replace it with simple algebra.
- Complex algebra is really simple - this is not an oxymoron.
- Complex numbers can be represented as vectors.
- Used to visualize the relationship between sinusoids.

\section*{The Basics}
- Complex unity: \(j=\sqrt{-1}\).
- Complex numbers can be written as
\[
z=x+j \cdot y
\]

This is called the rectangular or cartesian form.
- \(x\) is called the real part of \(z: x=\operatorname{Re}\{z\}\).
- \(y\) is called the imaginary part of \(z: y=\operatorname{Im}\{z\}\).
- \(z\) can be thought of a vector in a two-dimensional plane.
- Cordinates are \(x\) and \(y\).
- Coordinate system is called the complex plane.

\section*{Illustration - The Complex Plane}


\section*{Euler's Formulas}
- Euler's formula provides the connection between complex numbers and trigonometric functions.
\[
e^{j \phi}=\cos (\phi)+j \cdot \sin (\phi) .
\]
- Euler's formula allows conversion between trigonometric functions and exponentials.
- Exponentials have simple algebraic rules!
- Inverse Euler's formulas:
\[
\begin{aligned}
& \cos (\phi)=\frac{e^{j \phi}+e^{-j \phi}}{2} \\
& \sin (\phi)=\frac{e^{j \phi}-e^{-j \phi}}{2 j}
\end{aligned}
\]
- These relationships are very important.

\section*{Polar Form}
- Recall \(z=x+j \cdot y\)
- From the diagram it follows that
\[
z=r \cos (\phi)+j r \sin (\phi)
\]
- And by Euler's relationship:

\[
\begin{aligned}
z & =r \cdot(\cos (\phi)+j \sin (\phi)) \\
& =r \cdot e^{j \phi}
\end{aligned}
\]
- This is called the polar form.


\section*{Converting from Polar to Cartesian Form}
- Some problems are best solved in rectangular coordinates, while others are easier in polar form.
- Need to convert between the two forms.
- A complex number polar form \(z=r \cdot e^{j \phi}\) is easily converted to cartesian form.
\[
z=r \cos (\phi)+j r \sin (\phi)
\]
- Example:
\[
\begin{aligned}
4 \cdot e^{j \pi / 3} & =4 \cdot \cos (\pi / 3)+j \cdot 4 \cdot \sin (\pi / 3) \\
& =4 \cdot \frac{1}{2}+j \cdot 4 \cdot \frac{\sqrt{3}}{2} \\
& =2+j \cdot 2 \cdot \sqrt{3} .
\end{aligned}
\]

\section*{Converting from Cartesian to Polar Form}
- A complex number \(z=x+j y\) in cartesian form is converted to polar form via
\[
r=\sqrt{x^{2}+y^{2}}
\]
and
\[
\tan (\phi)=\frac{y}{x}
\]
- The computation of the angle \(\phi\) requires some care.
- One must distinguish between the cases \(x<0\) and \(x>0\).
\[
\phi= \begin{cases}\arctan \left(\frac{y}{x}\right) & \text { if } x>0 \\ \arctan \left(\frac{y}{x}\right)+\pi & \text { if } x<0\end{cases}
\]
- If \(x=0, \phi\) equals \(+\pi / 2\) or \(-\pi / 2\) depending on the sign of \(y\).

\section*{Exercise}
- Convert to polar form
\[
\text { 1. } z=1+j
\]
2. \(z=3 \cdot j\)
3. \(z=-1-j\)
- Convert to cartesian form
1. \(z=3 e^{-j 3 \pi / 4}\)
- in MATLAB, plot \(\cos (j x)\) for \(-2 \leq x \leq 2\) then explain the shape of the resulting graph.

Complex Numbers

\section*{Lecture: Complex Algebra}

\section*{Introduction}
- All normal rules of algebra apply to complex numbers!
- One thing to look for: \(j \cdot j=-1\).
- Some operations are best carried out in rectangular coordinates.
- Addition and subtraction
- Multiplication and division aren't very hard, either.
- Others are easier in polar coordinates.
- Multiplication and division.
- Powers and roots
- New operation: conjugate complex.
- A little more subtle: absolute value.

\section*{Conjugate Complex}
- The conjugate complex \(z^{*}\) of a complex number \(z\) has
- the same real part as \(z: \operatorname{Re}\{z\}=\operatorname{Re}\left\{z^{*}\right\}\), and
- the opposite imaginary part: \(\operatorname{Im}\{z\}=-\operatorname{Im}\left\{z^{*}\right\}\).
- Rectangular form:
\[
\text { If } z=x+j y \text { then } z^{*}=x-j y
\]
- Polar form:
\[
\text { If } z=r \cdot e^{j \phi} \text { then } z^{*}=r \cdot e^{-j \phi}
\]
- Note, \(z\) and \(z^{*}\) are mirror images of each other in the complex plane with respect to the real axis.

\section*{Illustration - Conjugate Complex}


\section*{Addition and Subtraction}
- Addition and subtraction can only be done in rectangular form.
- If the complex numbers to be added are in polar form convert to rectangular form, first.
Let \(z_{1}=x_{1}+j y_{1}\) and \(z_{2}=x_{2}+j y_{2}\).
- Addition:
\[
z_{1}+z_{2}=\left(x_{1}+x_{2}\right)+j\left(y_{1}+y_{2}\right)
\]
- Subtraction:
\[
z_{1}-z_{2}=\left(x_{1}-x_{2}\right)+j\left(y_{1}-y_{2}\right)
\]
- Complex addition works like vector addition.

\section*{Illustration - Complex Addition}


\section*{Multiplication}
- Multiplication of complex numbers is possible in both polar and rectangular form.
- Polar Form: Let \(z_{1}=r_{1} \cdot e^{j \phi_{1}}\) and \(z_{2}=r_{2} \cdot e^{j \phi_{2}}\), then
\[
z_{1} \cdot z_{2}=r_{1} \cdot r_{2} \cdot \exp \left(j\left(\phi_{1}+\phi_{2}\right)\right)
\]
- Rectangular Form: Let \(z_{1}=x_{1}+j y_{1}\) and \(z_{2}=x_{2}+j y_{2}\), then
\[
\begin{aligned}
z_{1} \cdot z_{2} & =\left(x_{1}+j y_{1}\right) \cdot\left(x_{2}+j y_{2}\right) \\
& =x_{1} x_{2}+j^{2} y_{1} y_{2}+j x_{1} y_{2}+j x_{2} y_{1} \\
& =\left(x_{1} x_{2}-y_{1} y_{2}\right)+j\left(x_{1} y_{2}+x_{2} y_{1}\right) .
\end{aligned}
\]
- Polar form provides more insight: multiplication involves rotation in the complex plane (because of \(\phi_{1}+\phi_{2}\) ).

\section*{Absolute Value}
- The absolute value of a complex number \(z\) is defined as
\[
|z|=\sqrt{z \cdot z^{*}} \text {, thus, }|z|^{2}=z \cdot z^{*}
\]
- Note, \(|z|\) and \(|z|^{2}\) are real-valued.
- In MATLAB, abs ( \(z\) ) computes \(|z|\).
- Polar Form: Let \(z=r \cdot e^{j \phi}\),
\[
|z|^{2}=r \cdot e^{j \phi} \cdot r \cdot e^{-j \phi}=r^{2} .
\]
- Hence, \(|z|=r\).
- Rectangular Form: Let \(z=x+j y\),
\[
\begin{aligned}
|z|^{2} & =(x+j y) \cdot(x-j y) \\
& =x^{2}-j^{2} y^{2}-j x y+j x y \\
& =x^{2}+y^{2}
\end{aligned}
\]

\section*{Division}
- Closely related to multiplication
\[
\frac{z_{1}}{z_{2}}=\frac{z_{1} z_{2}^{*}}{z_{2} z_{2}^{*}}=\frac{z_{1} z_{2}^{*}}{\left|z_{2}\right|^{2}}
\]
- Polar Form: Let \(z_{1}=r_{1} \cdot e^{j \phi_{1}}\) and \(z_{2}=r_{2} \cdot e^{j \phi_{2}}\), then
\[
\frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}} \cdot \exp \left(j\left(\phi_{1}-\phi_{2}\right)\right)
\]
- Rectangular Form: Let \(z_{1}=x_{1}+j y_{1}\) and \(z_{2}=x_{2}+j y_{2}\), then
\[
\begin{aligned}
\frac{z_{1}}{z_{2}} & =\frac{z_{1} z_{2}^{*}}{\left|z_{2}\right|^{2}} \\
& =\frac{\left(x_{1}+j y_{1}\right) \cdot\left(x_{2}-j y_{2}\right)}{x_{2}^{2}+y_{2}^{2}} \\
& =\frac{\left(x_{1} x_{2}+y_{1} y_{2}\right)+j\left(-x_{1} y_{2}+x_{2} y_{1}\right)}{x_{2}^{2}+y_{2}^{2}} .
\end{aligned}
\]

\section*{Exercises}
- For \(z_{1}=3 e^{j \pi / 4}\) and \(z_{2}=2 e^{-j \pi / 2}\), compute
1. \(z_{1}+z_{2}\),
2. \(z_{1} \cdot z_{2}\), and
3. \(\left|z_{1}\right|\).

Give your results in both polar and rectangular forms.

\section*{Lecture: Complex Algebra - Continued}

\section*{Good to know ...}
- You should try and remember the following relationships and properties.
\(\rightarrow e^{j 2 \pi}=1\)
\(\rightarrow e^{j \pi}=-1\)
- \(e^{j \pi / 2}=j\)
\(\rightarrow e^{-j \pi / 2}=-j\)
- \(\left|e^{j \phi}\right|=1\) for all values of \(\phi\)
- \(\exp (j(\phi+2 \pi))=e^{j \phi}\)

\section*{Powers of Complex Numbers}
- A complex number \(z\) is easily raised to the \(n\)-th power if \(z\) is in polar form.
- Specifically,
\[
\begin{aligned}
z^{n} & =\left(r \cdot e^{j \phi}\right)^{n} \\
& =r^{n} \cdot e^{j n \phi}
\end{aligned}
\]
- The magnitude \(r\) is raised to the \(n\)-th power
- The phase \(\phi\) is multiplied by \(n\).
- The above holds for arbitrary values of \(n\), including
- \(n\) an integer (e.g., \(z^{2}\) ),
- \(n\) a fraction (e.g., \(z^{1 / 2}=\sqrt{z}\) )
- \(n\) a negative number (e.g., \(z^{-1}=1 / z\) )
\(-n\) a complex number (e.g., \(z^{j}\) )

\section*{Roots of Unity}
- Quite often all complex numbers \(z\) solving the following equation must be found
\[
z^{N}=1
\]
- Here \(N\) is an integer.
- There are \(N\) different complex numbers solving this equation.
- The solutions have the form
\[
z=e^{j 2 \pi n / N} \text { for } n=0,1,2, \ldots, N-1
\]
- Note that \(z^{N}=e^{j 2 \pi n}=1\) !
- The solutions are called the \(N\)-th roots of unity.
- In the complex plane, all solutions lie on the unit circle and Miso are senarated bv anale \(2 \pi / N\)

\section*{Roots of a Complex Number}
- The more general problem is to find all solutions of the equation
\[
z^{N}=r \cdot e^{j \phi}
\]
- In this case, the \(N\) solutions are given by
\[
z=r^{1 / N} \cdot \exp \left(j \frac{\phi+2 \pi n}{N}\right) \text { for } n=0,1,2, \ldots, N-1
\]

\section*{Example: Roots of a Complex Number}
- Example: Find all solutions of \(z^{5}=-1\).
- Solution:
- Note \(-1=e^{j \pi}\), i.e., \(r=1\) and \(\phi=\pi\).
- There are \(N=5\) solutions:
- All have magnitude 1.
- The five angles are \(\pi / 5,3 \pi / 5,5 \pi / 5,7 \pi / 5,9 \pi / 5\).

\section*{Roots of a Complex Number}

university

\section*{Two Ways to Express \(\cos (\phi)\)}
- First relationship: \(\cos (\phi)=\operatorname{Re}\left\{e^{j \phi}\right\}\)
- Second relationship (inverse Euler):
\[
\cos (\phi)=\frac{e^{j \phi}+e^{-j \phi}}{2}
\]
- The first form is best suited as the starting point for problems involving the cosine or sine of a sum.
- \(\cos (\alpha+\beta)\)
- The second form is best when products of sines and cosines are needed
- \(\cos (\alpha) \cdot \cos (\beta)\)
- Rule of thumb: look to create products of exponentials.

\section*{Example}
- Show that \(\cos (x+y)\) equals \(\cos (x) \cos (y)-\sin (x) \sin (y)\) :
\[
\begin{aligned}
\cos (x+y)= & \operatorname{Re}\left\{e^{j(x+y)}\right\}=\operatorname{Re}\left\{e^{j x} \cdot e^{j y}\right\} \\
= & \operatorname{Re}\{(\cos (x)+j \sin (x)) \cdot(\cos (y)+j \sin (y))\} \\
= & \operatorname{Re}\{(\cos (x) \cos (y)-\sin (x) \sin (y))+ \\
& j(\cos (x) \sin (y)+\sin (x) \cos (y))\} \\
= & \cos (x) \cos (y)-\sin (x) \sin (y)
\end{aligned}
\]

\section*{Example}
- Show that \(\cos (x) \cos (y)\) equals \(\frac{1}{2} \cos (x+y)+\frac{1}{2} \cos (x-y)\) :
\[
\begin{aligned}
\cos (x) \cos (y) & =\frac{e^{j x}+e^{-j x}}{2} \frac{e^{j y}+e^{-j y}}{2} \\
& =\frac{e^{j(x+y)}+e^{j(-x-y)}+e^{j(x-y)}+e^{j(-x+y)}}{4} \\
& =\frac{e^{j(x+y)}+e^{-j(x+y)}}{4}+\frac{e^{j(x-y)}+e^{-j(x-y)}}{4} \\
& =\frac{1}{2} \cos (x+y)+\frac{1}{2} \cos (x-y)
\end{aligned}
\]

\section*{Exercises}
- Simplify
\[
\begin{aligned}
& \text { 1. }(\sqrt{2}-\sqrt{2} j)^{8} \\
& \text { 2. }(\sqrt{2}-\sqrt{2} j)^{-1}
\end{aligned}
\]
- Advanced
1. \(j^{j} \cos (j)\)```

